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SIMGraph: Simplifying contig graph to improve
de novo genome Assembly using next-generation
seguencing data
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Abstract—De novo genome assembly is aways fragmented.
Assembly fragmentation is more serious using the popular next
generation sequencing (NGS) data because NGS sequences are shorter
than the traditional Sanger sequences. As the data throughput of NGS
is high, the fragmentations in assemblies are usualy not the result of
missing data. On the contrary, the assembled sequences, called
contigs, are often connected to more than one other contigs in a
complicated manner, leading to the fragmentations. False connections
in such complicated connections between contigs, named a contig
graph, are inevitable because of repeats and sequencing/assembly
errors. Simplifying a contig graph by removing false connections
directly improves genome assembly. Inthiswork, we have developed a
tool, SIMGraph, to resolve ambiguous connections between contigs
using NGS data. Applying SIMGraph to the assembly of afungus and
a fish genome, we resolved 27.6% and 60.3% ambiguous contig
connections, respectively. These results can reduce the experimental
efforts in resolving contig connections.
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I. INTRODUCTION

ENOME sequencing and assembly are essential for

understanding the genomes of organisms. Currently,
next-generation sequencing (NGS) technologies, such as Roche
454 pyrosequencing[1], I1lumina Genome Analyzer[2] and ABI
SOLiD system[3], are prevailing due to their low cost and high
throughput. It is now a common practice to obtain a deep
coverage of sequences (also called reads) from awhole genome
with one or a few NGS runs for assembly. However, genome
assembly is still highly challenging. None of current programs
can process sequencing reads into one single piece of DNA in
one shot even for a small microbia genome of a few
mega-bases. The resulting assembly usually appears as a set of
long DNA fragments, called contigs.

A magjor challenge of de novo genome assembly arises
because of the presence of repetitive DNA segments, called
repeats, in genomes. When reads come from distinct copies of a
repeat, assembly program usualy cannot distinguish
betweenthe reads by their genomic locations.
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Thus, the reads from a repeat are often assembled into one
DNA fragment (Figure l1a) with distinct flanking DNA
connected, resulting in complicated connections between
contigs, together called a contig graph (Figure 1).

Repeat problems in genome assembly can be serious for two
reasons. First, repeats can constitute a significant portion of a
genome. For example, DNA repeats occupy about half of the
human genome[4]. Second, NGS reads are shorter (~400 bpfor
454, 100-150 bp for Illumina, and 75 bp for SOLID) than
traditional Sanger reads (800-1000 bp). A DNA repeat is
actually not a repeat when the reads are longer than the repest
because with the unique part of reads outside the repeat, the
reads can be distinguished. When reads are shorter, more DNA
repeats appear. Even for a small microbia genome, repeat
problems often result in acomplicated contig graph (Figure 1b).

In thiswork, we propose a computational tool, SIMGraph, to
simplify a contig graph for improving genome assembly. We
note that with a deep read coverage, the assembled contigs
cannot be connected mainly because of ambiguous connections
instead of missing data[5]. Ambiguous connections arise when
one contig connects to more than one other contig and the extra
connections are false because of repeats and
sequencing/assembly errors. SIMGraph simplifies a contig
graph by resolving ambiguous contig connections, i.e.,
removing the false connections between contigs. After
removing the false connections, some contigs can be
re-connected unambiguously to improve the assembly.

SIMGraph takes advantage of two types of NGS data, 454
and Illumna paired-end (PE), to simplify a contig graph. More
specifically, it uses1llumina PE datato resolve some ambiguous
connections between contigs in a contig graph obtained with
454 data alone. Because 454 reads are longer than Illumina
reads, we expect fewer repeats in the assembly with 454 data
aone. In contrast, an Illumina platform yields a much greater
amount of data than a 454 platform, thus providing a stronger

statistical power for resolving ambiguities in contig
connections.
@
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length), constituting an ~8X and ~41X coveragehefgenome,
respectively.

We also tested SIMGraph on the NGS data of a fyrwgish
was kindly provided by our collaborators. This datacontains
~4.2M 454 reads and ~7M lllumina PEs, constituaing~43X

e and ~16X coverage of the genome, respectively.géimeme of
this fungus has not been published.

B.Initial assembly of 454 data
We assembled the 454 data of the two genomes with

Fig. 1De novo genome assembly with the presence of a Newbler[1]with default parameters. The resultingntigp

repeat.(a)Shown on top are two genomic loci whaoh €olor Seqeuence_s (called 454 Contigs_) and contig grap’rh_ei files
represents a unique contig. The bottom graph isgfarso-called ~ 454AllContigs.fna and 454ContigGraph.txt, were sittatto

contig graph, which stores the information of ahoections between SIMGraph for assembly improvement.
contigs. The presence of repeats (segments ingad to branches of i
the contig graph. (b) A contig graph of the Velassembly of the C.9MGraph algorithm

lllumina PE reads simulated from the E. coli K12 M855 genome Figure 2a shows the workflow of SIMGraph. SIMGraph
direction. Only the largest connected group of iganis shown here i, 454 data, and Illumina PE reads. After thédfoing steps,
it outputs the validity judgments of the detectedbiuous

Applying SIMGraph on the 454 and lllumina data dfiagus . .
and a fish genome, we detected 666 and 3,708 aoimsgu contig connectlpns. - .
connections between contigs. SIMGraph then resoli@d SIMGraph first detects a specific type of ambiguous
(27.6%), and 2,236 (60.3%) of the ambiguous colimest connections between 454 contigs, named triads, fhensontig

Though SIMGraph was tested using 454 and lllumiBa&a in graph (Figure 2a). A triad composes of three ceriegming

this work, it can be applied on lllumina PE datane. two possible paths, C1-C3 and C1-C2-C3. In a tigadtigs C1
and C3 can either be connected straightly or cdedewith the

Il. METHOD contig C2 in the middle. This arises either becabséh

theconnections exist in the genome, or becausebtie two

A.NGSdata and draft genome paths is false and appears due to sequencingeamhbhserrors.

We applied our tool on the NGS data of the fishSIMGraph judges the validity of the two cases udihgnina
Gasterosteusaculeatus, in this study. The draft genome of thePE data. The pseudo-code of the triad detectioorighgn in
fish (BROAD S1, Feb 2006) has been released byBROABIMGraph is shown in Figure 2b.
Institute. This draft genome was assembled fromg&an SIMGraph then maps the lllumina PE reads onto the
sequencing data from several mate-pair librariegngus contigsin the detected triads using SOAP2[10]. frta@pings
Arachne2[6, 7]. The same fish sample was later eecpd of Illumina PEs are classified into two categoriesgular and
again on 454 and lllumina platforms. The draft geaois bridging (Figure 3). A regular PE has its two reaoapped
461,533,448 bpin length(in 21 chromosomes, 1 madadnal onthe different strands of the same contig (Fige From
DNA, and 1822 scaffolds). We downloaded the dgeftome themappings of regular PEs, SIMGraph calculates the
from Ensembl[8]. We obtained the NGS data of thle lenome istriputionof the distances between two paireddsedThis
(sample ID SRS010092, Table 1) from NCBI Sequenea? igripution islater used to judge the validity @bntig
Archive (SRA) database[9]. We downloaded all thé d&ta of connections. A bridgingPE has its two reads mappad

the fish (a total of 3.7G bases in 11M reads) &edltumina PE different contigs (Figure 3b).SIMGraph uses thelgiig PEs

libraries (a total of 19G bases in 125M PEs of P6read whose two reads are mapped on the contigs C1 ard @iads
for resolving ambiguities in contig connections.

TABLE |
STATISTICS OF THENGSDATA USED IN THIS STUDY
Species No. of 454 reads (bases) No. of lllumina read pairgbases)
G. aculeatus® 11,109,932 (3,730,459,0: 125,373,070 (19,059,697,5:
Our fungu? 4,203,995(1,413,313,54: 6,998,197 (531,862,97

IThe 454 libraries were found by searching SRA ugiegsample ID SRS010092 and the keyword “454” fElael length and insert length of the lllumina litea
are 76 and 410 bp, respectivljumina read length is 38 bp
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(a) For each triad, SIMGraph judges the validity of the
- - contig paths using a statistical analysis and antijative
analysis. The statistical analysis focuses on
distancesbetween two paired reads, the paired-estdndes
(PEDSs), of lllumina data. From the paired reads peadpon C1
and C3 of a triad, SIMGraph calculates two PEfs; and
d;»5 for the two paths C1-C3 and C1-C2-C3, respegtivel
(Figure 4a). When a triad hadridging PEs witn larger than a
predefined parameteb, SIMGraph obtains the two PED
distributions of d;3 and d;»3 and then uses the
Kolmogorov-Smirnov test (KS-test) to compare theithwhe

454

: the
Contig graph ]

Triad* detection

Contig sequences ]

A 4
Mapping lllumina data
onto triads

llumina PE reads ]

Y
Statistical analysis of PE

Quantitative analysis of SE

mapping mapping PED distribution of the regular PEs. Whagb, SIMGraph
calculates the two geometric means of probability
* c2 densities—usually named likelihood—of thd;.; andnd;.,.s,
o m— respectively, using the probability distributioméition in PED
- Semmm e ~ o3 distance of the regular PEs. When comparing the &EDpath

with the regular case, the larger p-value of K$-¢esikelihood

(b) . indicates that the corresponding path is suppdstetdlumina
For each contig { PE data. Specifically, we set a p-value cutoff déf 0.001,
adjustable), above which the path is considereémed by
lllumina PE data. Figure 4 shows a sample res @ifGraph’s
statistical analysis.

In the quantitative analysis, SIMGraph treats t ings of
If b.e connects to the other endcpthena, c andb are q y P apping

reported as the C1, C2 and C3, respectively of d.tNate _”Iumma _data a_s of single I’e-adS without consm@th_re payrmg
that C1 and C3 in a triad are interchangeable by|the information. Briefly, we obtained the number otithina single

definition. Thus ifb, c anda have been reported as a trigd, reads that are mapped at the junction of contigiections. We
than this triad will be ignored. define the support of the C1-C3 path as the nurobeingle
} reads spanning the junction of C1 and C3 (Figure Bbe
support of the C1-C2-C3 path is defined as the lsmsiipport
} of C1-C2 and C2-C3. If C2 is shorter than a preufi
} parameter o, the support of the C1-C2-C3 pathfisett as the

For each contifp that connects ta {

Suppose that the ends (5’ or 3")a&ndb in this connection are
a.e andb.e, respectively.For each contighat connects ta.e {

Fig. 2 Workflow and pseudo-codes of SIMGraph. @)Graph gg;n ﬁeéffaﬁgﬁ)eeggs:;glir:gftgf tshpainglngll\cdjérg;hargfs%:gr
detects triads in the 454 assembly, performs reggbing and ) ! )
analyzes the mapping results with two methods.4Biecontig graph  OUter ends (ends not connected to C2) by the quoneting 454
that describes connections between contigs isSaCbntigGraph.txtt  faw reads to enable read mapping. The inner endds (e
of Newbler’s outputs; while the 454 contig sequenae in connected to C2) of C1 and C3 remain intact dudogtig
‘454AlIContigs.fna’. This study defines a triadaspecific type of ~ extension. This may result in multiple extendeda@d C3 since
ambiguous gap. C1, C2 and C3 are 454 contigs, whersharp ends a 454 contig is usually the consensus of multipié daw reads.
indicate the 3'-ends. The dashed lines among tinelivate their | this condition, the sum of supports of all téemded contigs
connections reported by Newbl_er. (b) Pseudo-cofiesad detection is used. We set a support cutoff, above which wesider the
algorithm in SIMGraph path as accepted by Illumina PE data. Figure 5 sleosample
result of SIMGraph’s quantitative analysis.
In the final output, we combine the results of istaal
analysis and quantitative analysis. For each tiduagn the two

@ S - - - - - — - — = — = ~a—

(b) - - - - - - - - - e— inferences agree, the result is strongly suppotfezhe of the
— — analyses does not accept any of the paths, we deontiie
(c) ———— analysis non-informative and use the inferencehef dther
I <S— analysis as the final inference. Such non-informeatiases often
(d) — arise because only few PEs or reads support the éten
———— both analyses are non-informative, the triad is saered

Fig. 3 Four conditions of mapping lllumina read$oo#54 contigs. non-resplyablg. In Contrastz if one Qf the anal;mgmepts both
Black lines are Illumina reads while color lines 454 contigs. The Paths, indicating that the information content i®egh, we
dashed lines in between the two lllumina readsciatei that they are  €Xpect that the other analysis also accepts batisp# the

paired ends. (a) A lllumina PE maps on the samecébdig. (b) A
lllumina PE maps on two 454 contigs, denoted bridd?E in the

context. (c) A lllumina SE crosses the junctiorived 454 contigs. (d)
A lllumina SE crosses the two junctions of thred 46ntigs
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other analysis does not accept both paths, we tende
conservative and use the inference of the one gmthe final
inference.
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This strategy is reasonable. For example, whetetigth of
C2 is small, the statistical analysis tends to pcteth paths
because it cannot distinguish the two paths. thés better to
determine the final inference based on the quainttanalysis.
When each of the two analyses infers only one aaththe two
inferred paths disagree, we consider the case $istent.

[l. CABOGAND SSPACE
We compared the performance of SIMGraph with tweept

programs, CABOGJ[11, 12] and SSPACE[13]. We empleasi:

that the two programs are not designed to simpbfytig graph,
but they contain algorithms that connect contigscd&ise the
module for contig connections is embedded in CAB&@

cannot be run separately, we ran CABOG with the d4bd

lllumina PE data and used the final assembly fafopmance

comparison. SSPACE is a scaffolder program, andeioras

gives the sequences between contigs on a scaffold.

IV. RESULTS ANDDISCUSSIONS

A. Initial 454 assembly

We used Newbler to assemble the 454 reads of thgufu
into 20,949 contigs. About half (10,486) of the tigs are at
least of length 100 bp, in which the total humb&bases is
32,828,399. The assembly outputs 31,157 connedbietvgeen
20,919 contigs. Thus, almost all contigs are ingdhin the
contig graph, suggesting a good coverage of the diia
because. However, for a genome of size about 4aiNtbinitial
assembly is much more fragmented in our experieieelater

(a) (b).
,—JL 2
"2y b

©

Fig. 4 Statistical analysis of SIMGraph. (a) Sch
paired-end distance (PED) in SIMGraph. Using SOAR®, paired reads (the
two black lines connected with a dashed line) aapmed on two contigs C1
and C3 (blue and red lines). SOAP2 outputs the e@ppsitions of the paired
reads on the contigs, thasndb are known constants. Since the gap sequence
between C1 and C3 is either an empty sequenced2ttontig, the PED is

eitherd;s=a+b ordi.,.z=a+y+b wherey is the length of C2 contig. (b) This
analysis uses Kolmogorov-Smirnov test (KS-testjdmpare the cumulative
distribution functions (c.d.f) of the PEDs of C1-6&th (i.e.d:-3, red line) and
of C1-C2-C3 path (i.edi-2-3 green line) to the background distribution (blue

line). The p-values of KS-test are shown in thetets of the lines. (c)
SIMGraph also provides the probability density fiiors (p.d.f) of PED. (d) If
a triad has too few bridging PEs, SIMGraph restoriikelihoods of the PEDs
of C1-C3 path (red lines) and of C1-C2-C3 pathedgiines) belonging in the
background distribution (blue line). The likelihaodre shown in the legends of

the lines

realized that the fungus sample is diploid, whielsonably|:

explains the abundance of small contigs.

For the assembly of the fish genome, we obtaineés]42®8
contigs. The majority of the contigs (193,423) atdeast of
length 100 bps, in which the total number of bases|
407,226,149. The assembly outputs 147,106 conmect
between 130,182 contigs. That is, a significantipo of the
contigs is not in the contig graph, suggesting tegt 8X
coverage of the 454 data is barely enough.

B. Mappings of Illumina PE reads

Using the contigs assembled from 454 data as eerefe, we
found that the majority of the lllumina PE readsuldobe
mapped onto the contigs. In the case of fish, 1638 of the

125,373,010 lllumina reads could be mapped onto

(d)

supportess

contigs.From these mappings, we found 16,347,3@TaePEs
and 20,081 bridging PEs. The PED distribution &f tegular
PEs peaked at 291 bp (Figure 4). This distributbRED is a
very accurate source of information for our statitanalysis.
We note that the PED of the downloaded llluminadlilp is
denoted to be about 410 bp, which is quite far afray our
calculated peak value of distribution. Our selfided PED
distribution is thus an advantage. In the case wfgtis,
5,407,881 of the6,998,179lllumina reads are mapped the
contigs.

International Scholarly and Scientific Research & Innovation 6(7) 2012
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Fig. 5 Result of the quantitative analysis of SIM@h. This analysis
reports the number of single-end (SE) reads spgrpaths C1-C3 and
C1-C2-C3. (a) The sequence of the path C1-C3, wBérand C3 are

connected and>" and ‘<’ indicate the boundary df&d C3,

respectively. (b) Supported SE reads of path C@Btheir
alignments to the sequence connecting C1 and £Bh&sequence of

the path C1-C2-C3, where ‘" indicate C2. (d) Suped reads and

alignments of path C1-C2-C3. (e) Details of eaghpsuted SE read,
including the overlap with C1, the overlap with @8 smaller overlap
of the previous two and the direction of the SEirgavalid alignment
requires that the smaller overlap exceadsicleotides and at most 5%
mismatch in the whole alignment

1SN1:0000000091950263
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C.S9MGraph F. Other types of ambiguous contig connections

From the contig graphs of the fungus and fish abem  Currently, SIMGraph focuses on a specific type cdpip
SIMGraph detected 666 and 3,708 triads, and redoh&1 structure. In fact, the design of SIMGraph allows possible
(27.6%) and 2,236 (60.3%) triads, respectively (@a). In extensions to other types of graph structures. ifigegty, using
these inferences, we found that the statistical guhtitative lllumina PE data, it is possible to explore allrpadf contigs
analyses were quite consistent. bridged by PEs whatever the connections betweentvibe

For the fungus and the fish assembly, only in foucontigs are. We have analyzed the contig graphheftwo
(4/184=2.2%) and 49 (49/2236=2.2%) triads the twalyses adopted genomes. The fish genome has 147,106 qusctif
were inconsistent. which 7,936 (accounting for 5.4%) may be resolved b

Among the 2,236 inferences in the case of fish, 91887, SIMGraph. Here junctions are possible connectiogisvien
and 72 triads were inferred to go with the C1-C3;@2-C3, contigs, which were reported but not actually catee by the
and both paths, respectively (Table 2). To investigthe @assembler. The fungus genome has 31,832 junctiondioh
consistency between the SIMGraph inferences andfighe 1,362 (accounting for 4.3%) may be resolved by Sibjib.

genome draft, we aligned the 454 contigs to thegendraft ~ EVen with such a small percentage, SIMGraph stil
using BLAT[14]and checked which of the inferences icontrlbutes in three aspects. First, SIMGraph cotsneontigs
with full sequences instead of a stretch of N’s,clhwere

supported on the genome draft. Specifically, wgnad the C1 observed in some cases using SSPACE. Second, SptiGra
and C3 contigs of each triad, and check whethee tisea DNA - . S o
explicitly provides statistical and quantitative asares to

segment of length C2 in-between the _two mapping $6¢C1 validate its predictions (Figure 4 and 5). ThirdMS&raph is
aqd C3. Among our 1849’ 387, a.md 72 mferencgs, 742, and suitable as an extra step in an assembly pipelingently there
5 inferences were consistent with the case onishegienome are only few stand-alone assembly improvement ihgos that
draft. We note that these numbers do not direatiyly a low 46 independent to the assembly pipeline.

performance of SIMGraph. It is also possible theMGraph

points out some parts in the fish genome draftdeaerve more V.CONCLUSION

careful inspections because SIMGraph provides ldetai

statistical and quantitative _analyses. I_n additibacause the genome assembly via simplifying the 454 contig braipe.,
coverage of NGS reads Is much higher than thathef tresolving ambiguous  connections  between  contigs.

traditional Sanger reads for the fish genome, ribissurprising Comparedwith two related programs, SIMGraph achiewe
that NGS data explore the genome more thoroughly. largest number of resolved ambiguous contig commesivhile
D.Performance comparision scarifying a bit the accuracy, thus reducing experital

. effortsfor such resolutions. SIMGraph provides deta
We compared the performance of SIMGraph with tWateel statistical and quantitative analyses for resohamgbiguities

programs. CABO.G and_SSPACE. The two programs ate n nd the two analyses can be extended to resolver oth
designed to simplify contig graph, but in each panga module ' . : .
that connects contigs is contained. To stand omlelpatage configurations of contig connections. Moreover,otigh the

9 . Y€, detailed data provided by SIMGraph, one can stuuy t

we checked whether the three tools connect thagoimt the : . .
detected triads. We found that SIMGraph resolvedenhgads mechanisms of sequencing gnd assembly errors tpalithe
paths un-supported by llluminadata. Thus, our stalll be of

compared with CABOG and SSPACE (Table 2) in bodesaf . PR -

the fungus and the fish. When compared to thegfistome draft, interest to scientists in the field of genome addgm
SIMGraph also inferred the largest number of cdesis
inferences. Taken together, SIMGraph achieved tieaitgst ACKNOWLEDGMENT

number of resolved triads while sacrificing a bi¢ accuracy. We thank Dr. Wen-Hsiung Li for providing us the furs
E. Speed and memory usage NGS d_ata, and Dr. Arthur_ Chun-Chieh Shih for Fheaicbf
extending short contigs using 454 raw reads. Thiskwvas

The four steps in Figure 2 can be grouped intodbee o\, eq by National Science Council Taiwan (NSC
algorithm of SIMGraph (Triad detection, Statistiealalysis of 144.2221_E.006-259 09-2628-E-006-017 and

PE mapping, and Quantitative analysis of SE map@nd the - g9 5745 B_006-003). Conflict of Interest: none deet.
read mapping step by SOAP2. The main CPU loadirg ike

read mapping step by SOAP2. For example, the dgogitam

took ~2 hours while SOAP2 took ~10 hours for tteh ftase.

The computational time of SOAP2 is proportional tte

genome size. As for the memory, both the core dlgarand

SOAP2 consumed the size of the genome. Thus, mechiith

a 4 GB are able to handle a usual mammalian genome.

SIMGraph combines 454 andlllumina data to improve a
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TABLE Il

RESULTS OFSIMGRAPHON G. ACULEATUS AND A DRAFT FUNGUS GENOME SEQUENCEDBY OUR COLLABORATORS WE NOTE THAT ALTHOUGH THE NUMBER OF
RESOLVEDTRIADS CONSISTENTWITH THE GENOME DRAFT MAY NOT SEEM HIGH, IT DOESNOT IMPLY A LOW PERFORMANCEOF SIMGRAPH. ON THE CONTRARY,
BECAUSESIMGRAPH DOESDETAILED STATISTICAL ANALYSIS AND QUANTITATIVE ANALYSIS, IT ISALSO POSSIBLETHAT THE GENOME DRAFT CAN BE IMPROVED

FURTHERUSING SMGRAPH

Organism #C1-c3 #C1-C2-C3 #nopath  #inconsistertt  Solved (%solved)

G. aculeatus

SIMGraph (consistent with genome dr 1,849 (742 387 (149 1,351 (447 49 2,236 (60.3%
CABOG (consistent with genome draft) 514 (249) 591 (295) 2,582 (690N/A 1,105 (29.8%)
SSPACE (consistent with genome draft) 160 (86) 90 (52) 3,451 (832)N/A 250 (6.7%)

Our fungu:

SIMGrapt 13C 54 42¢ 4 184 (27.6%
CABOG 6 5 655 N/A 11 (1.7%)
SSPACE 3 14 649 N/A 17 (2.6%)

This table shows the numberof triads where lonly C1-C3 was accepted, 2only C1-C2-C3 was accepted, 3both paths were accepted and “no path was
accepted. SNumber of triads where one analysis accepted only C1-C3 but the other accepted only C1-C2-C3. 6Sum of C1-C3, C1-C2-C3 and the ratio to
the total detected triads.

(1]

(2]
(3]

(4]
(5]

(6]
(7]
(8]
(9]
[10]
[11]
(12]
(13]

[14]

International Scholarly and Scientific Research & Innovation 6(7) 2012

REFERENCES

O. M. Margulies, et al, "Genome sequencing in ofabricated
high-density picolitre reactors,” Nature, vol. 43f. 376-80, Sep 15
2005.

D. R. Bentley, "Whole-genome re-sequencing,” CupinOGenet Dev,
vol. 16, pp. 545-52, Dec 2006.

A. Valouev, et al., "A high-resolution, nucleosomesition map of C.
elegans reveals a lack of universal sequence-dittaipsitioning,"
Genome Res, vol. 18, pp. 1051-63, Jul 2008.

M. A. Batzer and P. L. Deininger, "Alu repeats amsman genomic
diversity," Nat Rev Genet, vol. 3, pp. 370-9, M&)02.

N. Nagarajan, et al., "Finishing genomes with lediresources: lessons
from an ensemble of microbial genomes," BMC Genemol. 11, p.
242, 2010.

D. B. Jaffe, et al., "Whole-genome sequence assefoblmammalian
genomes: Arachne 2," Genome Res, vol. 13, pp. 9&62003.

F. C. Jones, et al., "The genomic basis of adaptietution in threespine
sticklebacks," Nature, vol. in press, 2012.

P. Flicek, et al., "Ensembl 2011," Nucleic AcidssReol. 39, pp. D800-6,
Jan 2011.

E. W. Sayers, et al., "Database resources of thémd Center for
Biotechnology Information," Nucleic Acids Res, D22011.

R. Li, et al., "SOAP2: an improved ultrafast toar fshort read
alignment,” Bioinformatics, vol. 25, pp. 1966-7, A\t 2009.

J. R. Miller, et al., "Aggressive assembly of pygsencing reads with
mates," Bioinformatics, vol. 24, pp. 2818-24, Déc2D08.

E. W. Myers, et al., "A whole-genome assembly ab€aphila,” Science,
vol. 287, pp. 2196-204, Mar 24 2000.

M. Boetzer, et al., "Scaffolding pre-assembled igsntising SSPACE,"
Bioinformatics, vol. 27, pp. 578-9, Feb 15 2011.

W. J. Kent, "BLAT--the BLAST-like alignment toolGenome Res, vol.
12, pp. 656-64, Apr 2002.

450

1SN1:0000000091950263





