Search results for: Frequent itemset mining.
338 Topology Preservation in SOM
Authors: E. Arsuaga Uriarte, F. Díaz Martín
Abstract:
The SOM has several beneficial features which make it a useful method for data mining. One of the most important features is the ability to preserve the topology in the projection. There are several measures that can be used to quantify the goodness of the map in order to obtain the optimal projection, including the average quantization error and many topological errors. Many researches have studied how the topology preservation should be measured. One option consists of using the topographic error which considers the ratio of data vectors for which the first and second best BMUs are not adjacent. In this work we present a study of the behaviour of the topographic error in different kinds of maps. We have found that this error devaluates the rectangular maps and we have studied the reasons why this happens. Finally, we suggest a new topological error to improve the deficiency of the topographic error.Keywords: Map lattice, Self-Organizing Map, topographic error, topology preservation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3013337 A New Evolutionary Algorithm for Cluster Analysis
Authors: B.Bahmani Firouzi, T. Niknam, M. Nayeripour
Abstract:
Clustering is a very well known technique in data mining. One of the most widely used clustering techniques is the kmeans algorithm. Solutions obtained from this technique depend on the initialization of cluster centers and the final solution converges to local minima. In order to overcome K-means algorithm shortcomings, this paper proposes a hybrid evolutionary algorithm based on the combination of PSO, SA and K-means algorithms, called PSO-SA-K, which can find better cluster partition. The performance is evaluated through several benchmark data sets. The simulation results show that the proposed algorithm outperforms previous approaches, such as PSO, SA and K-means for partitional clustering problem.
Keywords: Data clustering, Hybrid evolutionary optimization algorithm, K-means algorithm, Simulated Annealing (SA), Particle Swarm Optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278336 Handling Mobility using Virtual Grid in Static Wireless Sensor Networks
Authors: T.P. Sharma
Abstract:
Querying a data source and routing data towards sink becomes a serious challenge in static wireless sensor networks if sink and/or data source are mobile. Many a times the event to be observed either moves or spreads across wide area making maintenance of continuous path between source and sink a challenge. Also, sink can move while query is being issued or data is on its way towards sink. In this paper, we extend our already proposed Grid Based Data Dissemination (GBDD) scheme which is a virtual grid based topology management scheme restricting impact of movement of sink(s) and event(s) to some specific cells of a grid. This obviates the need for frequent path modifications and hence maintains continuous flow of data while minimizing the network energy consumptions. Simulation experiments show significant improvements in network energy savings and average packet delay for a packet to reach at sink.Keywords: Mobility in WSNs, virtual grid, GBDD, clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1550335 Threats and Preventive Methods to Avoid Bird Strikes at the Deblin Military Airfield, Poland
Authors: J. Cwiklak, M. Grzegorzewski, M. Adamski
Abstract:
The paper presents results of the project conducted in Poland devoted to study on bird strikes at military airfields. The main aim of this project was to develop methods of aircraft protection against threats from birds. The studies were carried out using two methods. One by transect and the other one by selected sector scanning. During the research, it was recorded, that 104 species of birds in the number about of 36000 were observed. The most frequent ones were starling Sturnus vulgaris (31.0%), jackdaw Corvus monedula (18.3%), rook Corvus frugilegus (15.9 %), lapwing Vanellus vanellus (6.2%). Moreover, it was found, that starlings constituted the most serious threat. It resulted from their relatively high attendance at the runway (about 300 individuals). Possible repellent techniques concerning of the Deblin military airfield were discussed. The analysis of the birds’ concentration depending on the altitude, part of the day, year, part of the airfield constituted a base to work out critical flight phase and appropriate procedures to prevent bird strikes.
Keywords: Airport, bird strikes, flight safety, preventive methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1282334 Applying 5S Lean Technology: An Infrastructure for Continuous Process Improvement
Authors: Raid A. Al-Aomar
Abstract:
This paper presents an application of 5S lean technology to a production facility. Due to increased demand, high product variety, and a push production system, the plant has suffered from excessive wastes, unorganized workstations, and unhealthy work environment. This has translated into increased production cost, frequent delays, and low workers morale. Under such conditions, it has become difficult, if not impossible, to implement effective continuous improvement studies. Hence, the lean project is aimed at diagnosing the production process, streamlining the workflow, removing/reducing process waste, cleaning the production environment, improving plant layout, and organizing workstations. 5S lean technology is utilized for achieving project objectives. The work was a combination of both culture changes and tangible/physical changes on the shop floor. The project has drastically changed the plant and developed the infrastructure for a successful implementation of continuous improvement as well as other best practices and quality initiatives.
Keywords: 5S Technique, Continuous Improvement, Kaizen, Lean Technology, Work Methods, Work Standards
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4908333 Annual Power Load Forecasting Using Support Vector Regression Machines: A Study on Guangdong Province of China 1985-2008
Authors: Zhiyong Li, Zhigang Chen, Chao Fu, Shipeng Zhang
Abstract:
Load forecasting has always been the essential part of an efficient power system operation and planning. A novel approach based on support vector machines is proposed in this paper for annual power load forecasting. Different kernel functions are selected to construct a combinatorial algorithm. The performance of the new model is evaluated with a real-world dataset, and compared with two neural networks and some traditional forecasting techniques. The results show that the proposed method exhibits superior performance.Keywords: combinatorial algorithm, data mining, load forecasting, support vector machines
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1647332 Mining News Sites to Create Special Domain News Collections
Authors: David B. Bracewell, Fuji Ren, Shingo Kuroiwa
Abstract:
We present a method to create special domain collections from news sites. The method only requires a single sample article as a seed. No prior corpus statistics are needed and the method is applicable to multiple languages. We examine various similarity measures and the creation of document collections for English and Japanese. The main contributions are as follows. First, the algorithm can build special domain collections from as little as one sample document. Second, unlike other algorithms it does not require a second “general" corpus to compute statistics. Third, in our testing the algorithm outperformed others in creating collections made up of highly relevant articles.Keywords: Information Retrieval, News, Special DomainCollections,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1488331 Prediction of a Human Facial Image by ANN using Image Data and its Content on Web Pages
Authors: Chutimon Thitipornvanid, Siripun Sanguansintukul
Abstract:
Choosing the right metadata is a critical, as good information (metadata) attached to an image will facilitate its visibility from a pile of other images. The image-s value is enhanced not only by the quality of attached metadata but also by the technique of the search. This study proposes a technique that is simple but efficient to predict a single human image from a website using the basic image data and the embedded metadata of the image-s content appearing on web pages. The result is very encouraging with the prediction accuracy of 95%. This technique may become a great assist to librarians, researchers and many others for automatically and efficiently identifying a set of human images out of a greater set of images.Keywords: Metadata, Prediction, Multi-layer perceptron, Human facial image, Image mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1214330 Iterative Clustering Algorithm for Analyzing Temporal Patterns of Gene Expression
Authors: Seo Young Kim, Jae Won Lee, Jong Sung Bae
Abstract:
Microarray experiments are information rich; however, extensive data mining is required to identify the patterns that characterize the underlying mechanisms of action. For biologists, a key aim when analyzing microarray data is to group genes based on the temporal patterns of their expression levels. In this paper, we used an iterative clustering method to find temporal patterns of gene expression. We evaluated the performance of this method by applying it to real sporulation data and simulated data. The patterns obtained using the iterative clustering were found to be superior to those obtained using existing clustering algorithms.Keywords: Clustering, microarray experiment, temporal pattern of gene expression data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1357329 Disparity in Socio-Economic Development and Its Implications on Communal Conflicts: A Study on India's North-Eastern Region
Authors: Debasis Neogi
Abstract:
India-s North-Eastern part, comprising of seven states, is a lowly developed, tribal population dominated region in India. Inspite of the common Mongoloid origin and lifestyle of majority of the population residing here, sharp differences exist in the status of their socio-economic development. The present paper, through a state-wise analysis, makes an attempt to find out the extent of this disparity, especially on the socio-economic front. It illustrates the situations prevailing in health, education, economic and social cohesion sector. Discussion on the implications of such disparity on social stability finds that the causes of frequent insurgency activities, that have been penetrating the region for a long time, thereby creating communal conflicts, can be traced in the economic deprivation and disparity. In the last section, the paper makes policy prescription and suggests how by taking care of disparity and deprivation both poverty and the problem of communal conflicts can be controlled.
Keywords: Disparity, development, deprivation, communal conflicts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4739328 A 15 Minute-Based Approach for Berth Allocation and Quay Crane Assignment
Authors: Hoi-Lam Ma, Sai-Ho Chung
Abstract:
In traditional integrated berth allocation with quay crane assignment models, time dimension is usually assumed in hourly based. However, nowadays, transshipment becomes the main business to many container terminals, especially in Southeast Asia (e.g. Hong Kong and Singapore). In these terminals, vessel arrivals are usually very frequent with small handling volume and very short staying time. Therefore, the traditional hourly-based modeling approach may cause significant berth and quay crane idling, and consequently cannot meet their practical needs. In this connection, a 15-minute-based modeling approach is requested by industrial practitioners. Accordingly, a Three-level Genetic Algorithm (3LGA) with Quay Crane (QC) shifting heuristics is designed to fulfill the research gap. The objective function here is to minimize the total service time. Preliminary numerical results show that the proposed 15-minute-based approach can reduce the berth and QC idling significantly.
Keywords: Transshipment, integrated berth allocation, variable-in-time quay crane assignment, quay crane assignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 726327 WebGD: A CORBA-based Document Classification and Retrieval System on the Web
Authors: Fuyang Peng, Bo Deng, Chao Qi, Mou Zhan
Abstract:
This paper presents the design and implementation of the WebGD, a CORBA-based document classification and retrieval system on Internet. The WebGD makes use of such techniques as Web, CORBA, Java, NLP, fuzzy technique, knowledge-based processing and database technology. Unified classification and retrieval model, classifying and retrieving with one reasoning engine and flexible working mode configuration are some of its main features. The architecture of WebGD, the unified classification and retrieval model, the components of the WebGD server and the fuzzy inference engine are discussed in this paper in detail.Keywords: Text Mining, document classification, knowledgeprocessing, fuzzy logic, Web, CORBA
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1848326 An Overview of Construction and Demolition Waste as Coarse Aggregate in Concrete
Authors: S. R. Shamili, J. Karthikeyan
Abstract:
Fast development of the total populace and far and wide urbanization has surprisingly expanded the advancement of the construction industry. As a result of these activities, old structures are being demolished to make new buildings. Due to these large-scale demolitions, a huge amount of debris is generated all over the world, which results in a landfill. The use of construction and demolition waste as landfill causes groundwater contamination, which is hazardous. Using construction and demolition waste as aggregate can reduce the use of natural aggregates and the problem of mining. The objective of this study is to provide a detailed overview on how the construction and demolition waste material has been used as aggregate in structural concrete. In this study, the preparation, classification, and composition of construction and demolition wastes are also discussed.
Keywords: Aggregate, construction and demolition waste, landfill, large scale demolition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 643325 Eclectic Rule-Extraction from Support Vector Machines
Authors: Nahla Barakat, Joachim Diederich
Abstract:
Support vector machines (SVMs) have shown superior performance compared to other machine learning techniques, especially in classification problems. Yet one limitation of SVMs is the lack of an explanation capability which is crucial in some applications, e.g. in the medical and security domains. In this paper, a novel approach for eclectic rule-extraction from support vector machines is presented. This approach utilizes the knowledge acquired by the SVM and represented in its support vectors as well as the parameters associated with them. The approach includes three stages; training, propositional rule-extraction and rule quality evaluation. Results from four different experiments have demonstrated the value of the approach for extracting comprehensible rules of high accuracy and fidelity.Keywords: Data mining, hybrid rule-extraction algorithms, medical diagnosis, SVMs
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1710324 Soil Compaction in Tropical Organic Farming Systems and Its Impact on Natural Soil-Borne Disease Suppression: Challenges for Management
Authors: Ishak, L., McHenry, M. T., Brown, P. H.
Abstract:
Organic farming systems still depend on intensive, mechanical soil tillage. Frequent passes by machinery traffic cause substantial soil compaction that threatens soil health. Adopting practices as reduced tillage and organic matter retention on the soil surface are considered effective ways to control soil compaction. In tropical regions, however, the acceleration of soil organic matter decomposition and soil carbon turnover on the topsoil layer is influenced more rapidly by the oscillation process of drying and wetting. It is hypothesized therefore, that rapid reduction in soil organic matter hastens the potential for compaction to occur in organic farming systems. Compaction changes soil physical properties and as a consequence it has been implicated as a causal agent in the inhibition of natural disease suppression in soils. Here we describe relationships between soil management in organic vegetable systems, soil compaction, and declining soil capacity to suppress pathogenic microorganisms.
Keywords: Organic farming systems, soil compaction, soil disease suppression, tropical regions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2168323 Discovery of Sequential Patterns Based On Constraint Patterns
Authors: Shigeaki Sakurai, Youichi Kitahata, Ryohei Orihara
Abstract:
This paper proposes a method that discovers sequential patterns corresponding to user-s interests from sequential data. This method expresses the interests as constraint patterns. The constraint patterns can define relationships among attributes of the items composing the data. The method recursively decomposes the constraint patterns into constraint subpatterns. The method evaluates the constraint subpatterns in order to efficiently discover sequential patterns satisfying the constraint patterns. Also, this paper applies the method to the sequential data composed of stock price indexes and verifies its effectiveness through comparing it with a method without using the constraint patterns.
Keywords: Sequential pattern mining, Constraint pattern, Attribute constraint, Stock price indexes
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423322 Issue Reorganization Using the Measure of Relevance
Authors: William Wong Xiu Shun, Yoonjin Hyun, Mingyu Kim, Seongi Choi, Namgyu Kim
Abstract:
The need to extract R&D keywords from issues and use them to retrieve R&D information is increasing rapidly. However, it is difficult to identify related issues or distinguish them. Although the similarity between issues cannot be identified, with an R&D lexicon, issues that always share the same R&D keywords can be determined. In detail, the R&D keywords that are associated with a particular issue imply the key technology elements that are needed to solve a particular issue. Furthermore, the relationship among issues that share the same R&D keywords can be shown in a more systematic way by clustering them according to keywords. Thus, sharing R&D results and reusing R&D technology can be facilitated. Indirectly, redundant investment in R&D can be reduced as the relevant R&D information can be shared among corresponding issues and the reusability of related R&D can be improved. Therefore, a methodology to cluster issues from the perspective of common R&D keywords is proposed to satisfy these demands.
Keywords: Clustering, Social Network Analysis, Text Mining, Topic Analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038321 Deep Reinforcement Learning for Optimal Decision-making in Supply Chains
Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol
Abstract:
We propose the use of Reinforcement Learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making make it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and a statistical analysis of the results. We study generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.
Keywords: Inventory Management, Reinforcement Learning, Supply Chain Optimization, Uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 385320 Modeling Language for Constructing Solvers in Machine Learning: Reductionist Perspectives
Authors: Tsuyoshi Okita
Abstract:
For a given specific problem an efficient algorithm has been the matter of study. However, an alternative approach orthogonal to this approach comes out, which is called a reduction. In general for a given specific problem this reduction approach studies how to convert an original problem into subproblems. This paper proposes a formal modeling language to support this reduction approach in order to make a solver quickly. We show three examples from the wide area of learning problems. The benefit is a fast prototyping of algorithms for a given new problem. It is noted that our formal modeling language is not intend for providing an efficient notation for data mining application, but for facilitating a designer who develops solvers in machine learning.
Keywords: Formal language, statistical inference problem, reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1328319 NonStationary CMA for Decision Feedback Equalization of Markovian Time Varying Channels
Authors: S. Cherif, M. Turki-Hadj Alouane
Abstract:
In this paper, we propose a modified version of the Constant Modulus Algorithm (CMA) tailored for blind Decision Feedback Equalizer (DFE) of first order Markovian time varying channels. The proposed NonStationary CMA (NSCMA) is designed so that it explicitly takes into account the Markovian structure of the channel nonstationarity. Hence, unlike the classical CMA, the NSCMA is not blind with respect to the channel time variations. This greatly helps the equalizer in the case of realistic channels, and avoids frequent transmissions of training sequences. This paper develops a theoretical analysis of the steady state performance of the CMA and the NSCMA for DFEs within a time varying context. Therefore, approximate expressions of the mean square errors are derived. We prove that in the steady state, the NSCMA exhibits better performance than the classical CMA. These new results are confirmed by simulation. Through an experimental study, we demonstrate that the Bit Error Rate (BER) is reduced by the NSCMA-DFE, and the improvement of the BER achieved by the NSCMA-DFE is as significant as the channel time variations are severe.Keywords: Time varying channel, Markov model, Blind DFE, CMA, NSCMA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1298318 Ozone Decomposition over Silver-Loaded Perlite
Authors: Krassimir Genov, Vladimir Georgiev, Todor Batakliev, Dipak K. Sarker
Abstract:
The Bulgarian natural expanded mineral obtained from Bentonite AD perlite (A deposit of "The Broken Mountain" for perlite mining, near by the village of Vodenicharsko, in the municipality of Djebel), was loaded with silver (as ion form - Ag+ 2 and 5 wt% by the incipient wetness impregnation method), and as atomic silver - Ag0 using Tollen-s reagent (silver mirror reaction). Some physicochemical characterization of the samples are provided via: DC arc-AES, XRD, DR-IR and UV-VIS. The aim of this work was to obtain and test the silver-loaded catalyst for ozone decomposition. So the samples loaded with atomic silver show ca. 80% conversion of ozone 20 minutes after the reaction start. Then conversion decreases to ca. 20 % but stay stable during the prolongation of time.
Keywords: aluminum-silicates, Ag/perlite expanded glass, ozone decomposition
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269317 On Mobile Checkpointing using Index and Time Together
Authors: Awadhesh Kumar Singh
Abstract:
Checkpointing is one of the commonly used techniques to provide fault-tolerance in distributed systems so that the system can operate even if one or more components have failed. However, mobile computing systems are constrained by low bandwidth, mobility, lack of stable storage, frequent disconnections and limited battery life. Hence, checkpointing protocols having lesser number of synchronization messages and fewer checkpoints are preferred in mobile environment. There are two different approaches, although not orthogonal, to checkpoint mobile computing systems namely, time-based and index-based. Our protocol is a fusion of these two approaches, though not first of its kind. In the present exposition, an index-based checkpointing protocol has been developed, which uses time to indirectly coordinate the creation of consistent global checkpoints for mobile computing systems. The proposed algorithm is non-blocking, adaptive, and does not use any control message. Compared to other contemporary checkpointing algorithms, it is computationally more efficient because it takes lesser number of checkpoints and does not need to compute dependency relationships. A brief account of important and relevant works in both the fields, time-based and index-based, has also been included in the presentation.
Keywords: Checkpointing, forced checkpoint, mobile computing, recovery, time-coordinated.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489316 Methodology of Restoration Research in Czech Republic
Authors: M. Rehor, V. Ondracek
Abstract:
Restoration research has become important on principle recently in Czech Republic. The reason is simple. More than 70 % of mined brown coal comes from the North Bohemian Basin these days. Open cast brown coal mining has lead to large damage on the landscape. Reclamation of phytotoxic areas is one of the serious problems in the North Bohemian Basin. It mainly concerns the areas with the occurrence of overburden rocks from the coal bed enriched with coal. The presented paper includes the characteristics of the important phytotoxic areas and the methodology of their reclamation. The results are documented with the long term monitoring of physical, mineralogical, chemical and pedological parameters of rocks in the testing areas.
Keywords: Brown coal, dump, methodology, restoration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543315 Knowledge Discovery from Production Databases for Hierarchical Process Control
Authors: Pavol Tanuska, Pavel Vazan, Michal Kebisek, Dominika Jurovata
Abstract:
The paper gives the results of the project that was oriented on the usage of knowledge discoveries from production systems for needs of the hierarchical process control. One of the main project goals was the proposal of knowledge discovery model for process control. Specifics data mining methods and techniques was used for defined problems of the process control. The gained knowledge was used on the real production system thus the proposed solution has been verified. The paper documents how is possible to apply the new discovery knowledge to use in the real hierarchical process control. There are specified the opportunities for application of the proposed knowledge discovery model for hierarchical process control.
Keywords: Hierarchical process control, knowledge discovery from databases, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1776314 IMDC: An Image-Mapped Data Clustering Technique for Large Datasets
Authors: Faruq A. Al-Omari, Nabeel I. Al-Fayoumi
Abstract:
In this paper, we present a new algorithm for clustering data in large datasets using image processing approaches. First the dataset is mapped into a binary image plane. The synthesized image is then processed utilizing efficient image processing techniques to cluster the data in the dataset. Henceforth, the algorithm avoids exhaustive search to identify clusters. The algorithm considers only a small set of the data that contains critical boundary information sufficient to identify contained clusters. Compared to available data clustering techniques, the proposed algorithm produces similar quality results and outperforms them in execution time and storage requirements.
Keywords: Data clustering, Data mining, Image-mapping, Pattern discovery, Predictive analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1500313 Measuring Banks’ Antifragility via Fuzzy Logic
Authors: Danielle Sandler dos Passos, Helder Coelho, Flávia Mori Sarti
Abstract:
Analysing the world banking sector, we realize that traditional risk measurement methodologies no longer reflect the actual scenario with uncertainty and leave out events that can change the dynamics of markets. Considering this, regulators and financial institutions began to search more realistic models. The aim is to include external influences and interdependencies between agents, to describe and measure the operationalization of these complex systems and their risks in a more coherent and credible way. Within this context, X-Events are more frequent than assumed and, with uncertainties and constant changes, the concept of antifragility starts to gain great prominence in comparison to others methodologies of risk management. It is very useful to analyse whether a system succumbs (fragile), resists (robust) or gets benefits (antifragile) from disorder and stress. Thus, this work proposes the creation of the Banking Antifragility Index (BAI), which is based on the calculation of a triangular fuzzy number – to "quantify" qualitative criteria linked to antifragility.
Keywords: Complex adaptive systems, X-events, risk management, antifragility, banking antifragility index, triangular fuzzy number.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 900312 A Fast Block-based Evolutional Algorithm for Combinatorial Problems
Authors: Huang, Wei-Hsiu Chang, Pei-Chann, Wang, Lien-Chun
Abstract:
The problems with high complexity had been the challenge in combinatorial problems. Due to the none-determined and polynomial characteristics, these problems usually face to unreasonable searching budget. Hence combinatorial optimizations attracted numerous researchers to develop better algorithms. In recent academic researches, most focus on developing to enhance the conventional evolutional algorithms and facilitate the local heuristics, such as VNS, 2-opt and 3-opt. Despite the performances of the introduction of the local strategies are significant, however, these improvement cannot improve the performance for solving the different problems. Therefore, this research proposes a meta-heuristic evolutional algorithm which can be applied to solve several types of problems. The performance validates BBEA has the ability to solve the problems even without the design of local strategies.
Keywords: Combinatorial problems, Artificial Chromosomes, Blocks Mining, Block Recombination
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1418311 An Engineering Approach to Forecast Volatility of Financial Indices
Authors: Irwin Ma, Tony Wong, Thiagas Sankar
Abstract:
By systematically applying different engineering methods, difficult financial problems become approachable. Using a combination of theory and techniques such as wavelet transform, time series data mining, Markov chain based discrete stochastic optimization, and evolutionary algorithms, this work formulated a strategy to characterize and forecast non-linear time series. It attempted to extract typical features from the volatility data sets of S&P100 and S&P500 indices that include abrupt drops, jumps and other non-linearity. As a result, accuracy of forecasting has reached an average of over 75% surpassing any other publicly available results on the forecast of any financial index.Keywords: Discrete stochastic optimization, genetic algorithms, genetic programming, volatility forecast
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631310 Sequential Partitioning Brainbow Image Segmentation Using Bayesian
Authors: Yayun Hsu, Henry Horng-Shing Lu
Abstract:
This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate crosstalk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds, since biological information is inherently included inside the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.
Keywords: Brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260309 Mental Vulnerability and Coping Strategies as a Factor for Academic Success for Pupils with Special Education Needs
Authors: T. Dubayova
Abstract:
Slovak, as well as foreign authors, believe that the influence of non-cognitive factors on a student's academic success or failure is unquestionable. The aim of this paper is to establish a link between the mental vulnerability and coping strategies used by 4th grade elementary school students in dealing with stressful situations and their academic performance, which was used as a simple quantitative indicator of academic success. The research sample consists of 320 students representing the standard population and 60 students with special education needs (SEN), who were assessed by the Strengths and Difficulties Questionnaire (SDQ) by their teachers and the Children’s Coping Strategies Checklist (CCSC-R1) filled in by themselves. Students with SEN recorded an extraordinarily high frequency of mental vulnerability (34.5 %) than students representing the standard population (7 %). The poorest academic performance of students with SEN was associated with the avoidance behavior displayed during stressful situations. Students of the standard population did not demonstrate this association. Students with SEN are more likely to display mental health problems than students of the standard population. This may be caused by the accumulation of and frequent exposure to situations that they perceive as stressful.Keywords: Coping, mental vulnerability, students with special education needs, academic performance, academic success.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1557