Sequential Partitioning Brainbow Image Segmentation Using Bayesian
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33132
Sequential Partitioning Brainbow Image Segmentation Using Bayesian

Authors: Yayun Hsu, Henry Horng-Shing Lu

Abstract:

This paper proposes a data-driven, biology-inspired neural segmentation method of 3D drosophila Brainbow images. We use Bayesian Sequential Partitioning algorithm for probabilistic modeling, which can be used to detect somas and to eliminate crosstalk effects. This work attempts to develop an automatic methodology for neuron image segmentation, which nowadays still lacks a complete solution due to the complexity of the image. The proposed method does not need any predetermined, risk-prone thresholds, since biological information is inherently included inside the image processing procedure. Therefore, it is less sensitive to variations in neuron morphology; meanwhile, its flexibility would be beneficial for tracing the intertwining structure of neurons.

Keywords: Brainbow, 3D imaging, image segmentation, neuron morphology, biological data mining, non-parametric learning.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1089160

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2269

References:


[1] P. C. Lee, H. M. Chang, C. Y. Lin, Y. T. Ching, and A. S. Chiang, ”Constructing neuronal structure from 3D confocal microscopic images,” Journal of Medical and Biological Engineering, vol. 29, 209.
[2] H. Peng, F. Long, and G. Myers, ”Automatic 3D neuron tracing using all-path pruning,” Proceedings of Bioinformatics, pp. 239247, 2011.
[3] A. Rodriguez, D. Ehlenberger, P. Hof, and S. Wearne, ”Three-dimentional neuron tracing by voxel scooping,” Journal of Neuroscience Methods, vol. 184, pp. 169-175, 2011.
[4] S. L. Wearne, A. Rodriguez, D. B. Ehlenberger, A. B. Rocher, S. C. Henderson, P. R. Hof, ”New techniques for imaging, digitization and analysis of three-dimensional neural morphology on multiple scales,” Neuroscience, pp. 661680, 2005.
[5] C. M. Weaver, S. L. Wearne, ”Neuronal firing sensitivity to morphologic and active membrane parameters,” PLoS Computational Biology, vol. 4, pp. e11, 2008.
[6] J. Livet, T. A. Weissman, H. Kang, R. W. Draft, J. Lu, R. A. Bennis, J. R. Sanes, and J. W. Lichtman, ”Transgenic strategies for combinational expression of fluorescent proteins in the nervous system,” Nature, vol. 450, pp. 56-62, 2007.
[7] Shin-ya Takemura, A. Bharioke, Z. Lu, A. Nern, S. Vitaladevuni, P. K. Rivlin, W. T. Katz, D. J. Olbris, S. M. Plaza, P. Winston, T. Zhao, J. A. Horne, R. D. Fetter, S. Takemura, K. Blazek, L. A. Chang, O. Ogundeyi, M. A. Saunders, V. Shapiro, C. Sigmund, G. M. Rubin, L. K. Scheffer, I. A. Meinertzhagen, and D. B. Chklovskii, ”A visual motion detection circuit suggested by Drosophila connectomics,” Nature, vol. 500, pp. 175-183, 2013.
[8] A. R. Cohen, B. Roysam, and J. N. Turner, ”Automated tracing and volume measurements of neurons from 3-D confocal fluorescence microscopy data,” Journal of Microscopy, vol. 173, pt. 2, 1994.
[9] T. Y. Wu, H. H. Juan, Henry H. S. Lu, and A. S. Chiang, ”A crosstalk tolerated neural segmentation methodology for Brainbow images,” Proceednings of 4th International Symposium on Applied Science in Biomedical and Communication Technologies, 2011.
[10] E. Bas, and D. Erdogmus, ”Piecewise linear cylinder models for 3-dimensionalaxon segmentation in brainbow imagery,” IEEE International Symposium on Biomedical Imaging, pp. 1297-1300, 2010.
[11] H. C. Shao, W. Y. Cheng, and Y. C. Chen, ”Colored multi-neuron image processing for segmenting and tracing neural circuits,” IEEE International Conference on Image Processing, pp. 2025-2028, 2012.
[12] M. H. F. Wilkinson, H. Gao, W. H. Hesselink, J. E. Jonker, and A. Meijster, ”Concurrent computation of attribute filters on shared memory parallel machines,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, pp. 1800-1813, 2008.
[13] Y. Li, N. Snavely, and D. P. Huttenlocher, ”Location recognition using prioritized feature matching,” Europe Conference on Computer Vision, vol. 6312, pp. 791-804, 2010.
[14] A. G. Silva and R. de Alencar Lotufo, ”New extinction values from efficient construction and analysis of extended attribute component tree,” XXI Brazilian Symposium on Computer Graphics and Image Processing, pp. 204-211, 2008.
[15] T. Shivanand, S. Rahman, and G. Pillai, ”Efficient and robust detection and recognition of objects in grayscale imges,” IEEE International Conference on Computational Intelligence and Computing Research, pp. 1-6, 2010.
[16] Erika Pastrana et al., ”Focus on mapping the brain,” Nature, vol. 10, no. 6, 2013.
[17] Atkinson, Kendall A. (1989), An Introduction to Numerical Analysis (2nd ed.), New York: John Wiley and Sons, ISBN 978-0-471-50023-0.
[18] L. Lu, H. Jiang, and W. H. Wong, ”Multivariate density estimation by Bayesian Sequential Partitioning,” (to appear) Journal of the American Statistical Association, 2013.
[19] A. Dima, M. Scholz, and K. Obermayer, ”Automatic segmentation and skeletonization of neurons from confocal microscopy images based on the 3-D wavelet transform,” IEEE Transactions on Image Processing, vol. 11, pp. 790-801, 2002.