Search results for: Building energy prediction
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4718

Search results for: Building energy prediction

4328 Performance Assessment of Computational Gridon Weather Indices from HOAPS Data

Authors: Madhuri Bhavsar, Anupam K Singh, Shrikant Pradhan

Abstract:

Long term rainfall analysis and prediction is a challenging task especially in the modern world where the impact of global warming is creating complications in environmental issues. These factors which are data intensive require high performance computational modeling for accurate prediction. This research paper describes a prototype which is designed and developed on grid environment using a number of coupled software infrastructural building blocks. This grid enabled system provides the demanding computational power, efficiency, resources, user-friendly interface, secured job submission and high throughput. The results obtained using sequential execution and grid enabled execution shows that computational performance has enhanced among 36% to 75%, for decade of climate parameters. Large variation in performance can be attributed to varying degree of computational resources available for job execution. Grid Computing enables the dynamic runtime selection, sharing and aggregation of distributed and autonomous resources which plays an important role not only in business, but also in scientific implications and social surroundings. This research paper attempts to explore the grid enabled computing capabilities on weather indices from HOAPS data for climate impact modeling and change detection.

Keywords: Climate model, Computational Grid, GridApplication, Heterogeneous Grid

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1441
4327 A Spatial Information Network Traffic Prediction Method Based on Hybrid Model

Authors: Jingling Li, Yi Zhang, Wei Liang, Tao Cui, Jun Li

Abstract:

Compared with terrestrial network, the traffic of spatial information network has both self-similarity and short correlation characteristics. By studying its traffic prediction method, the resource utilization of spatial information network can be improved, and the method can provide an important basis for traffic planning of a spatial information network. In this paper, considering the accuracy and complexity of the algorithm, the spatial information network traffic is decomposed into approximate component with long correlation and detail component with short correlation, and a time series hybrid prediction model based on wavelet decomposition is proposed to predict the spatial network traffic. Firstly, the original traffic data are decomposed to approximate components and detail components by using wavelet decomposition algorithm. According to the autocorrelation and partial correlation smearing and truncation characteristics of each component, the corresponding model (AR/MA/ARMA) of each detail component can be directly established, while the type of approximate component modeling can be established by ARIMA model after smoothing. Finally, the prediction results of the multiple models are fitted to obtain the prediction results of the original data. The method not only considers the self-similarity of a spatial information network, but also takes into account the short correlation caused by network burst information, which is verified by using the measured data of a certain back bone network released by the MAWI working group in 2018. Compared with the typical time series model, the predicted data of hybrid model is closer to the real traffic data and has a smaller relative root means square error, which is more suitable for a spatial information network.

Keywords: Spatial Information Network, Traffic prediction, Wavelet decomposition, Time series model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 635
4326 Artificial Neural Networks Modeling in Water Resources Engineering: Infrastructure and Applications

Authors: M. R. Mustafa, M. H. Isa, R. B. Rezaur

Abstract:

The use of artificial neural network (ANN) modeling for prediction and forecasting variables in water resources engineering are being increasing rapidly. Infrastructural applications of ANN in terms of selection of inputs, architecture of networks, training algorithms, and selection of training parameters in different types of neural networks used in water resources engineering have been reported. ANN modeling conducted for water resources engineering variables (river sediment and discharge) published in high impact journals since 2002 to 2011 have been examined and presented in this review. ANN is a vigorous technique to develop immense relationship between the input and output variables, and able to extract complex behavior between the water resources variables such as river sediment and discharge. It can produce robust prediction results for many of the water resources engineering problems by appropriate learning from a set of examples. It is important to have a good understanding of the input and output variables from a statistical analysis of the data before network modeling, which can facilitate to design an efficient network. An appropriate training based ANN model is able to adopt the physical understanding between the variables and may generate more effective results than conventional prediction techniques.

Keywords: ANN, discharge, modeling, prediction, sediment,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5682
4325 Aggregate Angularity on the Permanent Deformation Zones of Hot Mix Asphalt

Authors: Lee P. Leon, Raymond Charles

Abstract:

This paper presents a method of evaluating the effect of aggregate angularity on hot mix asphalt (HMA) properties and its relationship to the Permanent Deformation resistance. The research concluded that aggregate particle angularity had a significant effect on the Permanent Deformation performance, and also that with an increase in coarse aggregate angularity there was an increase in the resistance of mixes to Permanent Deformation. A comparison between the measured data and predictive data of permanent deformation predictive models showed the limits of existing prediction models. The numerical analysis described the permanent deformation zones and concluded that angularity has an effect of the onset of these zones. Prediction of permanent deformation help road agencies and by extension economists and engineers determine the best approach for maintenance, rehabilitation, and new construction works of the road infrastructure.

Keywords: Aggregate angularity, asphalt concrete, permanent deformation, rutting prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
4324 Smart Grid Simulator

Authors: Andrei Ursachi, Dorin Bordeasu

Abstract:

The Smart Grid Simulator is a computer software based on advance algorithms which has as the main purpose to lower the energy bill in the most optimized price efficient way as possible for private households, companies or energy providers. It combines the energy provided by a number of solar modules and wind turbines with the consumption of one household or a cluster of nearby households and information regarding weather conditions and energy prices in order to predict the amount of energy that can be produced by renewable energy sources and the amount of energy that will be bought from the distributor for the following day. The user of the system will not only be able to minimize his expenditures on energy factures, but also he will be informed about his hourly consumption, electricity prices fluctuation and money spent for energy bought as well as how much money he saved each day and since he installed the system. The paper outlines the algorithm that supports the Smart Grid Simulator idea and presents preliminary test results that supports the discussion and implementation of the system.

Keywords: Applied Science, Renewable energy sources, Smart Grid, Sustainable energy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3107
4323 Electricity Consumption Prediction Model using Neuro-Fuzzy System

Authors: Rahib Abiyev, Vasif H. Abiyev, C. Ardil

Abstract:

In this paper the development of neural network based fuzzy inference system for electricity consumption prediction is considered. The electricity consumption depends on number of factors, such as number of customers, seasons, type-s of customers, number of plants, etc. It is nonlinear process and can be described by chaotic time-series. The structure and algorithms of neuro-fuzzy system for predicting future values of electricity consumption is described. To determine the unknown coefficients of the system, the supervised learning algorithm is used. As a result of learning, the rules of neuro-fuzzy system are formed. The developed system is applied for predicting future values of electricity consumption of Northern Cyprus. The simulation of neuro-fuzzy system has been performed.

Keywords: Fuzzy logic, neural network, neuro-fuzzy system, neuro-fuzzy prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
4322 Sustainable Building Technologies for Post-Disaster Temporary Housing: Integrated Sustainability Assessment and Life Cycle Assessment

Authors: S. M. Amin Hosseini, Oriol Pons, Albert de la Fuente

Abstract:

After natural disasters, displaced people (DP) require important numbers of housing units, which have to be erected quickly due to emergency pressures. These tight timeframes can cause the multiplication of the environmental construction impacts. These negative impacts worsen the already high energy consumption and pollution caused by the building sector. Indeed, post-disaster housing, which is often carried out without pre-planning, usually causes high negative environmental impacts, besides other economic and social impacts. Therefore, it is necessary to establish a suitable strategy to deal with this problem which also takes into account the instability of its causes, like changing ratio between rural and urban population. To this end, this study aims to present a model that assists decision-makers to choose the most suitable building technology for post-disaster housing units. This model focuses on the alternatives sustainability and fulfillment of the stakeholders’ satisfactions. Four building technologies have been analyzed to determine the most sustainability technology and to validate the presented model. In 2003, Bam earthquake DP had their temporary housing units (THUs) built using these four technologies: autoclaved aerated concrete blocks (AAC), concrete masonry unit (CMU), pressed reeds panel (PR), and 3D sandwich panel (3D). The results of this analysis confirm that PR and CMU obtain the highest sustainability indexes. However, the second life scenario of THUs could have considerable impacts on the results.

Keywords: Sustainability, post-disaster temporary housing, integrated value model for sustainability assessment (MIVES), life cycle assessment (LCA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1630
4321 Traffic Flow Prediction using Adaboost Algorithm with Random Forests as a Weak Learner

Authors: Guy Leshem, Ya'acov Ritov

Abstract:

Traffic Management and Information Systems, which rely on a system of sensors, aim to describe in real-time traffic in urban areas using a set of parameters and estimating them. Though the state of the art focuses on data analysis, little is done in the sense of prediction. In this paper, we describe a machine learning system for traffic flow management and control for a prediction of traffic flow problem. This new algorithm is obtained by combining Random Forests algorithm into Adaboost algorithm as a weak learner. We show that our algorithm performs relatively well on real data, and enables, according to the Traffic Flow Evaluation model, to estimate and predict whether there is congestion or not at a given time on road intersections.

Keywords: Machine Learning, Boosting, Classification, TrafficCongestion, Data Collecting, Magnetic Loop Detectors, SignalizedIntersections, Traffic Signal Timing Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3908
4320 Prediction of the Characteristics of Transformer Oil under Different Operation Conditions

Authors: EL-Sayed M. M. EL-Refaie, Mohamed R. Salem, Wael A. Ahmed

Abstract:

Power systems and transformer are intrinsic apparatus, therefore its reliability and safe operation is important to determine their operation conditions, and the industry uses quality control tests in the insulation design of oil filled transformers. Hence the service period effect on AC dielectric strength is significant. The effect of aging on transformer oil physical, chemical and electrical properties was studied using the international testing methods for the evaluation of transformer oil quality. The study was carried out on six transformers operate in the field and for monitoring periods over twenty years. The properties which are strongly time dependent were specified and those which have a great impact on the transformer oil acidity, breakdown voltage and dissolved gas analysis were defined. Several tests on the transformers oil were studied to know the time of purifying or changing it, moreover prediction of the characteristics of it under different operation conditions.

Keywords: Dissolved Gas Analysis, Prediction, Purifying and Changing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3726
4319 Finite Element Prediction and Experimental Verification of the Failure Pattern of Proximal Femur using Quantitative Computed Tomography Images

Authors: Majid Mirzaei, Saeid Samiezadeh , Abbas Khodadadi, Mohammad R. Ghazavi

Abstract:

This paper presents a novel method for prediction of the mechanical behavior of proximal femur using the general framework of the quantitative computed tomography (QCT)-based finite element Analysis (FEA). A systematic imaging and modeling procedure was developed for reliable correspondence between the QCT-based FEA and the in-vitro mechanical testing. A speciallydesigned holding frame was used to define and maintain a unique geometrical reference system during the analysis and testing. The QCT images were directly converted into voxel-based 3D finite element models for linear and nonlinear analyses. The equivalent plastic strain and the strain energy density measures were used to identify the critical elements and predict the failure patterns. The samples were destructively tested using a specially-designed gripping fixture (with five degrees of freedom) mounted within a universal mechanical testing machine. Very good agreements were found between the experimental and the predicted failure patterns and the associated load levels.

Keywords: Bone, Osteoporosis, Noninvasive methods, Failure Analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2097
4318 Simulation for Input-Output Energy Structure in Agriculture: Bangladesh

Authors: M. S. Alam, M. R. Alam, Nusrat Jahan Imu

Abstract:

This paper presents a computer simulation model based on system dynamics methodology for analyzing the dynamic characteristics of input energy structure in agriculture and Bangladesh is used here as a case study for model validation. The model provides an input energy structure linking the major energy flows with human energy and draft energy from cattle as well as tractors and/or power tillers, irrigation, chemical fertilizer and pesticide. The evaluation is made in terms of different energy dependent indicators. During the simulation period, the energy input to agriculture increased from 6.1 to 19.15 GJ/ha i.e. 2.14 fold corresponding to energy output in terms of food, fodder and fuel increase from 71.55 to 163.58 GJ/ha i.e. 1.28 fold from the base year. This result indicates that the energy input in Bangladeshi agricultural production is increasing faster than the energy output. Problems such as global warming, nutrient loading and pesticide pollution can associate with this increasing input. For an assessment, a comparative statement of input energy use in agriculture of developed countries (DCs) and least developed countries (LDCs) including Bangladesh has been made. The performance of the model is found satisfactory to analyze the agricultural energy system for LDCs

Keywords: Agriculture, energy indicator, system dynamics, energy flows.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2570
4317 Numerical Prediction of NOX in the Exhaust of a Compression Ignition Engine

Authors: A. A. Pawar, R. R. Kulkarni

Abstract:

For numerical prediction of the NOX in the exhaust of a compression ignition engine a model was developed by considering the parameter equivalence ratio. This model was validated by comparing the predicted results of NOX with experimental ones. The ultimate aim of the work was to access the applicability, robustness and performance of the improved NOX model against other NOX models.

Keywords: Biodiesel fueled engine, equivalence ratio, Compression ignition engine, exhausts gas temperature, NOX formation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
4316 Integration of Educational Data Mining Models to a Web-Based Support System for Predicting High School Student Performance

Authors: Sokkhey Phauk, Takeo Okazaki

Abstract:

The challenging task in educational institutions is to maximize the high performance of students and minimize the failure rate of poor-performing students. An effective method to leverage this task is to know student learning patterns with highly influencing factors and get an early prediction of student learning outcomes at the timely stage for setting up policies for improvement. Educational data mining (EDM) is an emerging disciplinary field of data mining, statistics, and machine learning concerned with extracting useful knowledge and information for the sake of improvement and development in the education environment. The study is of this work is to propose techniques in EDM and integrate it into a web-based system for predicting poor-performing students. A comparative study of prediction models is conducted. Subsequently, high performing models are developed to get higher performance. The hybrid random forest (Hybrid RF) produces the most successful classification. For the context of intervention and improving the learning outcomes, a feature selection method MICHI, which is the combination of mutual information (MI) and chi-square (CHI) algorithms based on the ranked feature scores, is introduced to select a dominant feature set that improves the performance of prediction and uses the obtained dominant set as information for intervention. By using the proposed techniques of EDM, an academic performance prediction system (APPS) is subsequently developed for educational stockholders to get an early prediction of student learning outcomes for timely intervention. Experimental outcomes and evaluation surveys report the effectiveness and usefulness of the developed system. The system is used to help educational stakeholders and related individuals for intervening and improving student performance.

Keywords: Academic performance prediction system, prediction model, educational data mining, dominant factors, feature selection methods, student performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 974
4315 A Comparison of Energy Calculations for a Single-Family Detached Home with Two Energy Simulation Methods

Authors: Amir Sattari

Abstract:

For newly produced houses and energy renovations, an energy calculation needs to be conducted. This is done to verify whether the energy consumption criteria of the house -to reach the energy targets by 2020 and 2050- are in-line with the norms. The main purpose of this study is to confirm whether easy to use energy calculation software or hand calculations used by small companies or individuals give logical results compared to advanced energy simulation program used by researchers or bigger companies. There are different methods for calculating energy consumption. In this paper, two energy calculation programs are used and the relation of energy consumption with solar radiation is compared. A hand calculation is also done to validate whether the hand calculations are still reasonable. The two computer programs which have been used are TMF Energi (the easy energy calculation variant used by small companies or individuals) and IDA ICE - Indoor Climate and Energy (the advanced energy simulation program used by researchers or larger companies). The calculations are done for a standard house from the Swedish house supplier Fiskarhedenvillan. The method is based on having the same conditions and inputs in the different calculation forms so that the results can be compared and verified. The house has been faced differently to see how the orientation affects energy consumption in different methods. The results for the simulations are close to each other and the hand calculation differs from the computer programs by only 5%. Even if solar factors differ due to the orientation of the house, energy calculation results from different computer programs and even hand calculation methods are in line with each other.

Keywords: Energy calculation, energy consumption, energy simulation, IDA ICE, TMF Energi.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1052
4314 Innovative Fabric Integrated Thermal Storage Systems and Applications

Authors: Ahmed Elsayed, Andrew Shea, Nicolas Kelly, John Allison

Abstract:

In northern European climates, domestic space heating and hot water represents a significant proportion of total primary total primary energy use and meeting these demands from a national electricity grid network supplied by renewable energy sources provides an opportunity for a significant reduction in EU CO2 emissions. However, in order to adapt to the intermittent nature of renewable energy generation and to avoid co-incident peak electricity usage from consumers that may exceed current capacity, the demand for heat must be decoupled from its generation. Storage of heat within the fabric of dwellings for use some hours, or days, later provides a route to complete decoupling of demand from supply and facilitates the greatly increased use of renewable energy generation into a local or national electricity network. The integration of thermal energy storage into the building fabric for retrieval at a later time requires much evaluation of the many competing thermal, physical, and practical considerations such as the profile and magnitude of heat demand, the duration of storage, charging and discharging rate, storage media, space allocation, etc. In this paper, the authors report investigations of thermal storage in building fabric using concrete material and present an evaluation of several factors that impact upon performance including heating pipe layout, heating fluid flow velocity, storage geometry, thermo-physical material properties, and also present an investigation of alternative storage materials and alternative heat transfer fluids. Reducing the heating pipe spacing from 200 mm to 100 mm enhances the stored energy by 25% and high-performance Vacuum Insulation results in heat loss flux of less than 3 W/m2, compared to 22 W/m2 for the more conventional EPS insulation. Dense concrete achieved the greatest storage capacity, relative to medium and light-weight alternatives, although a material thickness of 100 mm required more than 5 hours to charge fully. Layers of 25 mm and 50 mm thickness can be charged in 2 hours, or less, facilitating a fast response that could, aggregated across multiple dwellings, provide significant and valuable reduction in demand from grid-generated electricity in expected periods of high demand and potentially eliminate the need for additional new generating capacity from conventional sources such as gas, coal, or nuclear.

Keywords: Fabric integrated thermal storage, FITS, demand side management, energy storage, load shifting, renewable energy integration.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1685
4313 Nonlinear Analysis of a Building Surmounted by a RC Water Tank under Hydrodynamic Load

Authors: Hocine Hammoum, Karima Bouzelha, Lounis Ziani, Lounis Hamitouche

Abstract:

In this paper, we study a complex structure which is an apartment building surmounted by a reinforced concrete water tank. The tank located on the top floor of the building is a container with capacity of 1000 m3. The building is complex in its design, its calculation and by its behavior under earthquake effect. This structure located in Algiers and aged of 53 years has been subjected to several earthquakes, but the earthquake of May 21st, 2003 with a magnitude of 6.7 on the Richter scale that struck Boumerdes region at 40 Kms East of Algiers was fatal for it. It was downgraded after an investigation study because the central core sustained serious damage. In this paper, to estimate the degree of its damages, the seismic performance of the structure will be evaluated taking into account the hydrodynamic effect, using a static equivalent nonlinear analysis called pushover.

Keywords: Performance analysis, building, reinforced concrete tank, seismic analysis, nonlinear analysis, hydrodynamic, pushover.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1254
4312 Multi-Factor Optimization Method through Machine Learning in Building Envelope Design: Focusing on Perforated Metal Façade

Authors: Jinwooung Kim, Jae-Hwan Jung, Seong-Jun Kim, Sung-Ah Kim

Abstract:

Because the building envelope has a significant impact on the operation and maintenance stage of the building, designing the facade considering the performance can improve the performance of the building and lower the maintenance cost of the building. In general, however, optimizing two or more performance factors confronts the limits of time and computational tools. The optimization phase typically repeats infinitely until a series of processes that generate alternatives and analyze the generated alternatives achieve the desired performance. In particular, as complex geometry or precision increases, computational resources and time are prohibitive to find the required performance, so an optimization methodology is needed to deal with this. Instead of directly analyzing all the alternatives in the optimization process, applying experimental techniques (heuristic method) learned through experimentation and experience can reduce resource waste. This study proposes and verifies a method to optimize the double envelope of a building composed of a perforated panel using machine learning to the design geometry and quantitative performance. The proposed method is to achieve the required performance with fewer resources by supplementing the existing method which cannot calculate the complex shape of the perforated panel.

Keywords: Building envelope, machine learning, perforated metal, multi-factor optimization, façade.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1222
4311 Realization of Sustainable Urban Society by Personal Electric Transporter and Natural Energy

Authors: Yuichi Miyamoto

Abstract:

In regards to the energy sector in the modern period, two points were raised. First is a vast and growing energy demand, and second is an environmental impact associated with it. The enormous consumption of fossil fuel to the mobile unit is leading to its rapid depletion. Nuclear power is not the only problem. A modal shift that utilizes personal transporters and independent power, in order to realize a sustainable society, is very effective. The author proposes that the world will continue to work on this. Energy of the future society, innovation in battery technology and the use of natural energy is a big key. And it is also necessary in order to save on energy consumption.

Keywords: Natural energy, Modal shift, Personal transporter, Battery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2045
4310 Oil Prices Impact on Energy Policy of Kazakhstan

Authors: K. Gabdullin, Y. Bek Ali, N. Aldabek

Abstract:

This paper explores oil prices changes impact on energy policy of Kazakhstan in 2001-2009. It involves the role of oil income to the economic development, process of diversification of internal and external energy policy of Kazakhstan, and the changes in oil law towards subsoil users.

Keywords: diversification, internal energy policy, external energy policy, high oil prices, modernization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2541
4309 Multi-Agent Simulation of Wayfinding for Rescue Operation during Building Fire

Authors: G. Sokhansefat, M. Delavar, M. Banedj-Schafii

Abstract:

Recently research on human wayfinding has focused mainly on mental representations rather than processes of wayfinding. The objective of this paper is to demonstrate the rationality behind applying multi-agent simulation paradigm to the modeling of rescuer team wayfinding in order to develop computational theory of perceptual wayfinding in crisis situations using image schemata and affordances, which explains how people find a specific destination in an unfamiliar building such as a hospital. The hypothesis of this paper is that successful navigation is possible if the agents are able to make the correct decision through well-defined cues in critical cases, so the design of the building signage is evaluated through the multi-agent-based simulation. In addition, a special case of wayfinding in a building, finding one-s way through three hospitals, is used to demonstrate the model. Thereby, total rescue time for rescue operation during building fire is computed. This paper discuses the computed rescue time for various signage localization and provides experimental result for optimization of building signage design. Therefore the most appropriate signage design resulted in the shortest total rescue time in various situations.

Keywords: Multi-Agent system (MAS), Spatial Cognition, Wayfinding, Indoor Environment, Geospatial Information System (GIS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2380
4308 Evaluation of Short-Term Load Forecasting Techniques Applied for Smart Micro Grids

Authors: Xiaolei Hu, Enrico Ferrera, Riccardo Tomasi, Claudio Pastrone

Abstract:

Load Forecasting plays a key role in making today's and future's Smart Energy Grids sustainable and reliable. Accurate power consumption prediction allows utilities to organize in advance their resources or to execute Demand Response strategies more effectively, which enables several features such as higher sustainability, better quality of service, and affordable electricity tariffs. It is easy yet effective to apply Load Forecasting at larger geographic scale, i.e. Smart Micro Grids, wherein the lower available grid flexibility makes accurate prediction more critical in Demand Response applications. This paper analyses the application of short-term load forecasting in a concrete scenario, proposed within the EU-funded GreenCom project, which collect load data from single loads and households belonging to a Smart Micro Grid. Three short-term load forecasting techniques, i.e. linear regression, artificial neural networks, and radial basis function network, are considered, compared, and evaluated through absolute forecast errors and training time. The influence of weather conditions in Load Forecasting is also evaluated. A new definition of Gain is introduced in this paper, which innovatively serves as an indicator of short-term prediction capabilities of time spam consistency. Two models, 24- and 1-hour-ahead forecasting, are built to comprehensively compare these three techniques.

Keywords: Short-term load forecasting, smart micro grid, linear regression, artificial neural networks, radial basis function network, Gain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2601
4307 Dry Relaxation Shrinkage Prediction of Bordeaux Fiber Using a Feed Forward Neural

Authors: Baeza S. Roberto

Abstract:

The knitted fabric suffers a deformation in its dimensions due to stretching and tension factors, transverse and longitudinal respectively, during the process in rectilinear knitting machines so it performs a dry relaxation shrinkage procedure and thermal action of prefixed to obtain stable conditions in the knitting. This paper presents a dry relaxation shrinkage prediction of Bordeaux fiber using a feed forward neural network and linear regression models. Six operational alternatives of shrinkage were predicted. A comparison of the results was performed finding neural network models with higher levels of explanation of the variability and prediction. The presence of different reposes is included. The models were obtained through a neural toolbox of Matlab and Minitab software with real data in a knitting company of Southern Guanajuato. The results allow predicting dry relaxation shrinkage of each alternative operation.

Keywords: Neural network, dry relaxation, knitting, linear regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1757
4306 Evaluation of Research in the Field of Energy Efficiency and MCA Methods Using Publications Databases

Authors: Juan Sepúlveda

Abstract:

Energy is a fundamental component in sustainability, the access and use of this resource is related with economic growth, social improvements, and environmental impacts. In this sense, energy efficiency has been studied as a factor that enhances the positive impacts of energy in communities; however, the implementation of efficiency requires strong policy and strategies that usually rely on individual measures focused in independent dimensions. In this paper, the problem of energy efficiency as a multi-objective problem is studied, using scientometric analysis to discover trends and patterns that allow to identify the main variables and study approximations related with a further development of models to integrate energy efficiency and MCA into policy making for small communities.

Keywords: Energy efficiency, MCA, Scientometrics, trends.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1747
4305 Investigation of Building Loads Effect on the Stability of Slope

Authors: Hadj Brahim Mounia, Belhamel Farid, Souici Messoud

Abstract:

In big cities, construction on sloping land (landslide) is becoming increasingly prevalent due to the unavailability of flat lands. This has created a major challenge for structural engineers with regard to structure design, due to the difficulties encountered during the implementation of projects, both for the structure and the soil. This paper analyses the effect of the number of floors of a building, founded on isolated footing on the stability of the slope using the computer code finite element PLAXIS 2D v. 8.2. The isolated footings of a building in this case were anchored in soil so that the levels of successive isolated footing realize a maximum slope of base of three for two heights, which connects the edges of the nearest footings, according to the Algerian building code DTR-BC 2.331: Shallow foundations. The results show that the embedment of the foundation into the soil reduces the value of the safety factor due to the change of the stress state of the soil by these foundations. The number of floors a building has also influences the safety factor. It has been noticed from this case of study that there is no risk of collapse of slopes for an inclination between 5° and 8°. In the case of slope inclination greater than 10° it has been noticed that the urbanization is prohibited.

Keywords: Building, collapse, factor of safety, isolated footing, PLAXIS 2D, slope.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1609
4304 A New Suburb Renovation Concept

Authors: A. Soikkeli, L. Sorri

Abstract:

Finnish national research project, User- and Business-oriented Suburb Renovation Concept (KLIKK), was started in January 2012 and will end in June 2014. The perspective of energy efficiency is emphasised in the project, but also it addresses what improving the energy efficiency of suburban apartment buildings means from the standpoint of architecturally valuable buildings representing different periods. The project will also test the impacts of stricter energy efficiency requirements on renovation projects.

The primary goal of the project is to develop a user-oriented, industrial, economic renovation concept for suburban apartment building renovation, extension and construction of additional storeys. The concept will make it possible to change from performance- and cost-based operation to novel service- and user-oriented, site-specifically tailored renovation methods utilizing integrated order and delivery chains.

The present project is collaborating with Ministry of the Environment and participating cities in developing a new type of lighter town planning model for suburban renovations and in-fill construction. To support this, the project will simultaneously develop practices for environmental impact assessment tools in renovation and suburban supplementary and in-fill construction.

 

Keywords: Energy efficiency, Prefabrication, Renovation concept, Suburbs, Sustainability, User-Orientated.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2036
4303 Energy Management System in Fuel Cell, Ultracapacitor, Battery Hybrid Energy Storage

Authors: Vinod Tejwani, Bhavik Suthar

Abstract:

The paper presents and energy management strategy for a Fuel Cell, Ultracapacitor, Battery hybrid energy storage. The fuel cell hybrid power system is devised basically for emergency power requirements and transient load applications. The power density of an Ultracapacitor is extremely high and for a battery, it is subtle. For a fuel cell, the value of power density is medium. The energy density of these three stockpiling gadgets is contrarily about the power density, i.e. for the batteries it is most noteworthy and for the Ultracapacitor, it is least. Again the fuel cell has medium energy density. The proposed Energy Management System (EMS) is trying to rationalize these parameters viz. the energy density and power density. The working of the fuel cell, Ultracapacitor and batteries are controlled in a coordinated environment in a way to optimize the energy usage and at the same time to get benefits of power and energy density from their inherent characteristics. MATLAB/ Simulink® based test bench is created by using different DC-DC converters for all energy storage devices and an inverter is modeled to supply the time varying load. The results provided by the EMS are highly satisfactory that proves its adaptability.

Keywords: Energy Management System (EMS) Fuel Cell, Ultracapacitor, Battery, Hybrid Energy Storage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
4302 Energy Requirement for Cutting Corn Stalks (Single Cross 704 Var.)

Authors: M. Azadbakht, A. Rezaei Asl, K. Tamaskani Zahedi

Abstract:

Corn is cultivated in most countries because of high consumption, quality, and food value. This study evaluated needed energy for cutting corn stems in different levels of cutting height and moisture content. For this reason, test device was fabricated and then calibrated. The device works on the principle of conservation of energy. The results were analyzed using split plot design and SAS software. The results showed that effect of height and moisture content and their interaction effect on cutting energy are significant (P<1%). The maximum cutting energy was 3.22 kJ in 63 (w.b.%) moisture content and the minimum cutting energy was 1.63 kJ in 83.25 (w.b.%) moisture content.

Keywords: Cutting energy, Corn stalk, Cutting height, Moisture content, Impact cutting.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3141
4301 The Corporate Vision Effect on Rajabhat University Brand Building in Thailand

Authors: Pisit Potjanajaruwit

Abstract:

This study aims to (1) investigate the corporate vision factor influencing Rajabhat University brand building in Thailand and (2) explore influences of brand building upon Rajabhat University stakeholders’ loyalty, and the research method will use mixed methods to conduct qualitative research with the quantitative research. The qualitative will approach by Indebt-interview the executive of Rathanagosin Rajabhat University group for 6 key informants and the quantitative data was collected by questionnaires distributed to stakeholder including instructors, staff, students and parents of the Rathanagosin Rajabhat University group for 400 sampling were selected by multi-stage sampling method. Data was analyzed by Structural Equation Modeling: SEM and also provide the focus group interview for confirming the model. Findings corporate vision had a direct and positive influence on Rajabhat University brand building were showed direct and positive influence on stakeholder’s loyalty and stakeholder’s loyalty was indirectly influenced by corporate vision through Rajabhat University brand building.

Keywords: Brand building, corporate vision, Rajabhat University, stakeholders’ loyalty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 804
4300 A Deep-Learning Based Prediction of Pancreatic Adenocarcinoma with Electronic Health Records from the State of Maine

Authors: Xiaodong Li, Peng Gao, Chao-Jung Huang, Shiying Hao, Xuefeng B. Ling, Yongxia Han, Yaqi Zhang, Le Zheng, Chengyin Ye, Modi Liu, Minjie Xia, Changlin Fu, Bo Jin, Karl G. Sylvester, Eric Widen

Abstract:

Predicting the risk of Pancreatic Adenocarcinoma (PA) in advance can benefit the quality of care and potentially reduce population mortality and morbidity. The aim of this study was to develop and prospectively validate a risk prediction model to identify patients at risk of new incident PA as early as 3 months before the onset of PA in a statewide, general population in Maine. The PA prediction model was developed using Deep Neural Networks, a deep learning algorithm, with a 2-year electronic-health-record (EHR) cohort. Prospective results showed that our model identified 54.35% of all inpatient episodes of PA, and 91.20% of all PA that required subsequent chemoradiotherapy, with a lead-time of up to 3 months and a true alert of 67.62%. The risk assessment tool has attained an improved discriminative ability. It can be immediately deployed to the health system to provide automatic early warnings to adults at risk of PA. It has potential to identify personalized risk factors to facilitate customized PA interventions.

Keywords: Cancer prediction, deep learning, electronic health records, pancreatic adenocarcinoma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 843
4299 Impact of Solar Energy Based Power Grid for Future Prospective of Pakistan

Authors: Muhammd Usman Sardar, Mazhar Hussain Baloch, Muhammad Shahbaz Ahmad, Zahir Javed Paracha

Abstract:

Shortfall of electrical energy in Pakistan is a challenge adversely affecting its industrial output and social growth. As elsewhere, Pakistan derives its electrical energy from a number of conventional sources. The exhaustion of petroleum and conventional resources, the rising costs coupled with extremely adverse climatic effects are taking its toll especially on the under-developed countries like Pakistan. As alternate, renewable energy sources like hydropower, solar, wind, even bio-energy and a mix of some or all of them could provide a credible alternative to the conventional energy resources that would not only be cleaner but sustainable as well. As a model, solar energy-based power grid for the near future has been attempted to offset the energy shortfalls as a mix with our existing sustainable natural energy resources. An assessment of solar energy potential for electricity generation is being presented for fulfilling the energy demands with higher level of reliability and sustainability. This model is based on the premise that solar energy potential of Pakistan is not only reliable but also sustainable. This research estimates the present & future approaching renewable energy resource specially the impact of solar energy based power grid for mitigating energy shortage in Pakistan.

Keywords: Powergrid network, solar photovoltaic (SPV) setups, solar power generation, solar energy technology (SET).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3449