Search results for: Algorithm and Load.
750 Evaluation of Edge Configuration in Medical Echo Images Using Genetic Algorithms
Authors: Ching-Fen Jiang
Abstract:
Edge detection is usually the first step in medical image processing. However, the difficulty increases when a conventional kernel-based edge detector is applied to ultrasonic images with a textural pattern and speckle noise. We designed an adaptive diffusion filter to remove speckle noise while preserving the initial edges detected by using a Sobel edge detector. We also propose a genetic algorithm for edge selection to form complete boundaries of the detected entities. We designed two fitness functions to evaluate whether a criterion with a complex edge configuration can render a better result than a simple criterion such as the strength of gradient. The edges obtained by using a complex fitness function are thicker and more fragmented than those obtained by using a simple fitness function, suggesting that a complex edge selecting scheme is not necessary for good edge detection in medical ultrasonic images; instead, a proper noise-smoothing filter is the key.Keywords: edge detection, ultrasonic images, speckle noise
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483749 Photo Mosaic Smartphone Application in Client-Server Based Large-Scale Image Databases
Authors: Sang-Hun Lee, Bum-Soo Kim, Yang-Sae Moon, Jinho Kim
Abstract:
In this paper we present a photo mosaic smartphone application in client-server based large-scale image databases. Photo mosaic is not a new concept, but there are very few smartphone applications especially for a huge number of images in the client-server environment. To support large-scale image databases, we first propose an overall framework working as a client-server model. We then present a concept of image-PAA features to efficiently handle a huge number of images and discuss its lower bounding property. We also present a best-match algorithm that exploits the lower bounding property of image-PAA. We finally implement an efficient Android-based application and demonstrate its feasibility.Keywords: smartphone applications; photo mosaic; similarity search; data mining; large-scale image databases.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1671748 Detection of Defects in CFRP by Ultrasonic IR Thermographic Method
Authors: W. Swiderski
Abstract:
In the paper introduced the diagnostic technique making possible the research of internal structures in composite materials reinforced fibres using in different applications. The main reason of damages in structures of these materials is the changing distribution of load in constructions in the lifetime. Appearing defect is largely complicated because of the appearance of disturbing of continuity of reinforced fibres, binder cracks and loss of fibres adhesiveness from binders. Defect in composite materials is usually more complicated than in metals. At present, infrared thermography is the most effective method in non-destructive testing composite. One of IR thermography methods used in non-destructive evaluation is vibrothermography. The vibrothermography is not a new non-destructive method, but the new solution in this test is use ultrasonic waves to thermal stimulation of materials. In this paper, both modelling and experimental results which illustrate the advantages and limitations of ultrasonic IR thermography in inspecting composite materials will be presented. The ThermoSon computer program for computing 3D dynamic temperature distribuions in anisotropic layered solids with subsurface defects subject to ulrasonic stimulation was used to optimise heating parameters in the detection of subsurface defects in composite materials. The program allows for the analysis of transient heat conduction and ultrasonic wave propagation phenomena in solids. The experiments at MIAT were fulfilled by means of FLIR SC 7600 IR camera. Ultrasonic stimulation was performed with the frequency from 15 kHz to 30 kHz with maximum power up to 2 kW.Keywords: Composite material, ultrasonic, infrared thermography, non-destructive testing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 842747 Generalized π-Armendariz Authentication Cryptosystem
Authors: Areej M. Abduldaim, Nadia M. G. Al-Saidi
Abstract:
Algebra is one of the important fields of mathematics. It concerns with the study and manipulation of mathematical symbols. It also concerns with the study of abstractions such as groups, rings, and fields. Due to the development of these abstractions, it is extended to consider other structures, such as vectors, matrices, and polynomials, which are non-numerical objects. Computer algebra is the implementation of algebraic methods as algorithms and computer programs. Recently, many algebraic cryptosystem protocols are based on non-commutative algebraic structures, such as authentication, key exchange, and encryption-decryption processes are adopted. Cryptography is the science that aimed at sending the information through public channels in such a way that only an authorized recipient can read it. Ring theory is the most attractive category of algebra in the area of cryptography. In this paper, we employ the algebraic structure called skew -Armendariz rings to design a neoteric algorithm for zero knowledge proof. The proposed protocol is established and illustrated through numerical example, and its soundness and completeness are proved.
Keywords: Cryptosystem, identification, skew π-Armendariz rings, skew polynomial rings, zero knowledge protocol.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 796746 A Reliable FPGA-based Real-time Optical-flow Estimation
Authors: M. M. Abutaleb, A. Hamdy, M. E. Abuelwafa, E. M. Saad
Abstract:
Optical flow is a research topic of interest for many years. It has, until recently, been largely inapplicable to real-time applications due to its computationally expensive nature. This paper presents a new reliable flow technique which is combined with a motion detection algorithm, from stationary camera image streams, to allow flow-based analyses of moving entities, such as rigidity, in real-time. The combination of the optical flow analysis with motion detection technique greatly reduces the expensive computation of flow vectors as compared with standard approaches, rendering the method to be applicable in real-time implementation. This paper describes also the hardware implementation of a proposed pipelined system to estimate the flow vectors from image sequences in real time. This design can process 768 x 576 images at a very high frame rate that reaches to 156 fps in a single low cost FPGA chip, which is adequate for most real-time vision applications.Keywords: Optical flow, motion detection, real-time systems, FPGA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1744745 A 15 Minute-Based Approach for Berth Allocation and Quay Crane Assignment
Authors: Hoi-Lam Ma, Sai-Ho Chung
Abstract:
In traditional integrated berth allocation with quay crane assignment models, time dimension is usually assumed in hourly based. However, nowadays, transshipment becomes the main business to many container terminals, especially in Southeast Asia (e.g. Hong Kong and Singapore). In these terminals, vessel arrivals are usually very frequent with small handling volume and very short staying time. Therefore, the traditional hourly-based modeling approach may cause significant berth and quay crane idling, and consequently cannot meet their practical needs. In this connection, a 15-minute-based modeling approach is requested by industrial practitioners. Accordingly, a Three-level Genetic Algorithm (3LGA) with Quay Crane (QC) shifting heuristics is designed to fulfill the research gap. The objective function here is to minimize the total service time. Preliminary numerical results show that the proposed 15-minute-based approach can reduce the berth and QC idling significantly.
Keywords: Transshipment, integrated berth allocation, variable-in-time quay crane assignment, quay crane assignment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 725744 A Study on Human Musculoskeletal Model for Cycle Fitting: Comparison with EMG
Authors: Yoon- Ho Shin, Jin-Seung Choi, Dong-Won Kang, Jeong-Woo Seo, Joo-Hack Lee, Ju-Young Kim, Dae-Hyeok Kim, Seung-Tae Yang, Gye-Rae Tack
Abstract:
It is difficult to study the effect of various variables on cycle fitting through actual experiment. To overcome such difficulty, the forward dynamics of a musculoskeletal model was applied to cycle fitting in this study. The measured EMG data weres compared with the muscle activities of the musculoskeletal model through forward dynamics. EMG data were measured from five cyclists who do not have musculoskeletal diseases during three minutes pedaling with a constant load (150 W) and cadence (90 RPM). The muscles used for the analysis were the Vastus Lateralis (VL), Tibialis Anterior (TA), Bicep Femoris (BF), and Gastrocnemius Medial (GM). Person’s correlation coefficients of the muscle activity patterns, the peak timing of the maximum muscle activities, and the total muscle activities were calculated and compared. BIKE3D model of AnyBody (Anybodytech, Denmark) was used for the musculoskeletal model simulation. The comparisons of the actual experiments with the simulation results showed significant correlations in the muscle activity patterns (VL: 0.789, TA: 0.503, BF: 0.468, GM: 0.670). The peak timings of the maximum muscle activities were distributed at particular phases. The total muscle activities were compared with the normalized muscle activities, and the comparison showed about 10% difference in the VL (+10%), TA (+9.7%), and BF (+10%), excluding the GM (+29.4%). Thus, it can be concluded that muscle activities of model & experiment showed similar results. The results of this study indicated that it was possible to apply the simulation of further improved musculoskeletal model to cycle fitting.
Keywords: Cycle fitting, EMG, Musculoskeletal modeling, Simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3175743 On Leak Localization in the Main Branched and Simple Inclined Gas Pipelines
Authors: T. Davitashvili, G. Gubelidze
Abstract:
In this paper two mathematical models for definition of gas accidental escape localization in the gas pipelines are suggested. The first model was created for leak localization in the horizontal branched pipeline and second one for leak detection in inclined section of the main gas pipeline. The algorithm of leak localization in the branched pipeline did not demand on knowledge of corresponding initial hydraulic parameters at entrance and ending points of each sections of pipeline. For detection of the damaged section and then leak localization in this section special functions and equations have been constructed. Some results of calculations for compound pipelines having two, four and five sections are presented. Also a method and formula for the leak localization in the simple inclined section of the main gas pipeline are suggested. Some results of numerical calculations defining localization of gas escape for the inclined pipeline are presented.
Keywords: Branched and inclined gas pipelines, leak detection, mathematical modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1901742 Robust Image Transmission Over Time-varying Channels using Hierarchical Joint Source Channel Coding
Authors: Hatem. Elmeddeb, Noureddine, Hamdi, Ammar. Bouallègue
Abstract:
In this paper, a joint source-channel coding (JSCC) scheme for time-varying channels is presented. The proposed scheme uses hierarchical framework for both source encoder and transmission via QAM modulation. Hierarchical joint source channel codes with hierarchical QAM constellations are designed to track the channel variations which yields to a higher throughput by adapting certain parameters of the receiver to the channel variation. We consider the problem of still image transmission over time-varying channels with channel state information (CSI) available at 1) receiver only and 2) both transmitter and receiver being informed about the state of the channel. We describe an algorithm that optimizes hierarchical source codebooks by minimizing the distortion due to source quantizer and channel impairments. Simulation results, based on image representation, show that, the proposed hierarchical system outperforms the conventional schemes based on a single-modulator and channel optimized source coding.Keywords: Channel-optimized VQ (COVQ), joint optimization, QAM, hierarchical systems.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1425741 Mathematical Modeling of SISO based Timoshenko Structures – A Case Study
Authors: T.C. Manjunath, Student Member, B. Bandyopadhyay
Abstract:
This paper features the mathematical modeling of a single input single output based Timoshenko smart beam. Further, this mathematical model is used to design a multirate output feedback based discrete sliding mode controller using Bartoszewicz law to suppress the flexural vibrations. The first 2 dominant vibratory modes is retained. Here, an application of the discrete sliding mode control in smart systems is presented. The algorithm uses a fast output sampling based sliding mode control strategy that would avoid the use of switching in the control input and hence avoids chattering. This method does not need the measurement of the system states for feedback as it makes use of only the output samples for designing the controller. Thus, this methodology is more practical and easy to implement.
Keywords: Smart structure, Timoshenko beam theory, Discretesliding mode control, Bartoszewicz law, Finite Element Method, State space model, Vibration control, Mathematical model, SISO.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2392740 Increasing The Speed of Convergence of an Artificial Neural Network based ARMA Coefficients Determination Technique
Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb
Abstract:
In this paper, novel techniques in increasing the accuracy and speed of convergence of a Feed forward Back propagation Artificial Neural Network (FFBPNN) with polynomial activation function reported in literature is presented. These technique was subsequently used to determine the coefficients of Autoregressive Moving Average (ARMA) and Autoregressive (AR) system. The results obtained by introducing sequential and batch method of weight initialization, batch method of weight and coefficient update, adaptive momentum and learning rate technique gives more accurate result and significant reduction in convergence time when compared t the traditional method of back propagation algorithm, thereby making FFBPNN an appropriate technique for online ARMA coefficient determination.Keywords: Adaptive Learning rate, Adaptive momentum, Autoregressive, Modeling, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1498739 Vibration Control of Two Adjacent Structures Using a Non-Linear Damping System
Authors: Soltani Amir, Wang Xuan
Abstract:
The advantage of using non-linear passive damping system in vibration control of two adjacent structures is investigated under their base excitation. The base excitation is El Centro earthquake record acceleration. The damping system is considered as an optimum and effective non-linear viscous damper that is connected between two adjacent structures. A MATLAB program is developed to produce the stiffness and damping matrices and to determine a time history analysis of the dynamic motion of the system. One structure is assumed to be flexible while the other has a rule as laterally supporting structure with rigid frames. The response of the structure has been calculated and the non-linear damping coefficient is determined using optimum LQR algorithm in an optimum vibration control system. The non-linear parameter of damping system is estimated and it has shown a significant advantage of application of this system device for vibration control of two adjacent tall building.
Keywords: Structural Control, Active and passive damping, Vibration control, Seismic isolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2408738 Numerical Modelling of Dust Propagation in the Atmosphere of Tbilisi City in Case of Western Background Light Air
Authors: N. Gigauri, V. Kukhalashvili, A. Surmava, L. Intskirveli, L. Gverdtsiteli
Abstract:
Tbilisi, a large city of the South Caucasus, is a junction point connecting Asia and Europe, Russia and republics of the Asia Minor. Over the last years, its atmosphere has been experienced an increasing anthropogenic load. Numerical modeling method is used for study of Tbilisi atmospheric air pollution. By means of 3D non-linear non-steady numerical model a peculiarity of city atmosphere pollution is investigated during background western light air. Dust concentration spatial and time changes are determined. There are identified the zones of high, average and less pollution, dust accumulation areas, transfer directions etc. By numerical modeling, there is shown that the process of air pollution by the dust proceeds in four stages, and they depend on the intensity of motor traffic, the micro-relief of the city, and the location of city mains. In the interval of time 06:00-09:00 the intensive growth, 09:00-15:00 a constancy or weak decrease, 18:00-21:00 an increase, and from 21:00 to 06:00 a reduction of the dust concentrations take place. The highly polluted areas are located in the vicinity of the city center and at some peripherical territories of the city, where the maximum dust concentration at 9PM is equal to 2 maximum allowable concentrations. The similar investigations conducted in case of various meteorological situations will enable us to compile the map of background urban pollution and to elaborate practical measures for ambient air protection.
Keywords: Numerical modelling, source of pollution, dust propagation, western light air.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 489737 Bottom Up Text Mining through Hierarchical Document Representation
Authors: Y. Djouadi., F. Souam.
Abstract:
Most of the existing text mining approaches are proposed, keeping in mind, transaction databases model. Thus, the mined dataset is structured using just one concept: the “transaction", whereas the whole dataset is modeled using the “set" abstract type. In such cases, the structure of the whole dataset and the relationships among the transactions themselves are not modeled and consequently, not considered in the mining process. We believe that taking into account structure properties of hierarchically structured information (e.g. textual document, etc ...) in the mining process, can leads to best results. For this purpose, an hierarchical associations rule mining approach for textual documents is proposed in this paper and the classical set-oriented mining approach is reconsidered profits to a Direct Acyclic Graph (DAG) oriented approach. Natural languages processing techniques are used in order to obtain the DAG structure. Based on this graph model, an hierarchical bottom up algorithm is proposed. The main idea is that each node is mined with its parent node.Keywords: Graph based association rules mining, Hierarchical document structure, Text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2058736 Broadcasting Mechanism with Less Flooding Packets by Optimally Constructing Forwarding and Non-Forwarding Nodes in Mobile Ad Hoc Networks
Authors: R. Reka, R. S. D. Wahidabanu
Abstract:
The conventional routing protocol designed for MANET fail to handle dynamic movement and self-starting behavior of the node effectively. Every node in MANET is considered as forward as well receiver node and all of them participate in routing the packet from source to the destination. While the interconnection topology is highly dynamic, the performance of the most of the routing protocol is not encouraging. In this paper, a reliable broadcast approach for MANET is proposed for improving the transmission rate. The MANET is considered with asymmetric characteristics and the properties of the source and destination nodes are different. The non-forwarding node list is generated with a downstream node and they do not participate in the routing. While the forwarding and non-forwarding node is constructed in a conventional way, the number of nodes in non-forwarding list is more and increases the load. In this work, we construct the forwarding and non-forwarding node optimally so that the flooding and broadcasting is reduced to certain extent. The forwarded packet is considered as acknowledgements and the non-forwarding nodes explicitly send the acknowledgements to the source. The performance of the proposed approach is evaluated in NS2 environment. Since the proposed approach reduces the flooding, we have considered functionality of the proposed approach with AODV variants. The effect of network density on the overhead and collision rate is considered for performance evaluation. The performance is compared with the AODV variants found that the proposed approach outperforms all the variants.
Keywords: Flooding, Forwarded Nodes, MANET, Non-forwarding nodes, Routing protocols.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026735 Computational Intelligence Hybrid Learning Approach to Time Series Forecasting
Authors: Chunshien Li, Jhao-Wun Hu, Tai-Wei Chiang, Tsunghan Wu
Abstract:
Time series forecasting is an important and widely popular topic in the research of system modeling. This paper describes how to use the hybrid PSO-RLSE neuro-fuzzy learning approach to the problem of time series forecasting. The PSO algorithm is used to update the premise parameters of the proposed prediction system, and the RLSE is used to update the consequence parameters. Thanks to the hybrid learning (HL) approach for the neuro-fuzzy system, the prediction performance is excellent and the speed of learning convergence is much faster than other compared approaches. In the experiments, we use the well-known Mackey-Glass chaos time series. According to the experimental results, the prediction performance and accuracy in time series forecasting by the proposed approach is much better than other compared approaches, as shown in Table IV. Excellent prediction performance by the proposed approach has been observed.Keywords: forecasting, hybrid learning (HL), Neuro-FuzzySystem (NFS), particle swarm optimization (PSO), recursiveleast-squares estimator (RLSE), time series
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1559734 Automatically Driven Vector for Guidewire Segmentation in 2D and Biplane Fluoroscopy
Authors: Simon Lessard, Pascal Bigras, Caroline Lau, Daniel Roy, Gilles Soulez, Jacques A. de Guise
Abstract:
The segmentation of endovascular tools in fluoroscopy images can be accurately performed automatically or by minimum user intervention, using known modern techniques. It has been proven in literature, but no clinical implementation exists so far because the computational time requirements of such technology have not yet been met. A classical segmentation scheme is composed of edge enhancement filtering, line detection, and segmentation. A new method is presented that consists of a vector that propagates in the image to track an edge as it advances. The filtering is performed progressively in the projected path of the vector, whose orientation allows for oriented edge detection, and a minimal image area is globally filtered. Such an algorithm is rapidly computed and can be implemented in real-time applications. It was tested on medical fluoroscopy images from an endovascular cerebral intervention. Ex- periments showed that the 2D tracking was limited to guidewires without intersection crosspoints, while the 3D implementation was able to cope with such planar difficulties.
Keywords: Edge detection, Line Enhancement, Segmentation, Fluoroscopy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728733 Proffering a Brand New Methodology to Resource Discovery in Grid based on Economic Criteria Using Learning Automata
Authors: Ali Sarhadi, Mohammad Reza Meybodi, Ali Yousefi
Abstract:
Resource discovery is one of the chief services of a grid. A new approach to discover the provenances in grid through learning automata has been propounded in this article. The objective of the aforementioned resource-discovery service is to select the resource based upon the user-s applications and the mercantile yardsticks that is to say opting for an originator which can accomplish the user-s tasks in the most economic manner. This novel service is submitted in two phases. We proffered an applicationbased categorization by means of an intelligent nerve-prone plexus. The user in question sets his or her application as the input vector of the nerve-prone nexus. The output vector of the aforesaid network limns the appropriateness of any one of the resource for the presented executive procedure. The most scrimping option out of those put forward in the previous stage which can be coped with to fulfill the task in question is picked out. Te resource choice is carried out by means of the presented algorithm based upon the learning automata.
Keywords: Resource discovery, learning automata, neural network, economic policy
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1453732 Investigating the Transformer Operating Conditions for Evaluating the Dielectric Response
Authors: Jalal M. Abdallah
Abstract:
This paper presents an experimental investigation of transformer dielectric response and solid insulation water content. The dielectric response was carried out on the base of Hybrid Frequency Dielectric Spectroscopy and Polarization Current measurements method (FDS &PC). The calculation of the water content in paper is based on the water content in oil and the obtained equilibrium curves. A reference measurements were performed at equilibrium conditions for water content in oil and paper of transformer at different stable temperatures (25, 50, 60 and 70°C) to prepare references to evaluate the insulation behavior at the not equilibrium conditions. Some measurements performed at the different simulated normal working modes of transformer operation at the same temperature where the equilibrium conditions. The obtained results show that when transformer temperature is mach more than the its ambient temperature, the transformer temperature decreases immediately after disconnecting the transformer from the network and this temperature reduction influences the transformer insulation condition in the measuring process. In addition to the oil temperature at the near places to the sensors, the temperature uniformity in transformer which can be changed by a big change in the load of transformer before the measuring time will influence the result. The investigations have shown that the extremely influence of the time between disconnecting the transformer and beginning the measurements on the results. And the online monitoring for water content in paper measurements, on the basis of the oil water content on line monitoring and the obtained equilibrium curves. The measurements where performed continuously and for about 50 days without any disconnection in the prepared the adiabatic room.Keywords: Conductivity, Moisture, Temperature, Oil-paperinsulation, Online monitoring, Water content in oil.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2647731 Phase Control Array Synthesis Using Constrained Accelerated Particle Swarm Optimization
Authors: Mohammad Taha, Dia abu al Nadi
Abstract:
In this paper, the phase control antenna array synthesis is presented. The problem is formulated as a constrained optimization problem that imposes nulls with prescribed level while maintaining the sidelobe at a prescribed level. For efficient use of the algorithm memory, compared to the well known Particle Swarm Optimization (PSO), the Accelerated Particle Swarm Optimization (APSO) is used to estimate the phase parameters of the synthesized array. The objective function is formed using a main objective and set of constraints with penalty factors that measure the violation of each feasible solution in the search space to each constraint. In this case the obtained feasible solution is guaranteed to satisfy all the constraints. Simulation results have shown significant performance increases and a decreased randomness in the parameter search space compared to a single objective conventional particle swarm optimization.Keywords: Array synthesis, Sidelobe level control, Constrainedoptimization, Accelerated Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1927730 A Modified Speech Enhancement Using Adaptive Gain Equalizer with Non linear Spectral Subtraction for Robust Speech Recognition
Authors: C. Ganesh Babu, P. T. Vanathi
Abstract:
In this paper we present an enhanced noise reduction method for robust speech recognition using Adaptive Gain Equalizer with Non linear Spectral Subtraction. In Adaptive Gain Equalizer method (AGE), the input signal is divided into a number of subbands that are individually weighed in time domain, in accordance to the short time Signal-to-Noise Ratio (SNR) in each subband estimation at every time instant. Instead of focusing on suppression the noise on speech enhancement is focused. When analysis was done under various noise conditions for speech recognition, it was found that Adaptive Gain Equalizer method algorithm has an obvious failing point for a SNR of -5 dB, with inadequate levels of noise suppression for SNR less than this point. This work proposes the implementation of AGE when coupled with Non linear Spectral Subtraction (AGE-NSS) for robust speech recognition. The experimental result shows that out AGE-NSS performs the AGE when SNR drops below -5db level.
Keywords: Adaptive Gain Equalizer, Non Linear Spectral Subtraction, Speech Enhancement, and Speech Recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702729 Influence of Loading Pattern and Shaft Rigidity on Laterally Loaded Helical Piles in Cohesionless Soil
Authors: Mohamed Hesham Hamdy Abdelmohsen, Ahmed Shawky Abdul Aziz, Mona Fawzy Al-Daghma
Abstract:
Helical piles are widely used as axially and laterally loaded deep foundations. When they are required to resist bearing combined loads (BCLs), such as axial compression and lateral thrust, different behaviour is expected, necessitating further investigation. The aim of the present article is to clarify the behaviour of a single helical pile of different shaft rigidity embedded in cohesionless soil and subjected to simultaneous or successive loading patterns of BCLs. The study was first developed analytically and extended numerically. The numerical analysis using PLAXIS 3D was further verified through a laboratory experimental programme on a set of helical pile models. The results indicate highly interactive effects of the studied parameters, but it is obviously confirmed that the pile performance increases with both the increase of shaft rigidity and the change of BCLs loading pattern from simultaneous to successive. However, it is noted that the increase of vertical load does not always enhance the lateral capacity but may cause a decrement in lateral capacity, as observed with helical piles of flexible shafts. This study provides insightful information for the design of helical piles in structures loaded by complex sequence of forces, wind turbines, and industrial shafts.
Keywords: Helical pile, lateral loads. combined loads, cohesionless soil, analytical model, PLAXIS 3D.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 74728 Wavelet based ANN Approach for Transformer Protection
Authors: Okan Özgönenel
Abstract:
This paper presents the development of a wavelet based algorithm, for distinguishing between magnetizing inrush currents and power system fault currents, which is quite adequate, reliable, fast and computationally efficient tool. The proposed technique consists of a preprocessing unit based on discrete wavelet transform (DWT) in combination with an artificial neural network (ANN) for detecting and classifying fault currents. The DWT acts as an extractor of distinctive features in the input signals at the relay location. This information is then fed into an ANN for classifying fault and magnetizing inrush conditions. A 220/55/55 V, 50Hz laboratory transformer connected to a 380 V power system were simulated using ATP-EMTP. The DWT was implemented by using Matlab and Coiflet mother wavelet was used to analyze primary currents and generate training data. The simulated results presented clearly show that the proposed technique can accurately discriminate between magnetizing inrush and fault currents in transformer protection.Keywords: Artificial neural network, discrete wavelet transform, fault detection, magnetizing inrush current.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1845727 Parameters Optimization of the Laminated Composite Plate for Sound Transmission Problem
Authors: Yu T. Tsai, Jin H. Huang
Abstract:
In this paper, the specific sound Transmission Loss (TL) of the Laminated Composite Plate (LCP) with different material properties in each layer is investigated. The numerical method to obtain the TL of the LCP is proposed by using elastic plate theory. The transfer matrix approach is novelty presented for computational efficiency in solving the numerous layers of dynamic stiffness matrix (D-matrix) of the LCP. Besides the numerical simulations for calculating the TL of the LCP, the material properties inverse method is presented for the design of a laminated composite plate analogous to a metallic plate with a specified TL. As a result, it demonstrates that the proposed computational algorithm exhibits high efficiency with a small number of iterations for achieving the goal. This method can be effectively employed to design and develop tailor-made materials for various applications.Keywords: Sound transmission loss, laminated composite plate, transfer matrix approach, inverse problem, elastic plate theory, material properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1973726 Dynamic Analysis of a Moderately Thick Plate on Pasternak Type Foundation under Impact and Moving Loads
Authors: Neslihan Genckal, Reha Gursoy, Vedat Z. Dogan
Abstract:
In this study, dynamic responses of composite plates on elastic foundations subjected to impact and moving loads are investigated. The first order shear deformation (FSDT) theory is used for moderately thick plates. Pasternak-type (two-parameter) elastic foundation is assumed. Elastic foundation effects are integrated into the governing equations. It is assumed that plate is first hit by a mass as an impact type loading then the mass continues to move on the composite plate as a distributed moving loading, which resembles the aircraft landing on airport pavements. Impact and moving loadings are modeled by a mass-spring-damper system with a wheel. The wheel is assumed to be continuously in contact with the plate after impact. The governing partial differential equations of motion for displacements are converted into the ordinary differential equations in the time domain by using Galerkin’s method. Then, these sets of equations are solved by using the Runge-Kutta method. Several parameters such as vertical and horizontal velocities of the aircraft, volume fractions of the steel rebar in the reinforced concrete layer, and the different touchdown locations of the aircraft tire on the runway are considered in the numerical simulation. The results are compared with those of the ABAQUS, which is a commercial finite element code.
Keywords: Elastic foundation, impact, moving load, thick plate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481725 A New Self-Adaptive EP Approach for ANN Weights Training
Authors: Kristina Davoian, Wolfram-M. Lippe
Abstract:
Evolutionary Programming (EP) represents a methodology of Evolutionary Algorithms (EA) in which mutation is considered as a main reproduction operator. This paper presents a novel EP approach for Artificial Neural Networks (ANN) learning. The proposed strategy consists of two components: the self-adaptive, which contains phenotype information and the dynamic, which is described by genotype. Self-adaptation is achieved by the addition of a value, called the network weight, which depends on a total number of hidden layers and an average number of neurons in hidden layers. The dynamic component changes its value depending on the fitness of a chromosome, exposed to mutation. Thus, the mutation step size is controlled by two components, encapsulated in the algorithm, which adjust it according to the characteristics of a predefined ANN architecture and the fitness of a particular chromosome. The comparative analysis of the proposed approach and the classical EP (Gaussian mutation) showed, that that the significant acceleration of the evolution process is achieved by using both phenotype and genotype information in the mutation strategy.Keywords: Artificial Neural Networks (ANN), Learning Theory, Evolutionary Programming (EP), Mutation, Self-Adaptation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1828724 The Splitting Upwind Schemes for Spectral Action Balance Equation
Authors: Anirut Luadsong, Nitima Aschariyaphotha
Abstract:
The spectral action balance equation is an equation that used to simulate short-crested wind-generated waves in shallow water areas such as coastal regions and inland waters. This equation consists of two spatial dimensions, wave direction, and wave frequency which can be solved by finite difference method. When this equation with dominating convection term are discretized using central differences, stability problems occur when the grid spacing is chosen too coarse. In this paper, we introduce the splitting upwind schemes for avoiding stability problems and prove that it is consistent to the upwind scheme with same accuracy. The splitting upwind schemes was adopted to split the wave spectral action balance equation into four onedimensional problems, which for each small problem obtains the independently tridiagonal linear systems. For each smaller system can be solved by direct or iterative methods at the same time which is very fast when performed by a multi-processor computer.Keywords: upwind scheme, parallel algorithm, spectral action balance equation, splitting method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1687723 A Comparison and Analysis of Name Matching Algorithms
Authors: Chakkrit Snae
Abstract:
Names are important in many societies, even in technologically oriented ones which use e.g. ID systems to identify individual people. Names such as surnames are the most important as they are used in many processes, such as identifying of people and genealogical research. On the other hand variation of names can be a major problem for the identification and search for people, e.g. web search or security reasons. Name matching presumes a-priori that the recorded name written in one alphabet reflects the phonetic identity of two samples or some transcription error in copying a previously recorded name. We add to this the lode that the two names imply the same person. This paper describes name variations and some basic description of various name matching algorithms developed to overcome name variation and to find reasonable variants of names which can be used to further increasing mismatches for record linkage and name search. The implementation contains algorithms for computing a range of fuzzy matching based on different types of algorithms, e.g. composite and hybrid methods and allowing us to test and measure algorithms for accuracy. NYSIIS, LIG2 and Phonex have been shown to perform well and provided sufficient flexibility to be included in the linkage/matching process for optimising name searching.Keywords: Data mining, name matching algorithm, nominaldata, searching system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11090722 Globally Convergent Edge-preserving Reconstruction with Contour-line Smoothing
Authors: Marc C. Robini, Pierre-Jean Viverge, Yuemin Zhu, Jianhua Luo
Abstract:
The standard approach to image reconstruction is to stabilize the problem by including an edge-preserving roughness penalty in addition to faithfulness to the data. However, this methodology produces noisy object boundaries and creates a staircase effect. The existing attempts to favor the formation of smooth contour lines take the edge field explicitly into account; they either are computationally expensive or produce disappointing results. In this paper, we propose to incorporate the smoothness of the edge field in an implicit way by means of an additional penalty term defined in the wavelet domain. We also derive an efficient half-quadratic algorithm to solve the resulting optimization problem, including the case when the data fidelity term is non-quadratic and the cost function is nonconvex. Numerical experiments show that our technique preserves edge sharpness while smoothing contour lines; it produces visually pleasing reconstructions which are quantitatively better than those obtained without wavelet-domain constraints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1344721 Artificial Neural Network Development by means of Genetic Programming with Graph Codification
Authors: Daniel Rivero, Julián Dorado, Juan R. Rabuñal, Alejandro Pazos, Javier Pereira
Abstract:
The development of Artificial Neural Networks (ANNs) is usually a slow process in which the human expert has to test several architectures until he finds the one that achieves best results to solve a certain problem. This work presents a new technique that uses Genetic Programming (GP) for automatically generating ANNs. To do this, the GP algorithm had to be changed in order to work with graph structures, so ANNs can be developed. This technique also allows the obtaining of simplified networks that solve the problem with a small group of neurons. In order to measure the performance of the system and to compare the results with other ANN development methods by means of Evolutionary Computation (EC) techniques, several tests were performed with problems based on some of the most used test databases. The results of those comparisons show that the system achieves good results comparable with the already existing techniques and, in most of the cases, they worked better than those techniques.Keywords: Artificial Neural Networks, Evolutionary Computation, Genetic Programming.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460