Search results for: neural network.
2716 Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis
Authors: Isao Taguchi, Yasuo Sugai
Abstract:
This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.
Keywords: data selection, function approximation problem, multistage leaning, neural network, voluntary oscillation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14302715 STLF Based on Optimized Neural Network Using PSO
Authors: H. Shayeghi, H. A. Shayanfar, G. Azimi
Abstract:
The quality of short term load forecasting can improve the efficiency of planning and operation of electric utilities. Artificial Neural Networks (ANNs) are employed for nonlinear short term load forecasting owing to their powerful nonlinear mapping capabilities. At present, there is no systematic methodology for optimal design and training of an artificial neural network. One has often to resort to the trial and error approach. This paper describes the process of developing three layer feed-forward large neural networks for short-term load forecasting and then presents a heuristic search algorithm for performing an important task of this process, i.e. optimal networks structure design. Particle Swarm Optimization (PSO) is used to develop the optimum large neural network structure and connecting weights for one-day ahead electric load forecasting problem. PSO is a novel random optimization method based on swarm intelligence, which has more powerful ability of global optimization. Employing PSO algorithms on the design and training of ANNs allows the ANN architecture and parameters to be easily optimized. The proposed method is applied to STLF of the local utility. Data are clustered due to the differences in their characteristics. Special days are extracted from the normal training sets and handled separately. In this way, a solution is provided for all load types, including working days and weekends and special days. The experimental results show that the proposed method optimized by PSO can quicken the learning speed of the network and improve the forecasting precision compared with the conventional Back Propagation (BP) method. Moreover, it is not only simple to calculate, but also practical and effective. Also, it provides a greater degree of accuracy in many cases and gives lower percent errors all the time for STLF problem compared to BP method. Thus, it can be applied to automatically design an optimal load forecaster based on historical data.
Keywords: Large Neural Network, Short-Term Load Forecasting, Particle Swarm Optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22242714 Shoreline Change Estimation from Survey Image Coordinates and Neural Network Approximation
Authors: Tienfuan Kerh, Hsienchang Lu, Rob Saunders
Abstract:
Shoreline erosion problems caused by global warming and sea level rising may result in losing of land areas, so it should be examined regularly to reduce possible negative impacts. Initially in this study, three sets of survey images obtained from the years of 1990, 2001, and 2010, respectively, are digitalized by using graphical software to establish the spatial coordinates of six major beaches around the island of Taiwan. Then, by overlaying the known multi-period images, the change of shoreline can be observed from their distribution of coordinates. In addition, the neural network approximation is used to develop a model for predicting shoreline variation in the years of 2015 and 2020. The comparison results show that there is no significant change of total sandy area for all beaches in the three different periods. However, the prediction results show that two beaches may exhibit an increasing of total sandy areas under a statistical 95% confidence interval. The proposed method adopted in this study may be applicable to other shorelines of interest around the world.
Keywords: Digitalized shoreline coordinates, survey image overlaying, neural network approximation, total beach sandy areas.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20152713 Study of a Crude Oil Desalting Plant of the National Iranian South Oil Company in Gachsaran by Using Artificial Neural Networks
Authors: H. Kiani, S. Moradi, B. Soltani Soulgani, S. Mousavian
Abstract:
Desalting/dehydration plants (DDP) are often installed in crude oil production units in order to remove water-soluble salts from an oil stream. In order to optimize this process, desalting unit should be modeled. In this research, artificial neural network is used to model efficiency of desalting unit as a function of input parameter. The result of this research shows that the mentioned model has good agreement with experimental data.
Keywords: Desalting unit, Crude oil, Neural Networks, Simulation, Recovery, Separation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 42502712 A Comparison of Artificial Neural Networks for Prediction of Suspended Sediment Discharge in River- A Case Study in Malaysia
Authors: M.R. Mustafa, M.H. Isa, R.B. Rezaur
Abstract:
Prediction of highly non linear behavior of suspended sediment flow in rivers has prime importance in the field of water resources engineering. In this study the predictive performance of two Artificial Neural Networks (ANNs) namely, the Radial Basis Function (RBF) Network and the Multi Layer Feed Forward (MLFF) Network have been compared. Time series data of daily suspended sediment discharge and water discharge at Pari River was used for training and testing the networks. A number of statistical parameters i.e. root mean square error (RMSE), mean absolute error (MAE), coefficient of efficiency (CE) and coefficient of determination (R2) were used for performance evaluation of the models. Both the models produced satisfactory results and showed a good agreement between the predicted and observed data. The RBF network model provided slightly better results than the MLFF network model in predicting suspended sediment discharge.Keywords: ANN, discharge, modeling, prediction, suspendedsediment,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17252711 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network
Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza
Abstract:
The aim of this work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. With our research and based on a feature selection in different phases, we are trying to design a neural network system with an optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each region of interest (ROI), 6 distinct sets of texture features are extracted such as: first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. When analyzing more phases, we show that the injection of liquid cause changes to the high relevant features in each region. Our results demonstrate that for detecting HCC tumor phase 3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between pathology and healthy classes, according to our method, relates to first order histogram parameters with accuracy of 85% in phase 1, 95% in phase 2, and 95% in phase 3.
Keywords: Feature selection, Multi-phasic liver images, Neural network, Texture analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25352710 EAAC: Energy-Aware Admission Control Scheme for Ad Hoc Networks
Authors: Dilip Kumar S.M, Vijaya Kumar B.P.
Abstract:
The decisions made by admission control algorithms are based on the availability of network resources viz. bandwidth, energy, memory buffers, etc., without degrading the Quality-of-Service (QoS) requirement of applications that are admitted. In this paper, we present an energy-aware admission control (EAAC) scheme which provides admission control for flows in an ad hoc network based on the knowledge of the present and future residual energy of the intermediate nodes along the routing path. The aim of EAAC is to quantify the energy that the new flow will consume so that it can be decided whether the future residual energy of the nodes along the routing path can satisfy the energy requirement. In other words, this energy-aware routing admits a new flow iff any node in the routing path does not run out of its energy during the transmission of packets. The future residual energy of a node is predicted using the Multi-layer Neural Network (MNN) model. Simulation results shows that the proposed scheme increases the network lifetime. Also the performance of the MNN model is presented.Keywords: Ad hoc networks, admission control, energy-aware routing, Quality-of-Service, future residual energy, neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16472709 Handwritten Character Recognition Using Multiscale Neural Network Training Technique
Authors: Velappa Ganapathy, Kok Leong Liew
Abstract:
Advancement in Artificial Intelligence has lead to the developments of various “smart" devices. Character recognition device is one of such smart devices that acquire partial human intelligence with the ability to capture and recognize various characters in different languages. Firstly multiscale neural training with modifications in the input training vectors is adopted in this paper to acquire its advantage in training higher resolution character images. Secondly selective thresholding using minimum distance technique is proposed to be used to increase the level of accuracy of character recognition. A simulator program (a GUI) is designed in such a way that the characters can be located on any spot on the blank paper in which the characters are written. The results show that such methods with moderate level of training epochs can produce accuracies of at least 85% and more for handwritten upper case English characters and numerals.Keywords: Character recognition, multiscale, backpropagation, neural network, minimum distance technique.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19282708 Mobile Robot Path Planning in a 2-Dimentional Mesh
Authors: Doraid Dalalah
Abstract:
A topologically oriented neural network is very efficient for real-time path planning for a mobile robot in changing environments. When using a recurrent neural network for this purpose and with the combination of the partial differential equation of heat transfer and the distributed potential concept of the network, the problem of obstacle avoidance of trajectory planning for a moving robot can be efficiently solved. The related dimensional network represents the state variables and the topology of the robot's working space. In this paper two approaches to problem solution are proposed. The first approach relies on the potential distribution of attraction distributed around the moving target, acting as a unique local extreme in the net, with the gradient of the state variables directing the current flow toward the source of the potential heat. The second approach considers two attractive and repulsive potential sources to decrease the time of potential distribution. Computer simulations have been carried out to interrogate the performance of the proposed approaches.Keywords: Mobile robot, Path Planning, Mesh, Potential field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19262707 Word Recognition and Learning based on Associative Memories and Hidden Markov Models
Authors: Zöhre Kara Kayikci, Günther Palm
Abstract:
A word recognition architecture based on a network of neural associative memories and hidden Markov models has been developed. The input stream, composed of subword-units like wordinternal triphones consisting of diphones and triphones, is provided to the network of neural associative memories by hidden Markov models. The word recognition network derives words from this input stream. The architecture has the ability to handle ambiguities on subword-unit level and is also able to add new words to the vocabulary during performance. The architecture is implemented to perform the word recognition task in a language processing system for understanding simple command sentences like “bot show apple".Keywords: Hebbian learning, hidden Markov models, neuralassociative memories, word recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15242706 Forecasting Tala-AUD and Tala-USD Exchange Rates with ANN
Authors: Shamsuddin Ahmed, M. G. M. Khan, Biman Prasad, Avlin Prasad
Abstract:
The focus of this paper is to construct daily time series exchange rate forecast models of Samoan Tala/USD and Tala/AUD during the year 2008 to 2012 with neural network The performance of the models was measured by using varies error functions such as Root Square mean error (RSME), Mean absolute error (MAE), and Mean absolute percentage error (MAPE). Our empirical findings suggest that AR (1) model is an effective tool to forecast the Tala/USD and Tala/AUD.Keywords: Neural Network Forecasting Model, Autoregressive time series, Exchange rate, Tala/AUD, winters model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24332705 Massively-Parallel Bit-Serial Neural Networks for Fast Epilepsy Diagnosis: A Feasibility Study
Authors: Si Mon Kueh, Tom J. Kazmierski
Abstract:
There are about 1% of the world population suffering from the hidden disability known as epilepsy and major developing countries are not fully equipped to counter this problem. In order to reduce the inconvenience and danger of epilepsy, different methods have been researched by using a artificial neural network (ANN) classification to distinguish epileptic waveforms from normal brain waveforms. This paper outlines the aim of achieving massive ANN parallelization through a dedicated hardware using bit-serial processing. The design of this bit-serial Neural Processing Element (NPE) is presented which implements the functionality of a complete neuron using variable accuracy. The proposed design has been tested taking into consideration non-idealities of a hardware ANN. The NPE consists of a bit-serial multiplier which uses only 16 logic elements on an Altera Cyclone IV FPGA and a bit-serial ALU as well as a look-up table. Arrays of NPEs can be driven by a single controller which executes the neural processing algorithm. In conclusion, the proposed compact NPE design allows the construction of complex hardware ANNs that can be implemented in a portable equipment that suits the needs of a single epileptic patient in his or her daily activities to predict the occurrences of impending tonic conic seizures.Keywords: Artificial Neural Networks, bit-serial neural processor, FPGA, Neural Processing Element.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15732704 A Survey of Field Programmable Gate Array-Based Convolutional Neural Network Accelerators
Authors: Wei Zhang
Abstract:
With the rapid development of deep learning, neural network and deep learning algorithms play a significant role in various practical applications. Due to the high accuracy and good performance, Convolutional Neural Networks (CNNs) especially have become a research hot spot in the past few years. However, the size of the networks becomes increasingly large scale due to the demands of the practical applications, which poses a significant challenge to construct a high-performance implementation of deep learning neural networks. Meanwhile, many of these application scenarios also have strict requirements on the performance and low-power consumption of hardware devices. Therefore, it is particularly critical to choose a moderate computing platform for hardware acceleration of CNNs. This article aimed to survey the recent advance in Field Programmable Gate Array (FPGA)-based acceleration of CNNs. Various designs and implementations of the accelerator based on FPGA under different devices and network models are overviewed, and the versions of Graphic Processing Units (GPUs), Application Specific Integrated Circuits (ASICs) and Digital Signal Processors (DSPs) are compared to present our own critical analysis and comments. Finally, we give a discussion on different perspectives of these acceleration and optimization methods on FPGA platforms to further explore the opportunities and challenges for future research. More helpfully, we give a prospect for future development of the FPGA-based accelerator.Keywords: Deep learning, field programmable gate array, FPGA, hardware acceleration, convolutional neural networks, CNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8952703 RBF modeling of Incipient Motion of Plane Sand Bed Channels
Authors: Gopu Sreenivasulu, Bimlesh Kumar, Achanta Ramakrishna Rao
Abstract:
To define or predict incipient motion in an alluvial channel, most of the investigators use a standard or modified form of Shields- diagram. Shields- diagram does give a process to determine the incipient motion parameters but an iterative one. To design properly (without iteration), one should have another equation for resistance. Absence of a universal resistance equation also magnifies the difficulties in defining the model. Neural network technique, which is particularly useful in modeling a complex processes, is presented as a tool complimentary to modeling incipient motion. Present work develops a neural network model employing the RBF network to predict the average velocity u and water depth y based on the experimental data on incipient condition. Based on the model, design curves have been presented for the field application.Keywords: Incipient motion, Prediction error, Radial-Basisfunction, Sediment transport, Shields' diagram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15072702 Artificial Neural Networks Modeling in Water Resources Engineering: Infrastructure and Applications
Authors: M. R. Mustafa, M. H. Isa, R. B. Rezaur
Abstract:
The use of artificial neural network (ANN) modeling for prediction and forecasting variables in water resources engineering are being increasing rapidly. Infrastructural applications of ANN in terms of selection of inputs, architecture of networks, training algorithms, and selection of training parameters in different types of neural networks used in water resources engineering have been reported. ANN modeling conducted for water resources engineering variables (river sediment and discharge) published in high impact journals since 2002 to 2011 have been examined and presented in this review. ANN is a vigorous technique to develop immense relationship between the input and output variables, and able to extract complex behavior between the water resources variables such as river sediment and discharge. It can produce robust prediction results for many of the water resources engineering problems by appropriate learning from a set of examples. It is important to have a good understanding of the input and output variables from a statistical analysis of the data before network modeling, which can facilitate to design an efficient network. An appropriate training based ANN model is able to adopt the physical understanding between the variables and may generate more effective results than conventional prediction techniques.Keywords: ANN, discharge, modeling, prediction, sediment,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 56842701 Multi-View Neural Network Based Gait Recognition
Authors: Saeid Fazli, Hadis Askarifar, Maryam Sheikh Shoaie
Abstract:
Human identification at a distance has recently gained growing interest from computer vision researchers. Gait recognition aims essentially to address this problem by identifying people based on the way they walk [1]. Gait recognition has 3 steps. The first step is preprocessing, the second step is feature extraction and the third one is classification. This paper focuses on the classification step that is essential to increase the CCR (Correct Classification Rate). Multilayer Perceptron (MLP) is used in this work. Neural Networks imitate the human brain to perform intelligent tasks [3].They can represent complicated relationships between input and output and acquire knowledge about these relationships directly from the data [2]. In this paper we apply MLP NN for 11 views in our database and compare the CCR values for these views. Experiments are performed with the NLPR databases, and the effectiveness of the proposed method for gait recognition is demonstrated.Keywords: Human motion analysis, biometrics, gait recognition, principal component analysis, MLP neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21052700 Identification of Reusable Software Modules in Function Oriented Software Systems using Neural Network Based Technique
Authors: Sonia Manhas, Parvinder S. Sandhu, Vinay Chopra, Nirvair Neeru
Abstract:
The cost of developing the software from scratch can be saved by identifying and extracting the reusable components from already developed and existing software systems or legacy systems [6]. But the issue of how to identify reusable components from existing systems has remained relatively unexplored. We have used metric based approach for characterizing a software module. In this present work, the metrics McCabe-s Cyclometric Complexity Measure for Complexity measurement, Regularity Metric, Halstead Software Science Indicator for Volume indication, Reuse Frequency metric and Coupling Metric values of the software component are used as input attributes to the different types of Neural Network system and reusability of the software component is calculated. The results are recorded in terms of Accuracy, Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE).Keywords: Software reusability, Neural Networks, MAE, RMSE, Accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18682699 Nonlinear Modeling of the PEMFC Based On NNARX Approach
Authors: Shan-Jen Cheng, Te-Jen Chang, Kuang-Hsiung Tan, Shou-Ling Kuo
Abstract:
Polymer Electrolyte Membrane Fuel Cell (PEMFC) is such a time-vary nonlinear dynamic system. The traditional linear modeling approach is hard to estimate structure correctly of PEMFC system. From this reason, this paper presents a nonlinear modeling of the PEMFC using Neural Network Auto-regressive model with eXogenous inputs (NNARX) approach. The multilayer perception (MLP) network is applied to evaluate the structure of the NNARX model of PEMFC. The validity and accuracy of NNARX model are tested by one step ahead relating output voltage to input current from measured experimental of PEMFC. The results show that the obtained nonlinear NNARX model can efficiently approximate the dynamic mode of the PEMFC and model output and system measured output consistently.Keywords: PEMFC, neural network, nonlinear identification, NNARX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21982698 A New Approach to Predicting Physical Biometrics from Behavioural Biometrics
Authors: Raid R. O. Al-Nima, S. S. Dlay, W. L. Woo
Abstract:
A relationship between face and signature biometrics is established in this paper. A new approach is developed to predict faces from signatures by using artificial intelligence. A multilayer perceptron (MLP) neural network is used to generate face details from features extracted from signatures, here face is the physical biometric and signatures is the behavioural biometric. The new method establishes a relationship between the two biometrics and regenerates a visible face image from the signature features. Furthermore, the performance efficiencies of our new technique are demonstrated in terms of minimum error rates compared to published work.
Keywords: Behavioural biometric, Face biometric, Neural network, Physical biometric, Signature biometric.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16842697 Improved Fuzzy Neural Modeling for Underwater Vehicles
Authors: O. Hassanein, Sreenatha G. Anavatti, Tapabrata Ray
Abstract:
The dynamics of the Autonomous Underwater Vehicles (AUVs) are highly nonlinear and time varying and the hydrodynamic coefficients of vehicles are difficult to estimate accurately because of the variations of these coefficients with different navigation conditions and external disturbances. This study presents the on-line system identification of AUV dynamics to obtain the coupled nonlinear dynamic model of AUV as a black box. This black box has an input-output relationship based upon on-line adaptive fuzzy model and adaptive neural fuzzy network (ANFN) model techniques to overcome the uncertain external disturbance and the difficulties of modelling the hydrodynamic forces of the AUVs instead of using the mathematical model with hydrodynamic parameters estimation. The models- parameters are adapted according to the back propagation algorithm based upon the error between the identified model and the actual output of the plant. The proposed ANFN model adopts a functional link neural network (FLNN) as the consequent part of the fuzzy rules. Thus, the consequent part of the ANFN model is a nonlinear combination of input variables. Fuzzy control system is applied to guide and control the AUV using both adaptive models and mathematical model. Simulation results show the superiority of the proposed adaptive neural fuzzy network (ANFN) model in tracking of the behavior of the AUV accurately even in the presence of noise and disturbance.Keywords: AUV, AUV dynamic model, fuzzy control, fuzzy modelling, adaptive fuzzy control, back propagation, system identification, neural fuzzy model, FLNN.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21532696 An Artificial Neural Network Based Model for Predicting H2 Production Rates in a Sucrose-Based Bioreactor System
Authors: Nikhil, Bestamin Özkaya, Ari Visa, Chiu-Yue Lin, Jaakko A. Puhakka, Olli Yli-Harja
Abstract:
The performance of a sucrose-based H2 production in a completely stirred tank reactor (CSTR) was modeled by neural network back-propagation (BP) algorithm. The H2 production was monitored over a period of 450 days at 35±1 ºC. The proposed model predicts H2 production rates based on hydraulic retention time (HRT), recycle ratio, sucrose concentration and degradation, biomass concentrations, pH, alkalinity, oxidation-reduction potential (ORP), acids and alcohols concentrations. Artificial neural networks (ANNs) have an ability to capture non-linear information very efficiently. In this study, a predictive controller was proposed for management and operation of large scale H2-fermenting systems. The relevant control strategies can be activated by this method. BP based ANNs modeling results was very successful and an excellent match was obtained between the measured and the predicted rates. The efficient H2 production and system control can be provided by predictive control method combined with the robust BP based ANN modeling tool.Keywords: Back-propagation, biohydrogen, bioprocessmodeling, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17732695 Multiple Peaks Tracking Algorithm using Particle Swarm Optimization Incorporated with Artificial Neural Network
Authors: Mei Shan Ngan, Chee Wei Tan
Abstract:
Due to the non-linear characteristics of photovoltaic (PV) array, PV systems typically are equipped with the capability of maximum power point tracking (MPPT) feature. Moreover, in the case of PV array under partially shaded conditions, hotspot problem will occur which could damage the PV cells. Partial shading causes multiple peaks in the P-V characteristic curves. This paper presents a hybrid algorithm of Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN) MPPT algorithm for the detection of global peak among the multiple peaks in order to extract the true maximum energy from PV panel. The PV system consists of PV array, dc-dc boost converter controlled by the proposed MPPT algorithm and a resistive load. The system was simulated using MATLAB/Simulink package. The simulation results show that the proposed algorithm performs well to detect the true global peak power. The results of the simulations are analyzed and discussed.Keywords: Photovoltaic (PV), Partial Shading, Maximum Power Point Tracking (MPPT), Particle Swarm Optimization (PSO) and Artificial Neural Network (ANN)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37562694 Neural Networks for Short Term Wind Speed Prediction
Authors: K. Sreelakshmi, P. Ramakanthkumar
Abstract:
Predicting short term wind speed is essential in order to prevent systems in-action from the effects of strong winds. It also helps in using wind energy as an alternative source of energy, mainly for Electrical power generation. Wind speed prediction has applications in Military and civilian fields for air traffic control, rocket launch, ship navigation etc. The wind speed in near future depends on the values of other meteorological variables, such as atmospheric pressure, moisture content, humidity, rainfall etc. The values of these parameters are obtained from a nearest weather station and are used to train various forms of neural networks. The trained model of neural networks is validated using a similar set of data. The model is then used to predict the wind speed, using the same meteorological information. This paper reports an Artificial Neural Network model for short term wind speed prediction, which uses back propagation algorithm.Keywords: Short term wind speed prediction, Neural networks, Back propagation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30652693 An Algorithm for Determining the Arrival Behavior of a Secondary User to a Base Station in Cognitive Radio Networks
Authors: Danilo López, Edwin Rivas, Leyla López
Abstract:
This paper presents the development of an algorithm that predicts the arrival of a secondary user (SU) to a base station (BS) in a cognitive network based on infrastructure, requesting a Best Effort (BE) or Real Time (RT) type of service with a determined bandwidth (BW) implementing neural networks. The algorithm dynamically uses a neural network construction technique using the geometric pyramid topology and trains a Multilayer Perceptron Neural Networks (MLPNN) based on the historical arrival of an SU to estimate future applications. This will allow efficiently managing the information in the BS, since it precedes the arrival of the SUs in the stage of selection of the best channel in CRN. As a result, the software application determines the probability of arrival at a future time point and calculates the performance metrics to measure the effectiveness of the predictions made.
Keywords: Cognitive radio, MLPNN, base station, prediction, best effort, real time.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14452692 Superior Performances of the Neural Network on the Masses Lesions Classification through Morphological Lesion Differences
Authors: U. Bottigli, R.Chiarucci, B. Golosio, G.L. Masala, P. Oliva, S.Stumbo, D.Cascio, F. Fauci, M. Glorioso, M. Iacomi, R. Magro, G. Raso
Abstract:
Purpose of this work is to develop an automatic classification system that could be useful for radiologists in the breast cancer investigation. The software has been designed in the framework of the MAGIC-5 collaboration. In an automatic classification system the suspicious regions with high probability to include a lesion are extracted from the image as regions of interest (ROIs). Each ROI is characterized by some features based generally on morphological lesion differences. A study in the space features representation is made and some classifiers are tested to distinguish the pathological regions from the healthy ones. The results provided in terms of sensitivity and specificity will be presented through the ROC (Receiver Operating Characteristic) curves. In particular the best performances are obtained with the Neural Networks in comparison with the K-Nearest Neighbours and the Support Vector Machine: The Radial Basis Function supply the best results with 0.89 ± 0.01 of area under ROC curve but similar results are obtained with the Probabilistic Neural Network and a Multi Layer Perceptron.
Keywords: Neural Networks, K-Nearest Neighbours, Support Vector Machine, Computer Aided Detection
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16142691 Wavelet Based Residual Method of Detecting GSM Signal Strength Fading
Authors: Danladi Ali, Onah Festus Iloabuchi
Abstract:
In this paper, GSM signal strength was measured in order to detect the type of the signal fading phenomenon using onedimensional multilevel wavelet residual method and neural network clustering to determine the average GSM signal strength received in the study area. The wavelet residual method predicted that the GSM signal experienced slow fading and attenuated with MSE of 3.875dB. The neural network clustering revealed that mostly -75dB, -85dB and -95dB were received. This means that the signal strength received in the study is a weak signal.
Keywords: One-dimensional multilevel wavelets, path loss, GSM signal strength, propagation and urban environment.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19582690 Mathematical Approach towards Fault Detection and Isolation of Linear Dynamical Systems
Authors: V.Manikandan, N.Devarajan
Abstract:
The main objective of this work is to provide a fault detection and isolation based on Markov parameters for residual generation and a neural network for fault classification. The diagnostic approach is accomplished in two steps: In step 1, the system is identified using a series of input / output variables through an identification algorithm. In step 2, the fault is diagnosed comparing the Markov parameters of faulty and non faulty systems. The Artificial Neural Network is trained using predetermined faulty conditions serves to classify the unknown fault. In step 1, the identification is done by first formulating a Hankel matrix out of Input/ output variables and then decomposing the matrix via singular value decomposition technique. For identifying the system online sliding window approach is adopted wherein an open slit slides over a subset of 'n' input/output variables. The faults are introduced at arbitrary instances and the identification is carried out in online. Fault residues are extracted making a comparison of the first five Markov parameters of faulty and non faulty systems. The proposed diagnostic approach is illustrated on benchmark problems with encouraging results.
Keywords: Artificial neural network, Fault Diagnosis, Identification, Markov parameters.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16332689 Auto-Parking System via Intelligent Computation Intelligence
Authors: Y. J. Huang, C. H. Chang
Abstract:
In this paper, an intelligent automatic parking control method is proposed. First, the dynamical equation of the rear parking control is derived. Then a fuzzy logic control is proposed to perform the parking planning process. Further, a rear neural network is proposed for the steering control. Through the simulations and experiments, the intelligent auto-parking mode controllers have been shown to achieve the demanded goals with satisfactory control performance and to guarantee the system robustness under parametric variations and external disturbances. To improve some shortcomings and limitations in conventional parking mode control and further to reduce consumption time and prime cost.
Keywords: Auto-parking system, Fuzzy control, Neural network, Robust
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18602688 Face Recognition Using Principal Component Analysis, K-Means Clustering, and Convolutional Neural Network
Authors: Zukisa Nante, Wang Zenghui
Abstract:
Face recognition is the problem of identifying or recognizing individuals in an image. This paper investigates a possible method to bring a solution to this problem. The method proposes an amalgamation of Principal Component Analysis (PCA), K-Means clustering, and Convolutional Neural Network (CNN) for a face recognition system. It is trained and evaluated using the ORL dataset. This dataset consists of 400 different faces with 40 classes of 10 face images per class. Firstly, PCA enabled the usage of a smaller network. This reduces the training time of the CNN. Thus, we get rid of the redundancy and preserve the variance with a smaller number of coefficients. Secondly, the K-Means clustering model is trained using the compressed PCA obtained data which select the K-Means clustering centers with better characteristics. Lastly, the K-Means characteristics or features are an initial value of the CNN and act as input data. The accuracy and the performance of the proposed method were tested in comparison to other Face Recognition (FR) techniques namely PCA, Support Vector Machine (SVM), as well as K-Nearest Neighbour (kNN). During experimentation, the accuracy and the performance of our suggested method after 90 epochs achieved the highest performance: 99% accuracy F1-Score, 99% precision, and 99% recall in 463.934 seconds. It outperformed the PCA that obtained 97% and KNN with 84% during the conducted experiments. Therefore, this method proved to be efficient in identifying faces in the images.
Keywords: Face recognition, Principal Component Analysis, PCA, Convolutional Neural Network, CNN, Rectified Linear Unit, ReLU, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5052687 A Prediction Model for Dynamic Responses of Building from Earthquake Based on Evolutionary Learning
Authors: Kyu Jin Kim, Byung Kwan Oh, Hyo Seon Park
Abstract:
The seismic responses-based structural health monitoring system has been performed to prevent seismic damage. Structural seismic damage of building is caused by the instantaneous stress concentration which is related with dynamic characteristic of earthquake. Meanwhile, seismic response analysis to estimate the dynamic responses of building demands significantly high computational cost. To prevent the failure of structural members from the characteristic of the earthquake and the significantly high computational cost for seismic response analysis, this paper presents an artificial neural network (ANN) based prediction model for dynamic responses of building considering specific time length. Through the measured dynamic responses, input and output node of the ANN are formed by the length of specific time, and adopted for the training. In the model, evolutionary radial basis function neural network (ERBFNN), that radial basis function network (RBFN) is integrated with evolutionary optimization algorithm to find variables in RBF, is implemented. The effectiveness of the proposed model is verified through an analytical study applying responses from dynamic analysis for multi-degree of freedom system to training data in ERBFNN.
Keywords: Structural health monitoring, dynamic response, artificial neural network, radial basis function network, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 417