Search results for: momentum injection
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 465

Search results for: momentum injection

105 Understanding Charge Dynamics in Elastomers Adopting Pulsed Electro Acoustic (PEA) Technique

Authors: R. Sarathi, M. G. Danikas, Y. Chen, T. Tanaka

Abstract:

In the present work, Pulsed Electro Acoustic (PEA) technique was adopted to understand the space charge dynamics in elastomeric material. It is observed that the polarity of the applied DC voltage voltage and its magnitude alters the space charge dynamics in insulation structure. It is also noticed that any addition of compound to the base material/processing technique have characteristic variation in the space charge injection process. It could be concluded based on the present work that the plasticizer could inject heterocharges into the insulation medium. Also it is realized that space charge magnitude is less with the addition of plasticizer. In the PEA studies, it is observed that local electric field in the insulating material can be much more than applied electric field due to space charge formation. One of the important conclusions arrived at based on PEA technique is that one could understand the safe operating electric field of an insulation material and the charge trap sites.

Keywords: Pulsed electro acoustic technique, space charge, DCvoltage, elastomers, Electric field, high voltage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1428
104 Effect of Dynamic Stall, Finite Aspect Ratio and Streamtube Expansion on VAWT Performance Prediction using the BE-M Model

Authors: M. Raciti Castelli, A. Fedrigo, E. Benini

Abstract:

A multiple-option analytical model for the evaluation of the energy performance and distribution of aerodynamic forces acting on a vertical-axis Darrieus wind turbine depending on both rotor architecture and operating conditions is presented. For this purpose, a numerical algorithm, capable of generating the desired rotor conformation depending on design geometric parameters, is coupled to a Single/Double-Disk Multiple-Streamtube Blade Element – Momentum code. Both single and double-disk configurations are analyzed and model predictions are compared to literature experimental data in order to test the capability of the code for predicting rotor performance. Effective airfoil characteristics based on local blade Reynolds number are obtained through interpolation of literature low-Reynolds airfoil databases. Some corrections are introduced inside the original model with the aim of simulating also the effects of blade dynamic stall, rotor streamtube expansion and blade finite aspect ratio, for which a new empirical relationship to better fit the experimental data is proposed. In order to predict also open field rotor operation, a freestream wind shear profile is implemented, reproducing the effect of atmospheric boundary layer.

Keywords: Wind turbine, BE-M, dynamic stall, streamtube expansion, airfoil finite aspect ratio

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25080
103 Evaluation of Non-Staggered Body-Fitted Grid Based Solution Method in Application to Supercritical Fluid Flows

Authors: Suresh Sahu, Abhijeet M. Vaidya, Naresh K. Maheshwari

Abstract:

The efforts to understand the heat transfer behavior of supercritical water in supercritical water cooled reactor (SCWR) are ongoing worldwide to fulfill the future energy demand. The higher thermal efficiency of these reactors compared to a conventional nuclear reactor is one of the driving forces for attracting the attention of nuclear scientists. In this work, a solution procedure has been described for solving supercritical fluid flow problems in complex geometries. The solution procedure is based on non-staggered grid. All governing equations are discretized by finite volume method (FVM) in curvilinear coordinate system. Convective terms are discretized by first-order upwind scheme and central difference approximation has been used to discretize the diffusive parts. k-ε turbulence model with standard wall function has been employed. SIMPLE solution procedure has been implemented for the curvilinear coordinate system. Based on this solution method, 3-D Computational Fluid Dynamics (CFD) code has been developed. In order to demonstrate the capability of this CFD code in supercritical fluid flows, heat transfer to supercritical water in circular tubes has been considered as a test problem. Results obtained by code have been compared with experimental results reported in literature.

Keywords: Curvilinear coordinate, body-fitted mesh, momentum interpolation, non-staggered grid, supercritical fluids.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 644
102 Biodistribution Studies of 177Lu-DOTATOC in Mouse Tumor Model: Possible Utilization in Adenocarcinoma Breast Cancer Treatment

Authors: M. Mousavi-Daramoroudi, H. Yousefnia, F. Abbasi-Davani, S. Zolghadri, S. Kakaei

Abstract:

Despite the appropriate characteristics of 177Lu and DOTATOC, to our best knowledge, the therapeutic benefit of 177Lu-DOTATOC complex in breast cancer has not been reported until now. In this study, biodistribution of 177Lu-DOTA-TOC in mouse tumor model for evaluation of possible utilization of this complex in breast cancer treatment was investigated.177Lu was prepared with the specific activity of 2.6-3 GBq.mg-1 and radionuclidic purity higher than 99%. The radiolabeled complex was prepared in the optimized conditions with the radiochemical purity higher than 99%. The final solution was injected to the BALB/c mice with adenocarcinoma breast cancer. The biodistribution results showed major accumulation in the kidneys as the major excretion route and the somatostatin receptor-positive tissues such as pancreas compared with the other tissues. Also, significant uptake was observed in tumor even in longer time after injection. According to the results obtained in this research study, somatostatin receptors expressed in breast cancers can be targeted with DOTATOC analogues especially with 177Lu-DOTATOC as an ideal therapeutic agent.

Keywords: 177Lu, DOTATOC, adenocarcinoma, breast cancer, BALB/c mice.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830
101 A Computational Study of the Effect of Intake Design on Volumetric Efficiency for Best Performance in Motorsport

Authors: Dominic Wentworth-Linton, Shian Gao

Abstract:

This project was aimed at investigating the effect of velocity stacks on the intakes of internal combustion engines for motorsport applications. The intake systems in motorsport are predominantly fuel injection with a plate mounted for the stacks. Using Computational Fluid Dynamics software, the relationship between the stack length and power and torque delivery across the engine’s rev range was investigated and the results were used to choose the best option for its intended motorsport discipline. The test results are expected to vary with engine geometry and its natural manufacturer characteristics. The test was also relevant in bridging between computational data and real simulation as the results show flow, pressure and velocity readings but the behaviour of the engine is inferred from the nature of each test. The results of the data analysis were tested in a real-life simulation on a dynamometer to prove the theory of stack length on power and torque delivery, which helps determine the most suitable stack for the Vauxhall engine for rallying in the Caribbean.

Keywords: CFD simulation, internal combustion engine, intake system, dynamometer test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2214
100 A Theoretical Analysis of Air Cooling System Using Thermal Ejector under Variable Generator Pressure

Authors: Mohamed Ouzzane, Mahmoud Bady

Abstract:

Due to energy and environment context, research is looking for the use of clean and energy efficient system in cooling industry. In this regard, the ejector represents one of the promising solutions. The thermal ejector is a passive component used for thermal compression in refrigeration and cooling systems, usually activated by heat either waste or solar. The present study introduces a theoretical analysis of the cooling system which uses a gas ejector thermal compression. A theoretical model is developed and applied for the design and simulation of the ejector, as well as the whole cooling system. Besides the conservation equations of mass, energy and momentum, the gas dynamic equations, state equations, isentropic relations as well as some appropriate assumptions are applied to simulate the flow and mixing in the ejector. This model coupled with the equations of the other components (condenser, evaporator, pump, and generator) is used to analyze profiles of pressure and velocity (Mach number), as well as evaluation of the cycle cooling capacity. A FORTRAN program is developed to carry out the investigation. Properties of refrigerant R134a are calculated using real gas equations. Among many parameters, it is thought that the generator pressure is the cornerstone in the cycle, and hence considered as the key parameter in this investigation. Results show that the generator pressure has a great effect on the ejector and on the whole cooling system. At high generator pressures, strong shock waves inside the ejector are created, which lead to significant condenser pressure at the ejector exit. Additionally, at higher generator pressures, the designed system can deliver cooling capacity for high condensing pressure (hot season).

Keywords: Air cooling system, refrigeration, thermal ejector, thermal compression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 571
99 Examination of the Reasons for the Formation of Red Oil in Spent Caustic from Olefin Plant

Authors: Mehdi Seifollahi, Ashkan Forootan, Sajjad Bahrami Reyhan

Abstract:

Due to the complexity of olefinic plants, various environmental pollutants exist such as NOx, CO2, Tar Water, and most importantly Spent Caustic. In this paper, instead of investigating ways of treating this pollutant, we evaluated the production in relation to plant’s variable items. We primarily discussed the factors affecting the quality of the output spent caustic such as impurities in the feed of olefin plant, the amount of injected dimethyl disulfide (DMDS) in furnaces, variation in feed composition, differences among gas temperatures and the concentration of caustic solution at the bottom of the tower. The results of the laboratory proved that in the formation of Red Oil, 1,3butadiene and acetaldehyde followed free radical and aldol condensation mechanism respectively. By increasing the injection rate of DMDS, Mercaptide amount increases in the effluent. In addition, pyrolysis gasoline accumulation is directly related to caustic concentration in the tower. Increasing naphtenes in the liquid feed augments the amount of 1,3butadiene, as one of the sources of Red Oil formation. By increasing the oxygenated compound in the feed, the rate of acetaldehyde formation, as the main source of Red Oil formation, increases.

Keywords: Olefin, spent caustic, red oil, caustic wash tower.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2185
98 Bioengineering for Customized Orthodontic Applications- Implant, Bracket and Dental Vibrator

Authors: Rajashekar Patil, S. Mohan Kumar, Shreya Ajmera

Abstract:

To understand complex living system an effort has made by mechanical engineers and dentists to deliver prompt products and services to patients concerned about their aesthetic look. Since two decades various bracket systems have designed involving techniques like milling, injection molding which are technically not flexible for the customized dental product development. The aim of this paper to design, develop a customized system which is economical and mainly emphasizes the expertise design and integration of engineering and dental fields. A custom made selfadjustable lingual bracket and customized implants are designed and developed using computer aided design (CAD) and rapid prototyping technology (RPT) to improve the smiles and to overcome the difficulties associated with conventional ones. Lengthy orthodontic treatment usually not accepted by the patients because the patient compliance is lost. Patient-s compliance can be improved by facilitating faster tooth movements by designing a localized dental vibrator using advanced engineering principles.

Keywords: Orthodontics, Prosthodontics, Lingual bracket, Implants, Dental vibrator, Computer aided design, Rapid prototyping technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3099
97 Cost Valuation Method for Development Concurrent Phase Appropriate Requirement Valuation Using the Example of Load Carrier Development in the Lithium-Ion-Battery Production

Authors: Achim Kampker, Christoph Deutskens, Heiner Hans Heimes, Mathias Ordung, Felix Optehostert

Abstract:

In the past years electric mobility became part of a public discussion. The trend to fully electrified vehicles instead of vehicles fueled with fossil energy has notably gained momentum. Today nearly every big car manufacturer produces and sells fully electrified vehicles, but electrified vehicles are still not as competitive as conventional powered vehicles. As the traction battery states the largest cost driver, lowering its price is a crucial objective. In addition to improvements in product and production processes a nonnegligible, but widely underestimated cost driver of production can be found in logistics, since the production technology is not continuous yet and neither are the logistics systems. This paper presents an approach to evaluate cost factors on different designs of load carrier systems. Due to numerous interdependencies, the combination of costs factors for a particular scenario is not transparent. This is effecting actions for cost reduction negatively, but still cost reduction is one of the major goals for simultaneous engineering processes. Therefore a concurrent and phase appropriate cost valuation method is necessary to serve cost transparency. In this paper the four phases of this cost valuation method are defined and explained, which based upon a new approach integrating the logistics development process in to the integrated product and process development.

Keywords: Research and development, technology and Innovation, lithium-ion-battery production, load carrier development process, cost valuation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2251
96 Effect of Recycle Gas on Activity and Selectivity of Co-Ru/Al2O3 Catalyst in Fischer- Tropsch Synthesis

Authors: A.A.Rohani, B.Hatami, L.Jokar, F.khorasheh, A.A.Safekordi

Abstract:

In industrial scale of Gas to Liquid (GTL) process in Fischer-Tropsch (FT) synthesis, a part of reactor outlet gases such as CO2 and CH4 as side reaction products, is usually recycled. In this study, the influence of CO2 and CH4 on the performance and selectivity of Co-Ru/Al2O3 catalyst is investigated by injection of these gases (0-20 vol. % of feed) to the feed stream. The effect of temperature and feed flow rate, are also inspected. The results show that low amounts of CO2 in the feed stream, doesn`t change the catalyst activity significantly but increasing the amount of CO2 (more than 10 vol. %) cause the CO conversion to decrease and the selectivity of heavy components to increase. Methane acts as an inert gas and doesn`t affect the catalyst performance. Increasing feed flow rate has negative effect on both CO conversion and heavy component selectivity. By raising the temperature, CO conversion will increase but there are more volatile components in the product. The effect of CO2 on the catalyst deactivation is also investigated carefully and a mechanism is suggested to explain the negative influence of CO2 on catalyst deactivation.

Keywords: Alumina, Carbon dioxide, Cobalt catalyst, Conversion, Fischer Tropsch, Selectivity

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950
95 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network

Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza

Abstract:

The aim of this work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. With our research and based on a feature selection in different phases, we are trying to design a neural network system with an optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each region of interest (ROI), 6 distinct sets of texture features are extracted such as: first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. When analyzing more phases, we show that the injection of liquid cause changes to the high relevant features in each region. Our results demonstrate that for detecting HCC tumor phase 3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between pathology and healthy classes, according to our method, relates to first order histogram parameters with accuracy of 85% in phase 1, 95% in phase 2, and 95% in phase 3.

Keywords: Feature selection, Multi-phasic liver images, Neural network, Texture analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2518
94 The Influence of Swirl Burner Geometry on the Sugar-Cane Bagasse Injection and Burning

Authors: Juan H. Sosa-Arnao, Daniel J. O. Ferreira, Caice G. Santos, Justo E. Alvarez, Leonardo P. Rangel, Song W. Park

Abstract:

A comprehensive CFD model is developed to represent heterogeneous combustion and two burner designs of supply sugar-cane bagasse into a furnace. The objective of this work is to compare the insertion and burning of a Brazilian south-eastern sugar-cane bagasse using a new swirl burner design against an actual geometry under operation. The new design allows control the particles penetration and scattering inside furnace by adjustment of axial/tangential contributions of air feed without change their mass flow. The model considers turbulence using RNG k-, combustion using EDM, radiation heat transfer using DTM with 16 ray directions and bagasse particle tracking represented by Schiller-Naumann model. The obtained results are favorable to use of new design swirl burner because its axial/tangential control promotes more penetration or more scattering than actual design and allows reproduce the actual design operation without change the overall mass flow supply.

Keywords: Comprehensive CFD model, sugar-cane bagasse combustion, swirl burner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2409
93 Dexamethasone: Impact on Testicular Activity

Authors: H. Sadi-Guettaf, F. Hadj Bekkouche

Abstract:

Dexamethasone (Dex) is a synthetic glucocorticoid that is used in therapy. However prolonged treatments with high doses are often required. This causes side effects that interfere with the activity of several endocrine systems, including the gonadotropic axis. The aim of our study is to determine the effect of Dex on testicular function in prepubertal Wistar rats. Newborn Wistar rats are submitted to intraperitoneal injection of Dex (1μg of Dex dissolved in NaCl 0.9% / 5g bw) for 20 days and then sacrificed at the age of 40days. A control group received NaCl 0.9%. The rat is weighed daily. The plasmatic levels of testosterone, LH and FSH were measured by radioimmunoassay. A histomorphometric study was performed on sections of testis. Treated groups showed a significant decrease in body weight (p < 0.05), testis weight (p < 0.05) and plasma levels of testosterone (p < 0.05), of LH (P < .05) and FSH (p> 0.05). There is a reduction of seminiferous tubules average diameter and also of the seminiferous epithelium thickness with an increasing of lumen tubular. The diameter of the Leydig cells and Sertoli cell nucleus is also significantly reduced. Spermatogenesis is blocked at the stage round spermatid unlike witnesses or elongated spermatid stage is found. These results suggest that Dex administered during neonatal life influences testicular activity in the long term.

Keywords: Dexamethasone, FSH, LH, rat, testis, testosterone.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
92 Uncertainty Analysis of ROSA/LSTF Test on Pressurized Water Reactor Cold Leg Small-Break Loss-of-Coolant Accident without Scram

Authors: Takeshi Takeda

Abstract:

The author conducted post-test analysis with the RELAP5/MOD3.3 code for an experiment using the ROSA/LSTF (rig of safety assessment/large-scale test facility) that simulated a 1% cold leg small-break loss-of-coolant accident under the failure of scram in a pressurized water reactor. The LSTF test assumed total failure of high-pressure injection system of emergency core cooling system. In the LSTF test, natural circulation contributed to maintain core cooling effect for a relatively long time until core uncovery occurred. The post-test analysis result confirmed inadequate prediction of the primary coolant distribution. The author created the phenomena identification and ranking table (PIRT) for each component. The author investigated the influences of uncertain parameters determined by the PIRT on the cladding surface temperature at a certain time during core uncovery within the defined uncertain ranges.

Keywords: LSTF, LOCA, scram, RELAP5.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 739
91 An In-depth Experimental Study of Wax Deposition in Pipelines

Authors: M. L. Arias, J. D’Adamo, M. N. Novosad, P. A. Raffo, H. P. Burbridge, G. O. Artana

Abstract:

Shale oils are highly paraffinic and, consequently, can create wax deposits that foul pipelines during transportation. Several factors must be considered when designing pipelines or treatment programs that prevent wax deposition: including chemical species in crude oils, flowrates, pipes diameters and temperature. This paper describes the wax deposition study carried out within the framework of YPF Tecnolgía S.A. (Y-TEC) flow assurance projects, as part of the process to achieve a better understanding on wax deposition issues. Laboratory experiments were performed on a medium size, 1 inch diameter, wax deposition loop of 15 meters long equipped with a solid detector system, online microscope to visualize crystals, temperature, and pressure sensors along the loop pipe. A baseline test was performed with diesel with no added paraffin or additive content. Tests were undertaken with different temperatures of circulating and cooling fluid at different flow conditions. Then, a solution formed with a paraffin incorporated to the diesel was considered. Tests varying flowrate and cooling rate were again run. Viscosity, density, WAT (Wax Appearance Temperature) with DSC (Differential Scanning Calorimetry), pour point and cold finger measurements were carried out to determine physical properties of the working fluids. The results obtained in the loop were analyzed through momentum balance and heat transfer models. To determine possible paraffin deposition scenarios temperature and pressure loop output signals were studied. They were compared with WAT static laboratory methods.

Keywords: Paraffin deposition, wax, oil pipelines, experimental pipe loop.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 106
90 Dimethyl Ether as an Ignition Improver for Hydrous Methanol Fuelled Homogeneous Charge Compression Ignition (HCCI) Engine

Authors: M. Venkatesan, N. Shenbaga Vinayaga Moorthi, R. Karthikeyan, A. Manivannan

Abstract:

Homogeneous Charge Compression (HCCI) Ignition technology has been around for a long time, but has recently received renewed attention and enthusiasm. This paper deals with experimental investigations of HCCI engine using hydrous methanol as a primary fuel and Dimethyl Ether (DME) as an ignition improver. A regular diesel engine has been modified to work as HCCI engine for this investigation. The hydrous methanol is inducted and DME is injected into a single cylinder engine. Hence, hydrous methanol is used with 15% water content in HCCI engine and its performance and emission behavior is documented. The auto-ignition of Methanol is enabled by DME. The quantity of DME varies with respect to the load. In this study, the experiments are conducted independently and the effect of the hydrous methanol on the engine operating limit, heat release rate and exhaust emissions at different load conditions are investigated. The investigation also proves that the Hydrous Methanol with DME operation reduces the oxides of Nitrogen and smoke to an extreme low level which is not possible by the direct injection CI engine. Therefore, it is beneficial to use hydrous methanol-DME HCCI mode while using hydrous methanol in internal Combustion Engines.

Keywords: Hydrous Methanol, Dimethyl ether, Performance, Emission and Combustion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2481
89 A High Performance Technique in Harmonic Omitting Based on Predictive Current Control of a Shunt Active Power Filter

Authors: K. G. Firouzjah, A. Sheikholeslami

Abstract:

The perfect operation of common Active Filters is depended on accuracy of identification system distortion. Also, using a suitable method in current injection and reactive power compensation, leads to increased filter performance. Due to this fact, this paper presents a method based on predictive current control theory in shunt active filter applications. The harmonics of the load current is identified by using o–d–q reference frame on load current and eliminating the DC part of d–q components. Then, the rest of these components deliver to predictive current controller as a Threephase reference current by using Park inverse transformation. System is modeled in discreet time domain. The proposed method has been tested using MATLAB model for a nonlinear load (with Total Harmonic Distortion=20%). The simulation results indicate that the proposed filter leads to flowing a sinusoidal current (THD=0.15%) through the source. In addition, the results show that the filter tracks the reference current accurately.

Keywords: Active filter, predictive current control, low pass filter, harmonic omitting, o–d–q reference frame.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812
88 Grain Size Effect on Durability of Bioclogging Treatment

Authors: T. Farah, H. Souli, J. –M. Fleureau, G. Kermouche, J. –J. Fry, B. Girard, D. Aelbrecht

Abstract:

In this work, the bioclogging of two soils with different granulometries is presented. The durability of the clogging is also studied under cycles of hydraulic head and under cycles of desaturation-resaturation. The studied materials present continuous grain size distributions. The first one corresponding to the "material 1” presents grain sizes between 0.4 and 4mm. The second material called "material 2" is composed of grains with size varying between 1 and 10mm. The results show that clogging occurs very quickly after the injection of nutrition and an outlet flow near to 0 is observed. The critical hydraulic head is equal to 0.76 for "material 1", and 0.076 for "material 2". The durability tests show a good resistance to unclogging under cycles of hydraulic head and desaturation-resaturation for the "material 1". Indeed, the flow after the cycles is very low. In contrast, "material 2", shows a very bad resistance, especially under the hydraulic head cycles. The resistance under the cycles of desaturation-resaturation is better but an important increase of the flow is observed. The difference of behavior is due to the granulometry of the materials. Indeed, the large grain size contributes to the reduction of the efficiency of the bioclogging treatment in this material. 

Keywords: Bioclogging, Granulometry, permeability, nutrition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1986
87 Properties of the CsPbBr3 Quantum Dots Treated by O3 Plasma for Integration in the Perovskite Solar Cell

Authors: Sh. Sousani, Z. Shadrokh, M. Hofbauerová, J. Kollár, M. Jergel, V. Nádaždy, M. Omastová, E. Majková

Abstract:

In this paper, we discuss the preparation and impact of post-treatment procedures, including purification, passivation, and ligand exchange, on the formation and stability of halide perovskite quantum dots (PQDs). CsPbBr3 quantum dots were synthesized via the conventional hot-injection method using cesium oleate, PbBr2, and oleylamine (OAm) & oleic acid (OA) and didodecyldimethylammonium bromide (DDAB) as ligands. Characterization by scanning transmission electron microscopy (STEM) confirms the QDs' cubic shape and monodispersity with an average size of 10-14 nm. The photoluminescent (PL) properties of perovskite quantum dots/CH3NH3PbI3 perovskite (PQDs/MAPI)  bilayers with OAm&OA and DDAB ligands spin coated on Indium Tin Oxide (ITO) substrate were explored. The impact of ligand type and oxygen plasma treatment on linear optical behaviour and PQDs/MAPI interface formation in ITO/PQDs/MAPI perovskite structures was examined. The obtained results have direct implications for selection of suitable ligands and processes for photovoltaic applications and enhancing their stability.

Keywords: Perovskite quantum dots, ligand exchange, photoluminescence, O3 plasma.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21
86 An Overview of the Factors Affecting Microbial-Induced Calcite Precipitation and its Potential Application in Soil Improvement

Authors: Wei-Soon Ng, Min-Lee Lee, Siew-Ling Hii

Abstract:

Microbial-induced calcite precipitation (MICP) is a relatively green and sustainable soil improvement technique. It utilizes biochemical process that exists naturally in soil to improve engineering properties of soils. The calcite precipitation process is uplifted by the mean of injecting higher concentration of urease positive bacteria and reagents into the soil. The main objective of this paper is to provide an overview of the factors affecting the MICP in soil. Several factors were identified including nutrients, bacteria type, geometric compatibility of bacteria, bacteria cell concentration, fixation and distribution of bacteria in soil, temperature, reagents concentration, pH, and injection method. These factors were found to be essential for promoting successful MICP soil treatment. Furthermore, a preliminary laboratory test was carried out to investigate the potential application of the technique in improving the shear strength and impermeability of a residual soil specimen. The results showed that both shear strength and impermeability of residual soil improved significantly upon MICP treatment. The improvement increased with increasing soil density.

Keywords: Bacteria, biocementation, bioclogging, calcite precipitation, soil improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5892
85 Numerical Simulation of Free Surface Water Wave for the Flow around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method

Authors: Saadia Adjali, Omar Imine, Mohammed Aounallah, Mustapha Belkadi

Abstract:

Steady three-dimensional and two free surface waves generated by moving bodies are presented, the flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. The results of several simulations are reported. The first study was performed for NACA0012 of hydrofoil with different meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second simulation a mathematically defined Wigley hull form is used to investigate the application of a commercial CFD code in prediction of the total resistance and its components from tangential and normal forces on the hull wetted surface. The computed resistance and wave profiles are used to estimate the coefficient of the total resistance for Wigley hull advancing in calm water under steady conditions. The commercial CFD software FLUENT version 12 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26. The shear stress k-ωSST model is used for turbulence modeling and the volume of fluid technique is employed to simulate the free-surface motion. The second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRIC scheme for VOF discretization. The results obtained compare well with the experimental data.

Keywords: Free surface flows, Breaking waves, Boundary layer, Wigley hull, Volume of fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3526
84 Numerical Simulation of Free Surface Water Wave for the Flow around NACA 0012 Hydrofoil and Wigley Hull Using VOF Method

Authors: Saadia Adjali, Omar Imine, Mohammed Aounallah, Mustapha Belkadi

Abstract:

Steady three-dimensional and two free surface waves generated by moving bodies are presented, the flow problem to be simulated is rich in complexity and poses many modeling challenges because of the existence of breaking waves around the ship hull, and because of the interaction of the two-phase flow with the turbulent boundary layer. The results of several simulations are reported. The first study was performed for NACA0012 of hydrofoil with different meshes, this section is analyzed at h/c= 1, 0345 for 2D. In the second simulation a mathematically defined Wigley hull form is used to investigate the application of a commercial CFD code in prediction of the total resistance and its components from tangential and normal forces on the hull wetted surface. The computed resistance and wave profiles are used to estimate the coefficient of the total resistance for Wigley hull advancing in calm water under steady conditions. The commercial CFD software FLUENT version 12 is used for the computations in the present study. The calculated grid is established using the code computer GAMBIT 2.3.26. The shear stress k-ωSST model is used for turbulence modeling and the volume of fluid technique is employed to simulate the free-surface motion. The second order upwind scheme is used for discretizing the convection terms in the momentum transport equations, the Modified HRIC scheme for VOF discretization. The results obtained compare well with the experimental data.

Keywords: Free surface flows, breaking waves, boundary layer, Wigley hull, volume of fluid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3280
83 Effect of Fractional Flow Curves on the Heavy Oil and Light Oil Recoveries in Petroleum Reservoirs

Authors: Abdul Jamil Nazari, Shigeo Honma

Abstract:

This paper evaluates and compares the effect of fractional flow curves on the heavy oil and light oil recoveries in a petroleum reservoir. Fingering of flowing water is one of the serious problems of the oil displacement by water and another problem is the estimation of the amount of recover oil from a petroleum reservoir. To address these problems, the fractional flow of heavy oil and light oil are investigated. The fractional flow approach treats the multi-phases flow rate as a total mixed fluid and then describes the individual phases as fractional of the total flow. Laboratory experiments are implemented for two different types of oils, heavy oil, and light oil, to experimentally obtain relative permeability and fractional flow curves. Application of the light oil fractional curve, which exhibits a regular S-shape, to the water flooding method showed that a large amount of mobile oil in the reservoir is displaced by water injection. In contrast, the fractional flow curve of heavy oil does not display an S-shape because of its high viscosity. Although the advance of the injected waterfront is faster than in light oil reservoirs, a significant amount of mobile oil remains behind the waterfront.

Keywords: Fractional flow curve, oil recovery, relative permeability, water fingering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1447
82 Antioxidant Responses to Different Exposure Regimes of Kazakhstan Light Crude Oil in Livers of Male Albino Rats

Authors: K. Mahmoud, T. Shalahmetova, B. Umbayev, Sh. Deraz

Abstract:

Biochemical investigations were carried out to assess the effect of different exposure regimes of Kazakhstan crude oil (KCO) on hepatic antioxidant defense system in albino rats. Contaminants were delivered under two different dosing regimes, with all treatments receiving the same total contaminant load by the end of the exposure period. Rats in regime A injected with KCO once at a dose of 6 ml/kg bw while in regime B injected multiply at a dose of 1.5 ml/kg bw on day 1, 3, 5 and 8. Antioxidant biomarkers were measured in hepatic tissue after 1, 3, 5 and 8 days. Significant induction was observed in serum aminotransferases (ALT, AST) (p<0.01) and hepatic Glutathione-S-transferase (GST) (p<0.05) in the two exposure regimes, with the majority of significant induction occurring in regime A. Superoxide dismutase (SOD) increased 1-d after injection (p<0.01) but the increase was reduced time dependently thereafter while after 8-d induced again (p<0.01). Malondialdehyde (MDA) significantly induced after 3 and 5-d (p<0.05) in regime A while in regime B was not changed significantly (p>0.05) at short time after exposure. However, there was significant increase after 8-d (p<0.01). Histological examination indicates that crude oil induced pathologic changes from inflammatory cells infiltration to hemorrhage and necrosis of hepatocytes. Acute exposure to crude oil adversely affect hepatic cell so human must avoid such exposure.

Keywords: Kazakhstan crude oil, Antioxidant biomarkers, Histological examination, Dose regime, Rats

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
81 Reproduction Performance of Etawah Cross Bred Goats in Estrus Synchronization by Controlled Internal Drug Release Implant and Pgf2α Continued by Artificial Insemination

Authors: Diah Tri Widayati, Aris Junaidi, Kresno Suharto, Amelia Oktaviani, Wahyuningsih

Abstract:

The estrus female Etawah cross bred goats were synchronized estrus by controlled internal drug release (CIDR) implants for 10 days combined with PGF2α injection, and continued by artificial insemination (AI) within the hours of 24 period. Vaginal epithelium was taken to determine estrus cycle of the goats without estrus synchronization. The estrus responds (the puffy of vulva and vaginal pH) and percentage of pregnancy were investigated. The data were analyzed descriptively and Independent Sample T-Test. The results showed that the puffy of vulva and vaginal pH were significantly different in synchronized estrus goats and control goats (2.18 ± 0.33 cm vs. 1.20 ± 0.16 cm and 8.55 ± 0.63 vs. 8.22 ± 0.22). Percentage of pregnancy was higher in synchronized estrus goats (73.33%) than in control (53.3%). Estrus synchronization by using CIDR implants and PGF2, continued by AI was effective to improve reproduction performance of Etawah cross bred goats.

Keywords: Artificial insemination, Estrus synchronization, Etawah cross bred goat, Reproduction performance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5018
80 Impact of Process Parameters on Tensile Strength of Fused Deposition Modeling Printed Crisscross Poylactic Acid

Authors: Shilpesh R. Rajpurohit, Harshit K. Dave

Abstract:

Additive manufacturing gains the popularity in recent times, due to its capability to create prototype as well functional as end use product directly from CAD data without any specific requirement of tooling. Fused deposition modeling (FDM) is one of the widely used additive manufacturing techniques that are used to create functional end use part of polymer that is comparable with the injection-molded parts. FDM printed part has an application in various fields such as automobile, aerospace, medical, electronic, etc. However, application of FDM part is greatly affected by poor mechanical properties. Proper selection of the process parameter could enhance the mechanical performance of the printed part. In the present study, experimental investigation has been carried out to study the behavior of the mechanical performance of the printed part with respect to process variables. Three process variables viz. raster angle, raster width and layer height have been varied to understand its effect on tensile strength. Further, effect of process variables on fractured surface has been also investigated.

Keywords: 3D printing, fused deposition modeling, layer height, raster angle, raster width, tensile strength.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
79 Influence of Dilution and Lean-premixed on Mild Combustion in an Industrial Burner

Authors: Sh.Khalilarya, H.Oryani, S.Jafarmadar, H.Khatamnezhad, A.Nemati

Abstract:

Understanding of how and where NOx formation occurs in industrial burner is very important for efficient and clean operation of utility burners. Also the importance of this problem is mainly due to its relation to the pollutants produced by more burners used widely of gas turbine in thermal power plants and glass and steel industry. In this article, a numerical model of an industrial burner operating in MILD combustion is validated with experimental data.. Then influence of air flow rate and air temperature on combustor temperature profiles and NOX product are investigated. In order to modification this study reports on the effects of fuel and air dilution (with inert gases H2O, CO2, N2), and also influence of lean-premixed of fuel, on the temperature profiles and NOX emission. Conservation equations of mass, momentum and energy, and transport equations of species concentrations, turbulence, combustion and radiation modeling in addition to NO modeling equations were solved together to present temperature and NO distribution inside the burner. The results shows that dilution, cause to a reduction in value of temperature and NOX emission, and suppresses any flame propagation inside the furnace and made the flame inside the furnace invisible. Dilution with H2O rather than N2 and CO2 decreases further the value of the NOX. Also with raise of lean-premix level, local temperature of burner and the value of NOX product are decreases because of premixing prevents local “hot spots" within the combustor volume that can lead to significant NOx formation. Also leanpremixing of fuel with air cause to amount of air in reaction zone is reach more than amount that supplied as is actually needed to burn the fuel and this act lead to limiting NOx formation

Keywords: Mild combustion, Flameless, Numerical simulation, Burner, CFD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1755
78 Modelling and Simulating CO2 Electro-Reduction to Formic Acid Using Microfluidic Electrolytic Cells: The Influence of Bi-Sn Catalyst and 1-Ethyl-3-Methyl Imidazolium Tetra-Fluoroborate Electrolyte on Cell Performance

Authors: Akan C. Offong, E. J. Anthony, Vasilije Manovic

Abstract:

A modified steady-state numerical model is developed for the electrochemical reduction of CO2 to formic acid. The numerical model achieves a CD (current density) (~60 mA/cm2), FE-faradaic efficiency (~98%) and conversion (~80%) for CO2 electro-reduction to formic acid in a microfluidic cell. The model integrates charge and species transport, mass conservation, and momentum with electrochemistry. Specifically, the influences of Bi-Sn based nanoparticle catalyst (on the cathode surface) at different mole fractions and 1-ethyl-3-methyl imidazolium tetra-fluoroborate ([EMIM][BF4]) electrolyte, on CD, FE and CO2 conversion to formic acid is studied. The reaction is carried out at a constant concentration of electrolyte (85% v/v., [EMIM][BF4]). Based on the mass transfer characteristics analysis (concentration contours), mole ratio 0.5:0.5 Bi-Sn catalyst displays the highest CO2 mole consumption in the cathode gas channel. After validating with experimental data (polarisation curves) from literature, extensive simulations reveal performance measure: CD, FE and CO2 conversion. Increasing the negative cathode potential increases the current densities for both formic acid and H2 formations. However, H2 formations are minimal as a result of insufficient hydrogen ions in the ionic liquid electrolyte. Moreover, the limited hydrogen ions have a negative effect on formic acid CD. As CO2 flow rate increases, CD, FE and CO2 conversion increases.

Keywords: Carbon dioxide, electro-chemical reduction, microfluidics, ionic liquids, modelling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1038
77 Evolving Paradigm of Right to Development in International Human Rights Law and Its Transformation into the National Legal System: Challenges and Responses in Pakistan

Authors: Naeem Ullah Khan, Kalsoom Khan

Abstract:

No state can be progressive and prosperous in which a large number of people is deprived of their basic economic rights and freedoms. In the contemporary world of globalization, the right to development has gained a momentum force in the domain of International Development Law (IDL) and has integrated into the National Legal System (NLS) of the major developed states. The international experts on human rights argued that the right to development (RTD) is called a third-generation human right which tends to enhance the welfare and prosperity of individuals, and thus, it is a right to a process whose outcomes are human rights despite the controversy on the implications of RTD. In the Pakistan legal system, the RTD has not been expressly stated in the constitution of the Islamic Republic of Pakistan, 1973. However, there are some implied constitutional provisions which reflect the concept of RTD. The jurisprudence on RTD is still an evolving paradigm in the contextual perspective of Pakistan, and the superior court of diverse jurisdiction acts as a catalyst regarding the protection and enforcement of RTD in the interest of the public at large. However, the case law explores the positive inclination of the courts in Pakistan on RTD be incorporated as an express provision in the chapters of fundamental rights; in this scenario, the high court’s of Pakistan under Article 199 and the supreme court of Pakistan under Article 184(3) have exercised jurisdiction on the enforcement of RTD. This paper inter-alia examines the national dimensions of RTD from the standpoint of state practice in Pakistan and it analyzes the experience of judiciary in the protection and enforcement of RTD. Moreover, the paper highlights the social and cultural challenges to Pakistan in the implementation of RTD and possible solution to improve the conditions of human rights in Pakistan. This paper will also highlight the steps taken by Pakistan regarding the awareness, incorporation, and propagation of RTD at the national level.

Keywords: Globalization, Pakistan, RTD, third-generation right.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 885
76 Characterization of the Microbial Induced Carbonate Precipitation Technique as a Biological Cementing Agent for Sand Deposits

Authors: Sameh Abu El-Soud, Zahra Zayed, Safwan Khedr, Adel M. Belal

Abstract:

The population increase in Egypt is urging for horizontal land development which became a demand to allow the benefit of different natural resources and expand from the narrow Nile valley. However, this development is facing challenges preventing land development and agriculture development. Desertification and moving sand dunes in the west sector of Egypt are considered the major obstacle that is blocking the ideal land use and development. In the proposed research, the sandy soil is treated biologically using Bacillus pasteurii bacteria as these bacteria have the ability to bond the sand partials to change its state of loose sand to cemented sand, which reduces the moving ability of the sand dunes. The procedure of implementing the Microbial Induced Carbonate Precipitation Technique (MICP) technique is examined, and the different factors affecting on this process such as the medium of bacteria sample preparation, the optical density (OD600), the reactant concentration, injection rates and intervals are highlighted. Based on the findings of the MICP treatment for sandy soil, conclusions and future recommendations are reached.

Keywords: Soil stabilization, biological treatment, MICP, sand cementation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1009