Search results for: modeling of PV panel
1904 Modeling of Pulping of Sugar Maple Using Advanced Neural Network Learning
Authors: W. D. Wan Rosli, Z. Zainuddin, R. Lanouette, S. Sathasivam
Abstract:
This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of Pulping of Sugar Maple problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified problem where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.
Keywords: Convergence, Modeling, Neural Networks, Preconditioned Conjugate Gradient.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16841903 ZigBee Wireless Sensor Nodes with Hybrid Energy Storage System Based On Li-ion Battery and Solar Energy Supply
Authors: Chia-Chi Chang, Chuan-Bi Lin, Chia-Min Chan
Abstract:
Most ZigBee sensor networks to date make use of nodes with limited processing, communication, and energy capabilities. Energy consumption is of great importance in wireless sensor applications as their nodes are commonly battery-driven. Once ZigBee nodes are deployed outdoors, limited power may make a sensor network useless before its purpose is complete. At present, there are two strategies for long node and network lifetime. The first strategy is saving energy as much as possible. The energy consumption will be minimized through switching the node from active mode to sleep mode and routing protocol with ultra-low energy consumption. The second strategy is to evaluate the energy consumption of sensor applications as accurately as possible. Erroneous energy model may render a ZigBee sensor network useless before changing batteries.
In this paper, we present a ZigBee wireless sensor node with four key modules: a processing and radio unit, an energy harvesting unit, an energy storage unit, and a sensor unit. The processing unit uses CC2530 for controlling the sensor, carrying out routing protocol, and performing wireless communication with other nodes. The harvesting unit uses a 2W solar panel to provide lasting energy for the node. The storage unit consists of a rechargeable 1200 mAh Li-ion battery and a battery charger using a constant-current/constant-voltage algorithm. Our solution to extend node lifetime is implemented. Finally, a long-term sensor network test is used to exhibit the functionality of the solar powered system.
Keywords: ZigBee, Li-ion battery, solar panel, CC2530.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30901902 Fast and Accurate Reservoir Modeling: Genetic Algorithm versus DIRECT Method
Authors: Mohsen Ebrahimi, Milad M. Rabieh
Abstract:
In this paper, two very different optimization algorithms, Genetic and DIRECT algorithms, are used to history match a bottomhole pressure response for a reservoir with wellbore storage and skin with the best possible analytical model. No initial guesses are available for reservoir parameters. The results show that the matching process is much faster and more accurate for DIRECT method in comparison with Genetic algorithm. It is furthermore concluded that the DIRECT algorithm does not need any initial guesses, whereas Genetic algorithm needs to be tuned according to initial guesses.Keywords: DIRECT algorithm, Genetic algorithm, Analytical modeling, History match
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17551901 Real-time Haptic Modeling and Simulation for Prosthetic Insertion
Authors: Catherine A. Todd, Fazel Naghdy
Abstract:
In this work a surgical simulator is produced which enables a training otologist to conduct a virtual, real-time prosthetic insertion. The simulator provides the Ear, Nose and Throat surgeon with real-time visual and haptic responses during virtual cochlear implantation into a 3D model of the human Scala Tympani (ST). The parametric model is derived from measured data as published in the literature and accounts for human morphological variance, such as differences in cochlear shape, enabling patient-specific pre- operative assessment. Haptic modeling techniques use real physical data and insertion force measurements, to develop a force model which mimics the physical behavior of an implant as it collides with the ST walls during an insertion. Output force profiles are acquired from the insertion studies conducted in the work, to validate the haptic model. The simulator provides the user with real-time, quantitative insertion force information and associated electrode position as user inserts the virtual implant into the ST model. The information provided by this study may also be of use to implant manufacturers for design enhancements as well as for training specialists in optimal force administration, using the simulator. The paper reports on the methods for anatomical modeling and haptic algorithm development, with focus on simulator design, development, optimization and validation. The techniques may be transferrable to other medical applications that involve prosthetic device insertions where user vision is obstructed.Keywords: Haptic modeling, medical device insertion, real-time visualization of prosthetic implantation, surgical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20431900 Artificial Neural Network based Modeling of Evaporation Losses in Reservoirs
Authors: Surinder Deswal, Mahesh Pal
Abstract:
An Artificial Neural Network based modeling technique has been used to study the influence of different combinations of meteorological parameters on evaporation from a reservoir. The data set used is taken from an earlier reported study. Several input combination were tried so as to find out the importance of different input parameters in predicting the evaporation. The prediction accuracy of Artificial Neural Network has also been compared with the accuracy of linear regression for predicting evaporation. The comparison demonstrated superior performance of Artificial Neural Network over linear regression approach. The findings of the study also revealed the requirement of all input parameters considered together, instead of individual parameters taken one at a time as reported in earlier studies, in predicting the evaporation. The highest correlation coefficient (0.960) along with lowest root mean square error (0.865) was obtained with the input combination of air temperature, wind speed, sunshine hours and mean relative humidity. A graph between the actual and predicted values of evaporation suggests that most of the values lie within a scatter of ±15% with all input parameters. The findings of this study suggest the usefulness of ANN technique in predicting the evaporation losses from reservoirs.Keywords: Artificial neural network, evaporation losses, multiple linear regression, modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19761899 Experimental Correlation for Erythrocyte Aggregation Rate in Population Balance Modeling
Authors: Erfan Niazi, Marianne Fenech
Abstract:
Red Blood Cells (RBCs) or erythrocytes tend to form chain-like aggregates under low shear rate called rouleaux. This is a reversible process and rouleaux disaggregate in high shear rates. Therefore, RBCs aggregation occurs in the microcirculation where low shear rates are present but does not occur under normal physiological conditions in large arteries. Numerical modeling of RBCs interactions is fundamental in analytical models of a blood flow in microcirculation. Population Balance Modeling (PBM) is particularly useful for studying problems where particles agglomerate and break in a two phase flow systems to find flow characteristics. In this method, the elementary particles lose their individual identity due to continuous destructions and recreations by break-up and agglomeration. The aim of this study is to find RBCs aggregation in a dynamic situation. Simplified PBM was used previously to find the aggregation rate on a static observation of the RBCs aggregation in a drop of blood under the microscope. To find aggregation rate in a dynamic situation we propose an experimental set up testing RBCs sedimentation. In this test, RBCs interact and aggregate to form rouleaux. In this configuration, disaggregation can be neglected due to low shear stress. A high-speed camera is used to acquire video-microscopic pictures of the process. The sizes of the aggregates and velocity of sedimentation are extracted using an image processing techniques. Based on the data collection from 5 healthy human blood samples, the aggregation rate was estimated as 2.7x103(±0.3 x103) 1/s.
Keywords: Red blood cell, Rouleaux, microfluidics, image processing, population balance modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10561898 An Automation of Check Focusing on CRUD for Requirements Analysis Model in UML
Authors: Shinpei Ogata, Yoshitaka Aoki, Hirotaka Okuda, Saeko Matsuura
Abstract:
A key to success of high quality software development is to define valid and feasible requirements specification. We have proposed a method of model-driven requirements analysis using Unified Modeling Language (UML). The main feature of our method is to automatically generate a Web user interface mock-up from UML requirements analysis model so that we can confirm validity of input/output data for each page and page transition on the system by directly operating the mock-up. This paper proposes a support method to check the validity of a data life cycle by using a model checking tool “UPPAAL" focusing on CRUD (Create, Read, Update and Delete). Exhaustive checking improves the quality of requirements analysis model which are validated by the customers through automatically generated mock-up. The effectiveness of our method is discussed by a case study of requirements modeling of two small projects which are a library management system and a supportive sales system for text books in a university.Keywords: CRUD, Model Checking, Model Driven Development, Requirements Analysis, Unified Modeling Language, UPPAAL.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16721897 Effects of Different Meteorological Variables on Reference Evapotranspiration Modeling: Application of Principal Component Analysis
Authors: Akinola Ikudayisi, Josiah Adeyemo
Abstract:
The correct estimation of reference evapotranspiration (ETₒ) is required for effective irrigation water resources planning and management. However, there are some variables that must be considered while estimating and modeling ETₒ. This study therefore determines the multivariate analysis of correlated variables involved in the estimation and modeling of ETₒ at Vaalharts irrigation scheme (VIS) in South Africa using Principal Component Analysis (PCA) technique. Weather and meteorological data between 1994 and 2014 were obtained both from South African Weather Service (SAWS) and Agricultural Research Council (ARC) in South Africa for this study. Average monthly data of minimum and maximum temperature (°C), rainfall (mm), relative humidity (%), and wind speed (m/s) were the inputs to the PCA-based model, while ETₒ is the output. PCA technique was adopted to extract the most important information from the dataset and also to analyze the relationship between the five variables and ETₒ. This is to determine the most significant variables affecting ETₒ estimation at VIS. From the model performances, two principal components with a variance of 82.7% were retained after the eigenvector extraction. The results of the two principal components were compared and the model output shows that minimum temperature, maximum temperature and windspeed are the most important variables in ETₒ estimation and modeling at VIS. In order words, ETₒ increases with temperature and windspeed. Other variables such as rainfall and relative humidity are less important and cannot be used to provide enough information about ETₒ estimation at VIS. The outcome of this study has helped to reduce input variable dimensionality from five to the three most significant variables in ETₒ modelling at VIS, South Africa.
Keywords: Irrigation, principal component analysis, reference evapotranspiration, Vaalharts.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10601896 Auto Regressive Tree Modeling for Parametric Optimization in Fuzzy Logic Control System
Authors: Arshia Azam, J. Amarnath, Ch. D. V. Paradesi Rao
Abstract:
The advantage of solving the complex nonlinear problems by utilizing fuzzy logic methodologies is that the experience or expert-s knowledge described as a fuzzy rule base can be directly embedded into the systems for dealing with the problems. The current limitation of appropriate and automated designing of fuzzy controllers are focused in this paper. The structure discovery and parameter adjustment of the Branched T-S fuzzy model is addressed by a hybrid technique of type constrained sparse tree algorithms. The simulation result for different system model is evaluated and the identification error is observed to be minimum.Keywords: Fuzzy logic, branch T-S fuzzy model, tree modeling, complex nonlinear system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13881895 Modeling of Surface Roughness for Flow over a Complex Vegetated Surface
Authors: Wichai Pattanapol, Sarah J. Wakes, Michael J. Hilton, Katharine J.M. Dickinson
Abstract:
Turbulence modeling of large-scale flow over a vegetated surface is complex. Such problems involve large scale computational domains, while the characteristics of flow near the surface are also involved. In modeling large scale flow, surface roughness including vegetation is generally taken into account by mean of roughness parameters in the modified law of the wall. However, the turbulence structure within the canopy region cannot be captured with this method, another method which applies source/sink terms to model plant drag can be used. These models have been developed and tested intensively but with a simple surface geometry. This paper aims to compare the use of roughness parameter, and additional source/sink terms in modeling the effect of plant drag on wind flow over a complex vegetated surface. The RNG k-ε turbulence model with the non-equilibrium wall function was tested with both cases. In addition, the k-ω turbulence model, which is claimed to be computationally stable, was also investigated with the source/sink terms. All numerical results were compared to the experimental results obtained at the study site Mason Bay, Stewart Island, New Zealand. In the near-surface region, it is found that the results obtained by using the source/sink term are more accurate than those using roughness parameters. The k-ω turbulence model with source/sink term is more appropriate as it is more accurate and more computationally stable than the RNG k-ε turbulence model. At higher region, there is no significant difference amongst the results obtained from all simulations.
Keywords: CFD, canopy flow, surface roughness, turbulence models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29601894 Comparison of Polynomial and Radial Basis Kernel Functions based SVR and MLR in Modeling Mass Transfer by Vertical and Inclined Multiple Plunging Jets
Abstract:
Presently various computational techniques are used in modeling and analyzing environmental engineering data. In the present study, an intra-comparison of polynomial and radial basis kernel functions based on Support Vector Regression and, in turn, an inter-comparison with Multi Linear Regression has been attempted in modeling mass transfer capacity of vertical (θ = 90O) and inclined (θ multiple plunging jets (varying from 1 to 16 numbers). The data set used in this study consists of four input parameters with a total of eighty eight cases, forty four each for vertical and inclined multiple plunging jets. For testing, tenfold cross validation was used. Correlation coefficient values of 0.971 and 0.981 along with corresponding root mean square error values of 0.0025 and 0.0020 were achieved by using polynomial and radial basis kernel functions based Support Vector Regression respectively. An intra-comparison suggests improved performance by radial basis function in comparison to polynomial kernel based Support Vector Regression. Further, an inter-comparison with Multi Linear Regression (correlation coefficient = 0.973 and root mean square error = 0.0024) reveals that radial basis kernel functions based Support Vector Regression performs better in modeling and estimating mass transfer by multiple plunging jets.Keywords: Mass transfer, multiple plunging jets, polynomial and radial basis kernel functions, Support Vector Regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14311893 A Holistic Workflow Modeling Method for Business Process Redesign
Authors: Heejung Lee
Abstract:
In a highly competitive environment, it becomes more important to shorten the whole business process while delivering or even enhancing the business value to the customers and suppliers. Although the workflow management systems receive much attention for its capacity to practically support the business process enactment, the effective workflow modeling method remain still challenging and the high degree of process complexity makes it more difficult to gain the short lead time. This paper presents a workflow structuring method in a holistic way that can reduce the process complexity using activity-needs and formal concept analysis, which eventually enhances the key performance such as quality, delivery, and cost in business process.
Keywords: Workflow management, reengineering, formal concept analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19491892 Implementation of Building Information Modeling in Turkish Government Sector Projects
Authors: Mohammad Lemar Zalmai, Mustafa Nabi Kocakaya, Cemil Akcay, Ekrem Manisali
Abstract:
In recent years, the Building Information Modeling (BIM) approach has been developed expeditiously. As people see the benefits of this approach, it has begun to be used widely in construction projects and some countries made it mandatory to get more benefits from it. To promote the implementation of BIM in construction projects, it will be helpful to get some relevant information from surveys and interviews. The purpose of this study is to research the current adoption and implementation of BIM in public projects in Turkey. This study specified the challenges of BIM implementation in Turkey and proposed some solutions to overcome them. In this context, the challenges for BIM implementation and the factors that affect the BIM usage are determined based on previous academic researches and expert opinions by conducting interviews and questionnaire surveys. Several methods are used to process information in order to obtain weights of different factors to make BIM widespread in Turkey. This study concluded interviews' and questionnaire surveys' outcomes and proposed some suggestions to promote the implementation of BIM in Turkey. We believe research findings will be a good reference for boosting BIM implementation in Turkey.
Keywords: Building Information Modeling, BIM, BIM implementations, Turkish construction industry, Turkish government sector projects.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8281891 A609 Modeling of AC Servomotor Using Genetic Algorithm and Tests for Control of a Robotic Joint
Authors: J. G. Batista, T. S. Santiago, E. A. Ribeiro, ¬G. A. P. Thé
Abstract:
This work deals with parameter identification of permanent magnet motors, a class of ac motor which is particularly important in industrial automation due to characteristics like applications high performance, are very attractive for applications with limited space and reducing the need to eliminate because they have reduced size and volume and can operate in a wide speed range, without independent ventilation. By using experimental data and genetic algorithm we have been able to extract values for both the motor inductance and the electromechanical coupling constant, which are then compared to measure and/or expected values.
Keywords: Modeling, AC servomotor, Permanent Magnet Synchronous Motor-PMSM, Genetic Algorithm, Vector Control, Robotic Manipulator, Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24841890 Dynamic Modeling and Simulation of Industrial Naphta Reforming Reactor
Authors: Gholamreza Zahedi, M. Tarin, M. Biglari
Abstract:
This work investigated the steady state and dynamic simulation of a fixed bed industrial naphtha reforming reactors. The performance of the reactor was investigated using a heterogeneous model. For process simulation, the differential equations are solved using the 4th order Runge-Kutta method .The models were validated against measured process data of an existing naphtha reforming plant. The results of simulation in terms of components yields and temperature of the outlet were in good agreement with empirical data. The simple model displays a useful tool for dynamic simulation, optimization and control of naphtha reforming.Keywords: Dynamic simulation, fixed bed reactor, modeling, reforming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29621889 Review of the Model-Based Supply Chain Management Research in the Construction Industry
Authors: Aspasia Koutsokosta, Stefanos Katsavounis
Abstract:
This paper reviews the model-based qualitative and quantitative Operations Management research in the context of Construction Supply Chain Management (CSCM). Construction industry has been traditionally blamed for low productivity, cost and time overruns, waste, high fragmentation and adversarial relationships. The construction industry has been slower than other industries to employ the Supply Chain Management (SCM) concept and develop models that support the decision-making and planning. However the last decade there is a distinct shift from a project-based to a supply-based approach of construction management. CSCM comes up as a new promising management tool of construction operations and improves the performance of construction projects in terms of cost, time and quality. Modeling the Construction Supply Chain (CSC) offers the means to reap the benefits of SCM, make informed decisions and gain competitive advantage. Different modeling approaches and methodologies have been applied in the multi-disciplinary and heterogeneous research field of CSCM. The literature review reveals that a considerable percentage of the CSC modeling research accommodates conceptual or process models which present general management frameworks and do not relate to acknowledged soft Operations Research methods. We particularly focus on the model-based quantitative research and categorize the CSCM models depending on their scope, objectives, modeling approach, solution methods and software used. Although over the last few years there has been clearly an increase of research papers on quantitative CSC models, we identify that the relevant literature is very fragmented with limited applications of simulation, mathematical programming and simulation-based optimization. Most applications are project-specific or study only parts of the supply system. Thus, some complex interdependencies within construction are neglected and the implementation of the integrated supply chain management is hindered. We conclude this paper by giving future research directions and emphasizing the need to develop optimization models for integrated CSCM. We stress that CSC modeling needs a multi-dimensional, system-wide and long-term perspective. Finally, prior applications of SCM to other industries have to be taken into account in order to model CSCs, but not without translating the generic concepts to the context of construction industry.Keywords: Construction supply chain management, modeling, operations research, optimization and simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28241888 MIMCA: A Modelling and Simulation Approach in Support of the Design and Construction of Manufacturing Control Systems Using Modular Petri net
Authors: S. Ariffin, K. Hasnan, R.H. Weston
Abstract:
A new generation of manufacturing machines so-called MIMCA (modular and integrated machine control architecture) capable of handling much increased complexity in manufacturing control-systems is presented. Requirement for more flexible and effective control systems for manufacturing machine systems is investigated and dimensioned-which highlights a need for improved means of coordinating and monitoring production machinery and equipment used to- transport material. The MIMCA supports simulation based on machine modeling, was conceived by the authors to address the issues. Essentially MIMCA comprises an organized unification of selected architectural frameworks and modeling methods, which include: NISTRCS, UMC and Colored Timed Petri nets (CTPN). The unification has been achieved; to support the design and construction of hierarchical and distributed machine control which realized the concurrent operation of reusable and distributed machine control components; ability to handle growing complexity; and support requirements for real- time control systems. Thus MIMCA enables mapping between 'what a machine should do' and 'how the machine does it' in a well-defined but flexible way designed to facilitate reconfiguration of machine systems.Keywords: Machine control, architectures, Petri nets, modularity, modeling, simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15861887 Discovery of Human HMG-Coa Reductase Inhibitors Using Structure-Based Pharmacophore Modeling Combined with Molecular Dynamics Simulation Methodologies
Authors: Minky Son, Chanin Park, Ayoung Baek, Shalini John, Keun Woo Lee
Abstract:
3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) catalyzes the conversion of HMG-CoA to mevalonate using NADPH and the enzyme is involved in rate-controlling step of mevalonate. Inhibition of HMGR is considered as effective way to lower cholesterol levels so it is drug target to treat hypercholesterolemia, major risk factor of cardiovascular disease. To discover novel HMGR inhibitor, we performed structure-based pharmacophore modeling combined with molecular dynamics (MD) simulation. Four HMGR inhibitors were used for MD simulation and representative structure of each simulation were selected by clustering analysis. Four structure-based pharmacophore models were generated using the representative structure. The generated models were validated used in virtual screening to find novel scaffolds for inhibiting HMGR. The screened compounds were filtered by applying drug-like properties and used in molecular docking. Finally, four hit compounds were obtained and these complexes were refined using energy minimization. These compounds might be potential leads to design novel HMGR inhibitor.
Keywords: Anti-hypercholesterolemia drug, HMGR inhibitor, Molecular dynamics simulation, Structure-based pharmacophore modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19471886 Risk Based Building Information Modeling (BIM) for Urban Infrastructure Transportation Project
Authors: Debasis Sarkar
Abstract:
Building Information Modeling (BIM) is a holistic documentation process for operational visualization, design coordination, estimation and project scheduling. BIM software defines objects parametrically and it is a tool for virtual reality. Primary advantage of implementing BIM is the visual coordination of the building structure and systems such as Mechanical, Electrical and Plumbing (MEP) and it also identifies the possible conflicts between the building systems. This paper is an attempt to develop a risk based BIM model which would highlight the primary advantages of application of BIM pertaining to urban infrastructure transportation project. It has been observed that about 40% of the Architecture, Engineering and Construction (AEC) companies use BIM but primarily for their outsourced projects. Also, 65% of the respondents agree that BIM would be used quiet strongly for future construction projects in India. The 3D models developed with Revit 2015 software would reduce co-ordination problems amongst the architects, structural engineers, contractors and building service providers (MEP). Integration of risk management along with BIM would provide enhanced co-ordination, collaboration and high probability of successful completion of the complex infrastructure transportation project within stipulated time and cost frame.
Keywords: Building information modeling (BIM), infrastructure transportation, project risk management, underground metro rail.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21261885 Model Predictive Control of Turbocharged Diesel Engine with Exhaust Gas Recirculation
Authors: U. Yavas, M. Gokasan
Abstract:
Control of diesel engine’s air path has drawn a lot of attention due to its multi input-multi output, closed coupled, non-linear relation. Today, precise control of amount of air to be combusted is a must in order to meet with tight emission limits and performance targets. In this study, passenger car size diesel engine is modeled by AVL Boost RT, and then simulated with standard, industry level PID controllers. Finally, linear model predictive control is designed and simulated. This study shows the importance of modeling and control of diesel engines with flexible algorithm development in computer based systems.Keywords: Predictive control, engine control, engine modeling, PID control, feedforward compensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18161884 A Stochastic Diffusion Process Based on the Two-Parameters Weibull Density Function
Authors: Meriem Bahij, Ahmed Nafidi, Boujemâa Achchab, Sílvio M. A. Gama, José A. O. Matos
Abstract:
Stochastic modeling concerns the use of probability to model real-world situations in which uncertainty is present. Therefore, the purpose of stochastic modeling is to estimate the probability of outcomes within a forecast, i.e. to be able to predict what conditions or decisions might happen under different situations. In the present study, we present a model of a stochastic diffusion process based on the bi-Weibull distribution function (its trend is proportional to the bi-Weibull probability density function). In general, the Weibull distribution has the ability to assume the characteristics of many different types of distributions. This has made it very popular among engineers and quality practitioners, who have considered it the most commonly used distribution for studying problems such as modeling reliability data, accelerated life testing, and maintainability modeling and analysis. In this work, we start by obtaining the probabilistic characteristics of this model, as the explicit expression of the process, its trends, and its distribution by transforming the diffusion process in a Wiener process as shown in the Ricciaardi theorem. Then, we develop the statistical inference of this model using the maximum likelihood methodology. Finally, we analyse with simulated data the computational problems associated with the parameters, an issue of great importance in its application to real data with the use of the convergence analysis methods. Overall, the use of a stochastic model reflects only a pragmatic decision on the part of the modeler. According to the data that is available and the universe of models known to the modeler, this model represents the best currently available description of the phenomenon under consideration.Keywords: Diffusion process, discrete sampling, likelihood estimation method, simulation, stochastic diffusion equation, trends functions, bi-parameters Weibull density function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19661883 Impact of Process Parameters on Tensile Strength of Fused Deposition Modeling Printed Crisscross Poylactic Acid
Authors: Shilpesh R. Rajpurohit, Harshit K. Dave
Abstract:
Additive manufacturing gains the popularity in recent times, due to its capability to create prototype as well functional as end use product directly from CAD data without any specific requirement of tooling. Fused deposition modeling (FDM) is one of the widely used additive manufacturing techniques that are used to create functional end use part of polymer that is comparable with the injection-molded parts. FDM printed part has an application in various fields such as automobile, aerospace, medical, electronic, etc. However, application of FDM part is greatly affected by poor mechanical properties. Proper selection of the process parameter could enhance the mechanical performance of the printed part. In the present study, experimental investigation has been carried out to study the behavior of the mechanical performance of the printed part with respect to process variables. Three process variables viz. raster angle, raster width and layer height have been varied to understand its effect on tensile strength. Further, effect of process variables on fractured surface has been also investigated.
Keywords: 3D printing, fused deposition modeling, layer height, raster angle, raster width, tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16581882 Using Simulation Modeling Approach to Predict USMLE Steps 1 and 2 Performances
Authors: Chau-Kuang Chen, John Hughes, Jr., A. Dexter Samuels
Abstract:
The prediction models for the United States Medical Licensure Examination (USMLE) Steps 1 and 2 performances were constructed by the Monte Carlo simulation modeling approach via linear regression. The purpose of this study was to build robust simulation models to accurately identify the most important predictors and yield the valid range estimations of the Steps 1 and 2 scores. The application of simulation modeling approach was deemed an effective way in predicting student performances on licensure examinations. Also, sensitivity analysis (a/k/a what-if analysis) in the simulation models was used to predict the magnitudes of Steps 1 and 2 affected by changes in the National Board of Medical Examiners (NBME) Basic Science Subject Board scores. In addition, the study results indicated that the Medical College Admission Test (MCAT) Verbal Reasoning score and Step 1 score were significant predictors of the Step 2 performance. Hence, institutions could screen qualified student applicants for interviews and document the effectiveness of basic science education program based on the simulation results.Keywords: Prediction Model, Sensitivity Analysis, Simulation Method, USMLE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14601881 Study on Construction of 3D Topography by UAV-Based Images
Authors: Yun-Yao Chi, Chieh-Kai Tsai, Dai-Ling Li
Abstract:
In this paper, a method of fast 3D topography modeling using the high-resolution camera images is studied based on the characteristics of Unmanned Aerial Vehicle (UAV) system for low altitude aerial photogrammetry and the need of three dimensional (3D) urban landscape modeling. Firstly, the existing high-resolution digital camera with special design of overlap images is designed by reconstructing and analyzing the auto-flying paths of UAVs, which improves the self-calibration function to achieve the high precision imaging by software, and further increased the resolution of the imaging system. Secondly, several-angle images including vertical images and oblique images gotten by the UAV system are used for the detail measure of urban land surfaces and the texture extraction. Finally, the aerial photography and 3D topography construction are both developed in campus of Chang-Jung University and in Guerin district area in Tainan, Taiwan, provide authentication model for construction of 3D topography based on combined UAV-based camera images from system. The results demonstrated that the UAV system for low altitude aerial photogrammetry can be used in the construction of 3D topography production, and the technology solution in this paper offers a new, fast, and technical plan for the 3D expression of the city landscape, fine modeling and visualization.
Keywords: 3D, topography, UAV, images.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8011880 A New Approach for Predicting and Optimizing Weld Bead Geometry in GMAW
Authors: Farhad Kolahan, Mehdi Heidari
Abstract:
Gas Metal Arc Welding (GMAW) processes is an important joining process widely used in metal fabrication industries. This paper addresses modeling and optimization of this technique using a set of experimental data and regression analysis. The set of experimental data has been used to assess the influence of GMAW process parameters in weld bead geometry. The process variables considered here include voltage (V); wire feed rate (F); torch Angle (A); welding speed (S) and nozzle-to-plate distance (D). The process output characteristics include weld bead height, width and penetration. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. In the next stage, the proposed model is embedded into a Simulated Annealing (SA) algorithm to optimize the GMAW process parameters. The objective is to determine a suitable set of process parameters that can produce desired bead geometry, considering the ranges of the process parameters. Computational results prove the effectiveness of the proposed model and optimization procedure.Keywords: Weld Bead Geometry, GMAW welding, Processparameters Optimization, Modeling, SA algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21861879 Non-Linear Numerical Modeling of the Interaction of Twin Tunnels-Structure
Authors: A. Bayoumi, M. Abdallah, F. Hage Chehade
Abstract:
Structures on the ground surface bear impact from the tunneling-induced settlement, especially when twin tunnels are constructed. The tunneling influence on the structure is considered as a critical issue based on the construction procedure and relative position of tunnels. Lebanon is suffering from a traffic phenomenon caused by the lack of transportation systems. After several traffic counts and geotechnical investigations in Beirut city, efforts aim for the construction of tunneling systems. In this paper, we present a non-linear numerical modeling of the effect of the twin tunnels constructions on the structures located at soil surface for a particular site in Beirut. A parametric study, which concerns the geometric configuration of tunnels, the distance between their centers, the construction order, and the position of the structure, is performed. The tunnel-soil-structure interaction is analyzed by using the non-linear finite element modeling software PLAXIS 2D. The results of the surface settlement and the bending moment of the structure reveal significant influence when the structure is moved away, especially in vertical aligned tunnels.Keywords: Bending moment, construction procedure, elastic modulus, relative position, soil, structure location, surface settlement, twin tunnels.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14581878 Modeling of Plasticity of Clays Submitted to Compression Test
Authors: Otávio J.U. Flores, Fernando A. Andrade, Dachamir Hotza, Hazim A. Al-Qureshi
Abstract:
In the forming of ceramic materials the plasticity concept is commonly used. This term is related to a particular mechanical behavior when clay is mixed with water. A plastic ceramic material shows a permanent strain without rupture when a compressive load produces a shear stress that exceeds the material-s yield strength. For a plastic ceramic body it observes a measurable elastic behavior before the yield strength and when the applied load is removed. In this work, a mathematical model was developed from applied concepts of the plasticity theory by using the stress/strain diagram under compression.Keywords: Plasticity, clay, modeling, coefficient of friction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21191877 Biomechanical Properties of Hen's Eggshell: Experimental Study and Numerical Modeling
Authors: A. Darvizeh, H. Rajabi, S. Fatahtooei Nejad, A. Khaheshi, P. Haghdoust
Abstract:
In this article, biomechanical aspects of hen-s eggshell as a natural ceramic structure are studied. The images, taken by a scanning electron microscope (SEM), are used to investigate the microscopic aspects of the egg. It is observed that eggshell has a three-layered microstructure with different morphological and structural characteristics. Studies on the eggshell membrane (ESM) as a prosperous tissue suggest that it is placed to prevent the penetration of microorganisms into the egg. Finally, numerical models of the egg are presented to study the stress distribution and its deformation under different loading conditions. The effects of two different types of loading (hydrostatic and point loadings) on two different shell models (with constant and variable thicknesses) are investigated in detail.
Keywords: Eggshell, biomechanical properties, Scanning electron microscope, Numerical Modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24661876 Coupled Spacecraft Orbital and Attitude Modeling and Simulation in Multi-Complex Modes
Authors: Amr Abdel Azim Ali, G. A. Elsheikh, Moutaz Hegazy
Abstract:
This paper presents verification of a modeling and simulation for a Spacecraft (SC) attitude and orbit control system. Detailed formulation of coupled SC orbital and attitude equations of motion is performed in order to achieve accepted accuracy to meet the requirements of multitargets tracking and orbit correction complex modes. Correction of the target parameter based on the estimated state vector during shooting time to enhance pointing accuracy is considered. Time-optimal nonlinear feedback control technique was used in order to take full advantage of the maximum torques that the controller can deliver. This simulation provides options for visualizing SC trajectory and attitude in a 3D environment by including an interface with V-Realm Builder and VR Sink in Simulink/MATLAB. Verification data confirms the simulation results, ensuring that the model and the proposed control law can be used successfully for large and fast tracking and is robust enough to keep the pointing accuracy within the desired limits with considerable uncertainty in inertia and control torque.Keywords: Attitude and orbit control, time-optimal nonlinear feedback control, modeling and simulation, pointing accuracy, maximum torques.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13131875 Application of Neural Network on the Loading of Copper onto Clinoptilolite
Authors: John Kabuba
Abstract:
The study investigated the implementation of the Neural Network (NN) techniques for prediction of the loading of Cu ions onto clinoptilolite. The experimental design using analysis of variance (ANOVA) was chosen for testing the adequacy of the Neural Network and for optimizing of the effective input parameters (pH, temperature and initial concentration). Feed forward, multi-layer perceptron (MLP) NN successfully tracked the non-linear behavior of the adsorption process versus the input parameters with mean squared error (MSE), correlation coefficient (R) and minimum squared error (MSRE) of 0.102, 0.998 and 0.004 respectively. The results showed that NN modeling techniques could effectively predict and simulate the highly complex system and non-linear process such as ionexchange.
Keywords: Clinoptilolite, loading, modeling, Neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1571