Search results for: Parameters Estimation.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4514

Search results for: Parameters Estimation.

4154 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data

Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L Duan

Abstract:

The conditional density characterizes the distribution of a response variable y given other predictor x, and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts a motivating starting point. In this work, we extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zP , zN]. The zP component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zN component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach, coined Augmented Posterior CDE (AP-CDE), only requires a simple modification on the common normalizing flow framework, while significantly improving the interpretation of the latent component, since zP represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of x-related variations due to factors such as lighting condition and subject id, from the other random variations. Further, the experiments show that an unconditional NF neural network, based on an unsupervised model of z, such as Gaussian mixture, fails to generate interpretable results.

Keywords: Conditional density estimation, image generation, normalizing flow, supervised dimension reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 165
4153 An Expectation of the Rate of Inflation According to Inflation-Unemployment Interaction in Croatia

Authors: Zdravka Aljinović, Snježana Pivac, Boško Šego

Abstract:

According to the interaction of inflation and unemployment, expectation of the rate of inflation in Croatia is estimated. The interaction between inflation and unemployment is shown by model based on three first-order differential i.e. difference equations: Phillips relation, adaptive expectations equation and monetary-policy equation. The resulting equation is second order differential i.e. difference equation which describes the time path of inflation. The data of the rate of inflation and the rate of unemployment are used for parameters estimation. On the basis of the estimated time paths, the stability and convergence analysis is done for the rate of inflation.

Keywords: Differencing, inflation, time path, unemployment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614
4152 The Multi-objective Optimization for the SLS Process Parameters Based on Analytic Hierarchy Process

Authors: Yang Laixia, Deng Jun, Li Dichen, Bai Yang

Abstract:

The forming process parameters of Selective Laser Sintering(SLS) directly affect the forming efficiency and forming quality. Therefore, to determine reasonable process parameters is particularly important. In this paper, the weight of each target of the forming quality and efficiency is firstly calculated with the Analytic Hierarchy Process. And then the size of each target is measured by orthogonal experiment. Finally, the sum of the product of each target with the weight is compared to the process parameters in each group and obtained the optimal molding process parameters.

Keywords: Analytic Hierarchy Process, Multi-objective optimization, Orthogonal test, Selective Laser Sintering

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2044
4151 Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) Parameters for Propane, Ethylene, and Hydrogen under Supercritical Conditions

Authors: Ilke Senol

Abstract:

Perturbed-Chain Statistical Association Fluid Theory (PC-SAFT) equation of state (EOS) is a modified SAFT EOS with three pure component specific parameters: segment number (m), diameter (σ) and energy (ε). These PC-SAFT parameters need to be determined for each component under the conditions of interest by fitting experimental data, such as vapor pressure, density or heat capacity. PC-SAFT parameters for propane, ethylene and hydrogen in supercritical region were successfully estimated by fitting experimental density data available in literature. The regressed PCSAFT parameters were compared with the literature values by means of estimating pure component density and calculating average absolute deviation between the estimated and experimental density values. PC-SAFT parameters available in literature especially for ethylene and hydrogen estimated density in supercritical region reasonably well. However, the regressed PC-SAFT parameters performed better in supercritical region than the PC-SAFT parameters from literature.

Keywords: Equation of state, perturbed-chain, PC-SAFT, super critical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6991
4150 Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel

Authors: Pankaj Chandna, Dinesh Kumar

Abstract:

The present work analyses different parameters of end milling to minimize the surface roughness for AISI D2 steel. D2 Steel is generally used for stamping or forming dies, punches, forming rolls, knives, slitters, shear blades, tools, scrap choppers, tyre shredders etc. Surface roughness is one of the main indices that determines the quality of machined products and is influenced by various cutting parameters. In machining operations, achieving desired surface quality by optimization of machining parameters, is a challenging job. In case of mating components the surface roughness become more essential and is influenced by the cutting parameters, because, these quality structures are highly correlated and are expected to be influenced directly or indirectly by the direct effect of process parameters or their interactive effects (i.e. on process environment). In this work, the effects of selected process parameters on surface roughness and subsequent setting of parameters with the levels have been accomplished by Taguchi’s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L9 orthogonal array. Experimental investigation of the end milling of AISI D2 steel with carbide tool by varying feed, speed and depth of cut and the surface roughness has been measured using surface roughness tester. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the contribution of the different process parameters on the process.

Keywords: D2 Steel, Orthogonal Array, Optimization, Surface Roughness, Taguchi Methodology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2768
4149 Experimental Design and Performance Analysis in Plasma Arc Surface Hardening

Authors: M.I.S. Ismail, Z. Taha

Abstract:

In this paper, the experimental design of using the Taguchi method is employed to optimize the processing parameters in the plasma arc surface hardening process. The processing parameters evaluated are arc current, scanning velocity and carbon content of steel. In addition, other significant effects such as the relation between processing parameters are also investigated. An orthogonal array, signal-to-noise (S/N) ratio and analysis of variance (ANOVA) are employed to investigate the effects of these processing parameters. Through this study, not only the hardened depth increased and surface roughness improved, but also the parameters that significantly affect the hardening performance are identified. Experimental results are provided to verify the effectiveness of this approach.

Keywords: Plasma arc, hardened depth, surface roughness, Taguchi method, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2360
4148 Electromagnetic Source Direction of Arrival Estimation via Virtual Antenna Array

Authors: Meiling Yang, Shuguo Xie, Yilong Zhu

Abstract:

Nowadays, due to diverse electric products and complex electromagnetic environment, the localization and troubleshooting of the electromagnetic radiation source is urgent and necessary especially on the condition of far field. However, based on the existing DOA positioning method, the system or devices are complex, bulky and expensive. To address this issue, this paper proposes a single antenna radiation source localization method. A single antenna moves to form a virtual antenna array combined with DOA and MUSIC algorithm to position accurately, meanwhile reducing the cost and simplify the equipment. As shown in the results of simulations and experiments, the virtual antenna array DOA estimation modeling is correct and its positioning is credible.

Keywords: Virtual antenna array, DOA, localization, far field.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 970
4147 Physical Parameter Based Compact Expression for Propagation Constant of SWCNT Interconnects

Authors: Kollarama Subramanyam, Nisha Kuruvilla, J. P. Raina

Abstract:

Novel compact expressions for propagation constant (γ) of SWCNT and bundled SWCNTs interconnect, in terms of physical parameters such as length, operating frequency and diameter of CNTs is proposed in this work. These simplified expressions enable physical insight and accurate estimation of signal attenuation level and its phase change at any length for a particular frequency. The proposed expressions are validated against SPICE simulated results of lumped as well as distributed equivalent electrical RLC nets of CNT interconnect. These expressions also help us to evaluate the cut off frequencies of SWCNTs for different interconnect lengths.

Keywords: Attenuation constant, Bundled SWCNT, CNT interconnects, Propagation Constant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1675
4146 Ratio Type Estimators of the Population Mean Based on Ranked Set Sampling

Authors: Said Ali Al-Hadhrami

Abstract:

Ranked set sampling (RSS) was first suggested to increase the efficiency of the population mean. It has been shown that this method is highly beneficial to the estimation based on simple random sampling (SRS). There has been considerable development and many modifications were done on this method. When a concomitant variable is available, ratio estimation based on ranked set sampling was proposed. This ratio estimator is more efficient than that based on SRS. In this paper some ratio type estimators of the population mean based on RSS are suggested. These estimators are found to be more efficient than the estimators of similar form using simple random sample.

Keywords: Bias, Efficiency, Ranked Set Sampling, Ratio Type Estimator

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1374
4145 Physicochemical Parameters of Tap Water in Dhahran, Saudi Arabia: An Empirical Assessment

Authors: Ahmed A. Hassan, Bassam Tawabini

Abstract:

In this study, the physicochemical parameters of Dhahran tap water were assessed to determine its suitability for drinking purposes. A total of 45 water samples were collected from different locations. The results indicate temperature ranges of 19.76 to 22.86 °C, pH (6.5 to 8.23), dissolved oxygen (4.21 to 8.32 mg/L), conductivity (232 to 2586 uS/cm), turbidity (0.17 to 0.37 Nephelometric Turbidity unit (NTU)), total dissolved solids (93 to 1671 mg/L), total alkalinity (4.11 to 24.04 mg/L), calcium (0.02 to 164 mg/L), magnesium (0 .6 to 77.9 mg/L), chloride (32.7 to 568.7 mg/L), nitrate (0.02 to 3 mg/L), fluoride (0.001 to 0.591 mg/L), sodium (18.4 to 232 mg/L), potassium (0.5 to 26.4 mg/L), and sulphate (2.39 to 258 mg/L). The results were compared with the drinking water standards recommended by the World Health Organization (WHO) and the United States Environmental Protection Agency (USEPA). The study determined that though the levels of most of the physicochemical parameters comply with the standards, however, slight deviations exist. This is evident in the values of the physical parameters (conductivity and total dissolved solids), and the chemical parameters (sulphate, chloride, and sodium) recorded at a few sample sites.

Keywords: Physicochemical parameters, tap water, water quality, Dhahran.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 526
4144 Simultaneous Optimization of Machining Parameters and Tool Geometry Specifications in Turning Operation of AISI1045 Steel

Authors: Farhad Kolahan, Mohsen Manoochehri, Abbas Hosseini

Abstract:

Machining is an important manufacturing process used to produce a wide variety of metallic parts. Among various machining processes, turning is one of the most important one which is employed to shape cylindrical parts. In turning, the quality of finished product is measured in terms of surface roughness. In turn, surface quality is determined by machining parameters and tool geometry specifications. The main objective of this study is to simultaneously model and optimize machining parameters and tool geometry in order to improve the surface roughness for AISI1045 steel. Several levels of machining parameters and tool geometry specifications are considered as input parameters. The surface roughness is selected as process output measure of performance. A Taguchi approach is employed to gather experimental data. Then, based on signal-to-noise (S/N) ratio, the best sets of cutting parameters and tool geometry specifications have been determined. Using these parameters values, the surface roughness of AISI1045 steel parts may be minimized. Experimental results are provided to illustrate the effectiveness of the proposed approach.

Keywords: Taguchi method, turning parameters, tool geometry specifications, S/N ratio, statistical analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2325
4143 An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows

Authors: Alia Alghosoun, Nabil El Moçayd, Mohammed Seaid

Abstract:

Modeling dam-break flows over non-flat beds requires an accurate representation of the topography which is the main source of uncertainty in the model. Therefore, developing robust and accurate techniques for reconstructing topography in this class of problems would reduce the uncertainty in the flow system. In many hydraulic applications, experimental techniques have been widely used to measure the bed topography. In practice, experimental work in hydraulics may be very demanding in both time and cost. Meanwhile, computational hydraulics have served as an alternative for laboratory and field experiments. Unlike the forward problem, the inverse problem is used to identify the bed parameters from the given experimental data. In this case, the shallow water equations used for modeling the hydraulics need to be rearranged in a way that the model parameters can be evaluated from measured data. However, this approach is not always possible and it suffers from stability restrictions. In the present work, we propose an adaptive optimal control technique to numerically identify the underlying bed topography from a given set of free-surface observation data. In this approach, a minimization function is defined to iteratively determine the model parameters. The proposed technique can be interpreted as a fractional-stage scheme. In the first stage, the forward problem is solved to determine the measurable parameters from known data. In the second stage, the adaptive control Ensemble Kalman Filter is implemented to combine the optimality of observation data in order to obtain the accurate estimation of the topography. The main features of this method are on one hand, the ability to solve for different complex geometries with no need for any rearrangements in the original model to rewrite it in an explicit form. On the other hand, its achievement of strong stability for simulations of flows in different regimes containing shocks or discontinuities over any geometry. Numerical results are presented for a dam-break flow problem over non-flat bed using different solvers for the shallow water equations. The robustness of the proposed method is investigated using different numbers of loops, sensitivity parameters, initial samples and location of observations. The obtained results demonstrate high reliability and accuracy of the proposed techniques.

Keywords: Optimal control, ensemble Kalman Filter, topography reconstruction, data assimilation, shallow water equations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 679
4142 Calculation of the Ceramics Weibull Parameters

Authors: V. Fuis, T. Navrat

Abstract:

The paper deals with calculation of the parameters of ceramic material from a set of destruction tests of ceramic heads of total hip joint endoprosthesis. The standard way of calculation of the material parameters consists in carrying out a set of 3 or 4 point bending tests of specimens cut out from parts of the ceramic material to be analysed. In case of ceramic heads, it is not possible to cut out specimens of required dimensions because the heads are too small (if the cut out specimens were smaller than the normalised ones, the material parameters derived from them would exhibit higher strength values than those which the given ceramic material really has). On that score, a special testing jig was made, in which 40 heads were destructed. From the measured values of circumferential strains of the head-s external spherical surface under destruction, the state of stress in the head under destruction was established using the final elements method (FEM). From the values obtained, the sought for parameters of the ceramic material were calculated using Weibull-s weakest-link theory.

Keywords: Hip joint endoprosthesis, ceramic head, FEM analysis, Weibull's weakest-link theory, failure probability, material parameters

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2637
4141 Residual Life Prediction for a System Subject to Condition Monitoring and Two Failure Modes

Authors: Akram Khaleghei Ghosheh Balagh, Viliam Makis

Abstract:

In this paper, we investigate the residual life prediction problem for a partially observable system subject to two failure modes, namely a catastrophic failure and a failure due to the system degradation. The system is subject to condition monitoring and the degradation process is described by a hidden Markov model with unknown parameters. The parameter estimation procedure based on an EM algorithm is developed and the formulas for the conditional reliability function and the mean residual life are derived, illustrated by a numerical example.

Keywords: Partially observable system, hidden Markov model, competing risks, residual life prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2041
4140 Forecast of the Small Wind Turbines Sales with Replacement Purchases and with or without Account of Price Changes

Authors: V. Churkin, M. Lopatin

Abstract:

The purpose of the paper is to estimate the US small wind turbines market potential and forecast the small wind turbines sales in the US. The forecasting method is based on the application of the Bass model and the generalized Bass model of innovations diffusion under replacement purchases. In the work an exponential distribution is used for modeling of replacement purchases. Only one parameter of such distribution is determined by average lifetime of small wind turbines. The identification of the model parameters is based on nonlinear regression analysis on the basis of the annual sales statistics which has been published by the American Wind Energy Association (AWEA) since 2001 up to 2012. The estimation of the US average market potential of small wind turbines (for adoption purchases) without account of price changes is 57080 (confidence interval from 49294 to 64866 at P = 0.95) under average lifetime of wind turbines 15 years, and 62402 (confidence interval from 54154 to 70648 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 90,7%, while in the second - 91,8%. The effect of the wind turbines price changes on their sales was estimated using generalized Bass model. This required a price forecast. To do this, the polynomial regression function, which is based on the Berkeley Lab statistics, was used. The estimation of the US average market potential of small wind turbines (for adoption purchases) in that case is 42542 (confidence interval from 32863 to 52221 at P = 0.95) under average lifetime of wind turbines 15 years, and 47426 (confidence interval from 36092 to 58760 at P = 0.95) under average lifetime of wind turbines 20 years. In the first case the explained variance is 95,3%, while in the second – 95,3%.

Keywords: Bass model, generalized Bass model, replacement purchases, sales forecasting of innovations, statistics of sales of small wind turbines in the United States.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1883
4139 Integrated ACOR/IACOMV-R-SVM Algorithm

Authors: Hiba Basim Alwan, Ku Ruhana Ku-Mahamud

Abstract:

A direction for ACO is to optimize continuous and mixed (discrete and continuous) variables in solving problems with various types of data. Support Vector Machine (SVM), which originates from the statistical approach, is a present day classification technique. The main problems of SVM are selecting feature subset and tuning the parameters. Discretizing the continuous value of the parameters is the most common approach in tuning SVM parameters. This process will result in loss of information which affects the classification accuracy. This paper presents two algorithms that can simultaneously tune SVM parameters and select the feature subset. The first algorithm, ACOR-SVM, will tune SVM parameters, while the second IACOMV-R-SVM algorithm will simultaneously tune SVM parameters and select the feature subset. Three benchmark UCI datasets were used in the experiments to validate the performance of the proposed algorithms. The results show that the proposed algorithms have good performances as compared to other approaches.

Keywords: Continuous ant colony optimization, incremental continuous ant colony, simultaneous optimization, support vector machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 880
4138 Dissolved Oxygen Prediction Using Support Vector Machine

Authors: Sorayya Malek, Mogeeb Mosleh, Sharifah M. Syed

Abstract:

In this study, Support Vector Machine (SVM) technique was applied to predict the dichotomized value of Dissolved oxygen (DO) from two freshwater lakes namely Chini and Bera Lake (Malaysia). Data sample contained 11 parameters for water quality features from year 2005 until 2009. All data parameters were used to predicate the dissolved oxygen concentration which was dichotomized into 3 different levels (High, Medium, and Low). The input parameters were ranked, and forward selection method was applied to determine the optimum parameters that yield the lowest errors, and highest accuracy. Initial results showed that pH, Water Temperature, and Conductivity are the most important parameters that significantly affect the predication of DO. Then, SVM model was applied using the Anova kernel with those parameters yielded 74% accuracy rate. We concluded that using SVM models to predicate the DO is feasible, and using dichotomized value of DO yields higher prediction accuracy than using precise DO value.

Keywords: Dissolved oxygen, Water quality, predication DO, Support Vector Machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217
4137 Estimation of Reconnaissance Drought Index (RDI) for Bhavnagar District, Gujarat, India

Authors: Ravi Shah, V. L. Manekar, R. A. Christian, N. J. Mistry

Abstract:

There are two types of drought as conceptual drought and operational drought. The three parameters as the beginning, the end and the degree of severity of the drought can be identifying in operational drought by average precipitation in the whole region. One of the methods classified to measure drought is Reconnaissance Drought Index (RDI). Evapotranspiration is calculated using Penman-Monteith method by analyzing thirty nine years prolong climatic data. The evapotranspiration is then utilized in RDI to classify normalized and standardized RDI. These RDI classifications led to what kind of drought faced in Bhavnagar region on 12 month time scale basis. The comparison between actual drought conditions and RDI method used to find out drought are also illustrated. It can be concluded that the index results of drought in a particular year are same in both methods but having different index values where as severity remain same.

Keywords: Drought, Drought index, Reconnaissance Drought Index (RDI), Precipitation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3494
4136 Angles of Arrival Estimation with Unitary Partial Propagator

Authors: Youssef Khmou, Said Safi

Abstract:

In this paper, we investigated the effect of real valued transformation of the spectral matrix of the received data for Angles Of Arrival estimation problem.  Indeed, the unitary transformation of Partial Propagator (UPP) for narrowband sources is proposed and applied on Uniform Linear Array (ULA).

Monte Carlo simulations proved the performance of the UPP spectrum comparatively with Forward Backward Partial Propagator (FBPP) and Unitary Propagator (UP). The results demonstrates that when some of the sources are fully correlated and closer than the Rayleigh angular limit resolution of the broadside array, the UPP method outperforms the FBPP in both of spatial resolution and complexity.

Keywords: DOA, Uniform Linear Array, Narrowband, Propagator, Real valued transformation, Subspace, Unitary Operator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2284
4135 A New Fuzzy DSS/ES for Stock Portfolio Selection using Technical and Fundamental Approaches in Parallel

Authors: H. Zarei, M. H. Fazel Zarandi, M. Karbasian

Abstract:

A Decision Support System/Expert System for stock portfolio selection presented where at first step, both technical and fundamental data used to estimate technical and fundamental return and risk (1st phase); Then, the estimated values are aggregated with the investor preferences (2nd phase) to produce convenient stock portfolio. In the 1st phase, there are two expert systems, each of which is responsible for technical or fundamental estimation. In the technical expert system, for each stock, twenty seven candidates are identified and with using rough sets-based clustering method (RC) the effective variables have been selected. Next, for each stock two fuzzy rulebases are developed with fuzzy C-Mean method and Takai-Sugeno- Kang (TSK) approach; one for return estimation and the other for risk. Thereafter, the parameters of the rule-bases are tuned with backpropagation method. In parallel, for fundamental expert systems, fuzzy rule-bases have been identified in the form of “IF-THEN" rules through brainstorming with the stock market experts and the input data have been derived from financial statements; as a result two fuzzy rule-bases have been generated for all the stocks, one for return and the other for risk. In the 2nd phase, user preferences represented by four criteria and are obtained by questionnaire. Using an expert system, four estimated values of return and risk have been aggregated with the respective values of user preference. At last, a fuzzy rule base having four rules, treats these values and produce a ranking score for each stock which will lead to a satisfactory portfolio for the user. The stocks of six manufacturing companies and the period of 2003-2006 selected for data gathering.

Keywords: Stock Portfolio Selection, Fuzzy Rule-Base ExpertSystems, Financial Decision Support Systems, Technical Analysis, Fundamental Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841
4134 Overhead Estimation over Capacity of Mobile WiMAX

Authors: Saeed AL-Rashdy, Qing Guo

Abstract:

The IEEE802.16 standard which has emerged as Broadband Wireless Access (BWA) technology, promises to deliver high data rate over large areas to a large number of subscribers in the near future. This paper analyze the effect of overheads over capacity of downlink (DL) of orthogonal frequency division multiple access (OFDMA)–based on the IEEE802.16e mobile WiMAX system with and without overheads. The analysis focuses in particular on the impact of Adaptive Modulation and Coding (AMC) as well as deriving an algorithm to determine the maximum numbers of subscribers that each specific WiMAX sector may support. An analytical study of the WiMAX propagation channel by using Cost- 231 Hata Model is presented. Numerical results and discussion estimated by using Matlab to simulate the algorithm for different multi-users parameters.

Keywords: BWA, mobile WiMAX, capacity, AMC , overheads.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2082
4133 Brain Image Segmentation Using Conditional Random Field Based On Modified Artificial Bee Colony Optimization Algorithm

Authors: B. Thiagarajan, R. Bremananth

Abstract:

Tumor is an uncontrolled growth of tissues in any part of the body. Tumors are of different types and they have different characteristics and treatments. Brain tumor is inherently serious and life-threatening because of its character in the limited space of the intracranial cavity (space formed inside the skull). Locating the tumor within MR (magnetic resonance) image of brain is integral part of the treatment of brain tumor. This segmentation task requires classification of each voxel as either tumor or non-tumor, based on the description of the voxel under consideration. Many studies are going on in the medical field using Markov Random Fields (MRF) in segmentation of MR images. Even though the segmentation process is better, computing the probability and estimation of parameters is difficult. In order to overcome the aforementioned issues, Conditional Random Field (CRF) is used in this paper for segmentation, along with the modified artificial bee colony optimization and modified fuzzy possibility c-means (MFPCM) algorithm. This work is mainly focused to reduce the computational complexities, which are found in existing methods and aimed at getting higher accuracy. The efficiency of this work is evaluated using the parameters such as region non-uniformity, correlation and computation time. The experimental results are compared with the existing methods such as MRF with improved Genetic Algorithm (GA) and MRF-Artificial Bee Colony (MRF-ABC) algorithm.

Keywords: Conditional random field, Magnetic resonance, Markov random field, Modified artificial bee colony.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2948
4132 VFAST TCP: A delay-based enhanced version of FAST TCP

Authors: Salem Belhaj, Moncef Tagina

Abstract:

This paper is aimed at describing a delay-based endto- end (e2e) congestion control algorithm, called Very FAST TCP (VFAST), which is an enhanced version of FAST TCP. The main idea behind this enhancement is to smoothly estimate the Round-Trip Time (RTT) based on a nonlinear filter, which eliminates throughput and queue oscillation when RTT fluctuates. In this context, an evaluation of the suggested scheme through simulation is introduced, by comparing our VFAST prototype with FAST in terms of throughput, queue behavior, fairness, stability, RTT and adaptivity to changes in network. The achieved simulation results indicate that the suggested protocol offer better performance than FAST TCP in terms of RTT estimation and throughput.

Keywords: Fast tcp, RTT, delay estimation, delay-based congestion control, high speed TCP, large bandwidth delay product.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1732
4131 Analysis of Testing and Operational Software Reliability in SRGM based on NHPP

Authors: S. Thirumurugan, D. R. Prince Williams

Abstract:

Software Reliability is one of the key factors in the software development process. Software Reliability is estimated using reliability models based on Non Homogenous Poisson Process. In most of the literature the Software Reliability is predicted only in testing phase. So it leads to wrong decision-making concept. In this paper, two Software Reliability concepts, testing and operational phase are studied in detail. Using S-Shaped Software Reliability Growth Model (SRGM) and Exponential SRGM, the testing and operational reliability values are obtained. Finally two reliability values are compared and optimal release time is investigated.

Keywords: Error Detection Rate, Estimation of Parameters, Instantaneous Failure Rate, Mean Value Function, Non Homogenous Poisson Process (NHPP), Software Reliability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1634
4130 Comparison of Two-Phase Critical Flow Models for Estimation of Leak Flow Rate through Cracks

Authors: Tadashi Watanabe, Jinya Katsuyama, Akihiro Mano

Abstract:

The estimation of leak flow rates through narrow cracks in structures is of importance for nuclear reactor safety, since the leak flow could be detected before occurrence of loss-of-coolant accidents. The two-phase critical leak flow rates are calculated using the system analysis code, and two representative non-homogeneous critical flow models, Henry-Fauske model and Ransom-Trapp model, are compared. The pressure decrease and vapor generation in the crack, and the leak flow rates are found to be larger for the Henry-Fauske model. It is shown that the leak flow rates are not affected by the structural temperature, but affected largely by the roughness of crack surface.

Keywords: Crack, critical flow, leak, roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 841
4129 Adaptive Impedance Control for Unknown Non-Flat Environment

Authors: Norsinnira Zainul Azlan, Hiroshi Yamaura

Abstract:

This paper presents a new adaptive impedance control strategy, based on Function Approximation Technique (FAT) to compensate for unknown non-flat environment shape or time-varying environment location. The target impedance in the force controllable direction is modified by incorporating adaptive compensators and the uncertainties are represented by FAT, allowing the update law to be derived easily. The force error feedback is utilized in the estimation and the accurate knowledge of the environment parameters are not required by the algorithm. It is shown mathematically that the stability of the controller is guaranteed based on Lyapunov theory. Simulation results presented to demonstrate the validity of the proposed controller.

Keywords: Adaptive impedance control, Function Approximation Technique (FAT), impedance control, unknown environment position.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1582
4128 A Damage Level Assessment Model for Extra High Voltage Transmission Towers

Authors: Huan-Chieh Chiu, Hung-Shuo Wu, Chien-Hao Wang, Yu-Cheng Yang, Ching-Ya Tseng, Joe-Air Jiang

Abstract:

Power failure resulting from tower collapse due to violent seismic events might bring enormous and inestimable losses. The Chi-Chi earthquake, for example, strongly struck Taiwan and caused huge damage to the power system on September 21, 1999. Nearly 10% of extra high voltage (EHV) transmission towers were damaged in the earthquake. Therefore, seismic hazards of EHV transmission towers should be monitored and evaluated. The ultimate goal of this study is to establish a damage level assessment model for EHV transmission towers. The data of earthquakes provided by Taiwan Central Weather Bureau serve as a reference and then lay the foundation for earthquake simulations and analyses afterward. Some parameters related to the damage level of each point of an EHV tower are simulated and analyzed by the data from monitoring stations once an earthquake occurs. Through the Fourier transform, the seismic wave is then analyzed and transformed into different wave frequencies, and the data would be shown through a response spectrum. With this method, the seismic frequency which damages EHV towers the most is clearly identified. An estimation model is built to determine the damage level caused by a future seismic event. Finally, instead of relying on visual observation done by inspectors, the proposed model can provide a power company with the damage information of a transmission tower. Using the model, manpower required by visual observation can be reduced, and the accuracy of the damage level estimation can be substantially improved. Such a model is greatly useful for health and construction monitoring because of the advantages of long-term evaluation of structural characteristics and long-term damage detection.

Keywords: Smart grid, EHV transmission tower, response spectrum, damage level monitoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1066
4127 Video Coding Algorithm for Video Sequences with Abrupt Luminance Change

Authors: Sang Hyun Kim

Abstract:

In this paper, a fast motion compensation algorithm is proposed that improves coding efficiency for video sequences with brightness variations. We also propose a cross entropy measure between histograms of two frames to detect brightness variations. The framewise brightness variation parameters, a multiplier and an offset field for image intensity, are estimated and compensated. Simulation results show that the proposed method yields a higher peak signal to noise ratio (PSNR) compared with the conventional method, with a greatly reduced computational load, when the video scene contains illumination changes.

Keywords: Motion estimation, Fast motion compensation, Brightness variation compensation, Brightness change detection, Cross entropy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1765
4126 On the Variability of Tool Wear and Life at Disparate Operating Parameters

Authors: S. E. Oraby, A.M. Alaskari

Abstract:

The stochastic nature of tool life using conventional discrete-wear data from experimental tests usually exists due to many individual and interacting parameters. It is a common practice in batch production to continually use the same tool to machine different parts, using disparate machining parameters. In such an environment, the optimal points at which tools have to be changed, while achieving minimum production cost and maximum production rate within the surface roughness specifications, have not been adequately studied. In the current study, two relevant aspects are investigated using coated and uncoated inserts in turning operations: (i) the accuracy of using machinability information, from fixed parameters testing procedures, when variable parameters situations are emerged, and (ii) the credibility of tool life machinability data from prior discrete testing procedures in a non-stop machining. A novel technique is proposed and verified to normalize the conventional fixed parameters machinability data to suit the cases when parameters have to be changed for the same tool. Also, an experimental investigation has been established to evaluate the error in the tool life assessment when machinability from discrete testing procedures is employed in uninterrupted practical machining.

Keywords: Machinability, tool life, tool wear, wear variability

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1797
4125 Model-Driven and Data-Driven Approaches for Crop Yield Prediction: Analysis and Comparison

Authors: Xiangtuo Chen, Paul-Henry Cournéde

Abstract:

Crop yield prediction is a paramount issue in agriculture. The main idea of this paper is to find out efficient way to predict the yield of corn based meteorological records. The prediction models used in this paper can be classified into model-driven approaches and data-driven approaches, according to the different modeling methodologies. The model-driven approaches are based on crop mechanistic modeling. They describe crop growth in interaction with their environment as dynamical systems. But the calibration process of the dynamic system comes up with much difficulty, because it turns out to be a multidimensional non-convex optimization problem. An original contribution of this paper is to propose a statistical methodology, Multi-Scenarios Parameters Estimation (MSPE), for the parametrization of potentially complex mechanistic models from a new type of datasets (climatic data, final yield in many situations). It is tested with CORNFLO, a crop model for maize growth. On the other hand, the data-driven approach for yield prediction is free of the complex biophysical process. But it has some strict requirements about the dataset. A second contribution of the paper is the comparison of these model-driven methods with classical data-driven methods. For this purpose, we consider two classes of regression methods, methods derived from linear regression (Ridge and Lasso Regression, Principal Components Regression or Partial Least Squares Regression) and machine learning methods (Random Forest, k-Nearest Neighbor, Artificial Neural Network and SVM regression). The dataset consists of 720 records of corn yield at county scale provided by the United States Department of Agriculture (USDA) and the associated climatic data. A 5-folds cross-validation process and two accuracy metrics: root mean square error of prediction(RMSEP), mean absolute error of prediction(MAEP) were used to evaluate the crop prediction capacity. The results show that among the data-driven approaches, Random Forest is the most robust and generally achieves the best prediction error (MAEP 4.27%). It also outperforms our model-driven approach (MAEP 6.11%). However, the method to calibrate the mechanistic model from dataset easy to access offers several side-perspectives. The mechanistic model can potentially help to underline the stresses suffered by the crop or to identify the biological parameters of interest for breeding purposes. For this reason, an interesting perspective is to combine these two types of approaches.

Keywords: Crop yield prediction, crop model, sensitivity analysis, paramater estimation, particle swarm optimization, random forest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1174