Search results for: Multiple linear regression
3225 Prediction of Air-Water Two-Phase Frictional Pressure Drop Using Artificial Neural Network
Authors: H. B. Mehta, Vipul M. Patel, Jyotirmay Banerjee
Abstract:
The present paper discusses the prediction of gas-liquid two-phase frictional pressure drop in a 2.12 mm horizontal circular minichannel using Artificial Neural Network (ANN). The experimental results are obtained with air as gas phase and water as liquid phase. The superficial gas velocity is kept in the range of 0.0236 m/s to 0.4722 m/s while the values of 0.0944 m/s, 0.1416 m/s and 0.1889 m/s are considered for superficial liquid velocity. The experimental results are predicted using different Artificial Neural Network (ANN) models. Networks used for prediction are radial basis, generalised regression, linear layer, cascade forward back propagation, feed forward back propagation, feed forward distributed time delay, layer recurrent, and Elman back propagation. Transfer functions used for networks are Linear (PURELIN), Logistic sigmoid (LOGSIG), tangent sigmoid (TANSIG) and Gaussian RBF. Combination of networks and transfer functions give different possible neural network models. These models are compared for Mean Absolute Relative Deviation (MARD) and Mean Relative Deviation (MRD) to identify the best predictive model of ANN.
Keywords: Minichannel, Two-Phase Flow, Frictional Pressure Drop, ANN, MARD, MRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14043224 Rainfall Seasonality Changes over India Based on Changes in the Climate
Authors: Randhir Singh Baghel, Govind Prasad Sahu
Abstract:
An individual seasonality index is used to study the seasonality of rainfall over India. The seasonality indicator is examined for two time periods: early (1901-1970) and recent (1971-2015). In some regions of India throughout the recent time (1971-2015), trend analysis using linear regression during these two periods reveals a downward trend in the seasonality index (i.e., decreasing values of the index), which implies shorter dry spells resulting in more consistent rainfall throughout the year.
Keywords: Individual seasonality index, rainfall distribution, seasonality index, climate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1773223 2 – Block 3 - Point Modified Numerov Block Methods for Solving Ordinary Differential Equations
Authors: Abdu Masanawa Sagir
Abstract:
In this paper, linear multistep technique using power series as the basis function is used to develop the block methods which are suitable for generating direct solution of the special second order ordinary differential equations of the form y′′ = f(x,y), a < = x < = b with associated initial or boundary conditions. The continuaous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain two different three discrete schemes, each of order (4,4,4)T, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block method are tested on linear and non-linear ordinary differential equations whose solutions are oscillatory or nearly periodic in nature, and the results obtained compared favourably with the exact solution.Keywords: Block Method, Hybrid, Linear Multistep Method, Self – starting, Special Second Order.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19513222 LMI Approach to Regularization and Stabilization of Linear Singular Systems: The Discrete-time Case
Authors: Salim Ibrir
Abstract:
Sufficient linear matrix inequalities (LMI) conditions for regularization of discrete-time singular systems are given. Then a new class of regularizing stabilizing controllers is discussed. The proposed controllers are the sum of predictive and memoryless state feedbacks. The predictive controller aims to regularizing the singular system while the memoryless state feedback is designed to stabilize the resulting regularized system. A systematic procedure is given to calculate the controller gains through linear matrix inequalities.
Keywords: Singular systems, Discrete-time systems, Regularization, LMIs
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15953221 Solving Fuzzy Multi-Objective Linear Programming Problems with Fuzzy Decision Variables
Authors: Mahnaz Hosseinzadeh, Aliyeh Kazemi
Abstract:
In this paper, a method is proposed for solving Fuzzy Multi-Objective Linear Programming problems (FMOLPP) with fuzzy right hand side and fuzzy decision variables. To illustrate the proposed method, it is applied to the problem of selecting suppliers for an automotive parts producer company in Iran in order to find the number of optimal orders allocated to each supplier considering the conflicting objectives. Finally, the obtained results are discussed.Keywords: Fuzzy multi-objective linear programming problems, triangular fuzzy numbers, fuzzy ranking, supplier selection problem.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14223220 Performance Analysis of Evolutionary ANN for Output Prediction of a Grid-Connected Photovoltaic System
Authors: S.I Sulaiman, T.K Abdul Rahman, I. Musirin, S. Shaari
Abstract:
This paper presents performance analysis of the Evolutionary Programming-Artificial Neural Network (EPANN) based technique to optimize the architecture and training parameters of a one-hidden layer feedforward ANN model for the prediction of energy output from a grid connected photovoltaic system. The ANN utilizes solar radiation and ambient temperature as its inputs while the output is the total watt-hour energy produced from the grid-connected PV system. EP is used to optimize the regression performance of the ANN model by determining the optimum values for the number of nodes in the hidden layer as well as the optimal momentum rate and learning rate for the training. The EPANN model is tested using two types of transfer function for the hidden layer, namely the tangent sigmoid and logarithmic sigmoid. The best transfer function, neural topology and learning parameters were selected based on the highest regression performance obtained during the ANN training and testing process. It is observed that the best transfer function configuration for the prediction model is [logarithmic sigmoid, purely linear].Keywords: Artificial neural network (ANN), Correlation coefficient (R), Evolutionary programming-ANN (EPANN), Photovoltaic (PV), logarithmic sigmoid and tangent sigmoid.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19023219 Learning Spatio-Temporal Topology of a Multi-Camera Network by Tracking Multiple People
Authors: Yunyoung Nam, Junghun Ryu, Yoo-Joo Choi, We-Duke Cho
Abstract:
This paper presents a novel approach for representing the spatio-temporal topology of the camera network with overlapping and non-overlapping fields of view (FOVs). The topology is determined by tracking moving objects and establishing object correspondence across multiple cameras. To track people successfully in multiple camera views, we used the Merge-Split (MS) approach for object occlusion in a single camera and the grid-based approach for extracting the accurate object feature. In addition, we considered the appearance of people and the transition time between entry and exit zones for tracking objects across blind regions of multiple cameras with non-overlapping FOVs. The main contribution of this paper is to estimate transition times between various entry and exit zones, and to graphically represent the camera topology as an undirected weighted graph using the transition probabilities.Keywords: Surveillance, multiple camera, people tracking, topology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16553218 Neutrosophic Multiple Criteria Decision Making Analysis Method for Selecting Stealth Fighter Aircraft
Authors: C. Ardil
Abstract:
In this paper, a neutrosophic multiple criteria decision analysis method is proposed to select stealth fighter aircraft. Neutrosophic multiple criteria decision analysis methods are used to analyze the neutrosophic environment and give results under uncertainty and incompleteness. Neutrosophic numbers are used to evaluate alternatives over a set of evaluation criteria in decision making problems. Finally, the proposed model is applied to a practical decision problem for selecting stealth fighter aircraft.
Keywords: neutrosophic sets, multiple criteria decision making analysis, stealth fighter aircraft, aircraft selection, MCDMA, SVNNs
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5963217 Decision Trees for Predicting Risk of Mortality using Routinely Collected Data
Authors: Tessy Badriyah, Jim S. Briggs, Dave R. Prytherch
Abstract:
It is well known that Logistic Regression is the gold standard method for predicting clinical outcome, especially predicting risk of mortality. In this paper, the Decision Tree method has been proposed to solve specific problems that commonly use Logistic Regression as a solution. The Biochemistry and Haematology Outcome Model (BHOM) dataset obtained from Portsmouth NHS Hospital from 1 January to 31 December 2001 was divided into four subsets. One subset of training data was used to generate a model, and the model obtained was then applied to three testing datasets. The performance of each model from both methods was then compared using calibration (the χ2 test or chi-test) and discrimination (area under ROC curve or c-index). The experiment presented that both methods have reasonable results in the case of the c-index. However, in some cases the calibration value (χ2) obtained quite a high result. After conducting experiments and investigating the advantages and disadvantages of each method, we can conclude that Decision Trees can be seen as a worthy alternative to Logistic Regression in the area of Data Mining.Keywords: Decision Trees, Logistic Regression, clinical outcome, risk of mortality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25243216 Effect of a Linear-Exponential Penalty Functionon the GA-s Efficiency in Optimization of a Laminated Composite Panel
Authors: A. Abedian, M. H. Ghiasi, B. Dehghan-Manshadi
Abstract:
A stiffened laminated composite panel (1 m length × 0.5m width) was optimized for minimum weight and deflection under several constraints using genetic algorithm. Here, a significant study on the performance of a penalty function with two kinds of static and dynamic penalty factors was conducted. The results have shown that linear dynamic penalty factors are more effective than the static ones. Also, a specially combined linear-exponential function has shown to perform more effective than the previously mentioned penalty functions. This was then resulted in the less sensitivity of the GA to the amount of penalty factor.Keywords: Genetic algorithms, penalty function, stiffenedcomposite panel, finite element method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16793215 Multiple Power Flow Solutions Using Particle Swarm Optimization with Embedded Local Search Technique
Authors: P. Acharjee, S. K. Goswami
Abstract:
Particle Swarm Optimization (PSO) with elite PSO parameters has been developed for power flow analysis under practical constrained situations. Multiple solutions of the power flow problem are useful in voltage stability assessment of power system. A method of determination of multiple power flow solutions is presented using a hybrid of Particle Swarm Optimization (PSO) and local search technique. The unique and innovative learning factors of the PSO algorithm are formulated depending upon the node power mismatch values to be highly adaptive with the power flow problems. The local search is applied on the pbest solution obtained by the PSO algorithm in each iteration. The proposed algorithm performs reliably and provides multiple solutions when applied on standard and illconditioned systems. The test results show that the performances of the proposed algorithm under critical conditions are better than the conventional methods.Keywords: critical conditions, ill-conditioned systems, localsearch technique, multiple power flow solutions, particle swarmoptimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18183214 Multi-Sensor Target Tracking Using Ensemble Learning
Authors: Bhekisipho Twala, Mantepu Masetshaba, Ramapulana Nkoana
Abstract:
Multiple classifier systems combine several individual classifiers to deliver a final classification decision. However, an increasingly controversial question is whether such systems can outperform the single best classifier, and if so, what form of multiple classifiers system yields the most significant benefit. Also, multi-target tracking detection using multiple sensors is an important research field in mobile techniques and military applications. In this paper, several multiple classifiers systems are evaluated in terms of their ability to predict a system’s failure or success for multi-sensor target tracking tasks. The Bristol Eden project dataset is utilised for this task. Experimental and simulation results show that the human activity identification system can fulfil requirements of target tracking due to improved sensors classification performances with multiple classifier systems constructed using boosting achieving higher accuracy rates.
Keywords: Single classifier, machine learning, ensemble learning, multi-sensor target tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5993213 Extending Global Full Orthogonalization method for Solving the Matrix Equation AXB=F
Authors: Fatemeh Panjeh Ali Beik
Abstract:
In the present work, we propose a new method for solving the matrix equation AXB=F . The new method can be considered as a generalized form of the well-known global full orthogonalization method (Gl-FOM) for solving multiple linear systems. Hence, the method will be called extended Gl-FOM (EGl- FOM). For implementing EGl-FOM, generalized forms of block Krylov subspace and global Arnoldi process are presented. Finally, some numerical experiments are given to illustrate the efficiency of our new method.Keywords: Matrix equations, Iterative methods, Block Krylovsubspace methods.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19973212 A Development of the Multiple Intelligences Measurement of Elementary Students
Authors: Chaiwat Waree
Abstract:
This research aims at development of the Multiple Intelligences Measurement of Elementary Students. The structural accuracy test and normality establishment are based on the Multiple Intelligences Theory of Gardner. This theory consists of eight aspects namely linguistics, logic and mathematics, visual-spatial relations, body and movement, music, human relations, self-realization/selfunderstanding and nature. The sample used in this research consists of elementary school students (aged between 5-11 years). The size of the sample group was determined by Yamane Table. The group has 2,504 students. Multistage Sampling was used. Basic statistical analysis and construct validity testing were done using confirmatory factor analysis. The research can be summarized as follows; 1. Multiple Intelligences Measurement consisting of 120 items is content-accurate. Internal consistent reliability according to the method of Kuder-Richardson of the whole Multiple Intelligences Measurement equals .91. The difficulty of the measurement test is between .39-.83. Discrimination is between .21-.85. 2). The Multiple Intelligences Measurement has construct validity in a good range, that is 8 components and all 120 test items have statistical significance level at .01. Chi-square value equals 4357.7; p=.00 at the degree of freedom of 244 and Goodness of Fit Index equals 1.00. Adjusted Goodness of Fit Index equals .92. Comparative Fit Index (CFI) equals .68. Root Mean Squared Residual (RMR) equals 0.064 and Root Mean Square Error of Approximation equals 0.82. 3). The normality of the Multiple Intelligences Measurement is categorized into 3 levels. Those with high intelligence are those with percentiles of more than 78. Those with moderate/medium intelligence are those with percentiles between 24 and 77.9. Those with low intelligence are those with percentiles from 23.9 downwards.
Keywords: Multiple Intelligences, Measurement, Elementary Students.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29603211 A Fast Code Acquisition Scheme for O-CDMA Systems
Authors: Youngpo Lee, Jaewoo Lee, Seokho Yoon
Abstract:
This paper proposes a fast code acquisition scheme for optical code division multiple access (O-CDMA) systems. Unlike the conventional scheme, the proposed scheme employs multiple thresholds providing a shorter mean acquisition time (MAT) performance. The simulation results show that the MAT of the proposed scheme is shorter than that of the conventional scheme.Keywords: Optical CDMA, acquisition, MAT, multiple-shift
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19583210 Solving Linear Matrix Equations by Matrix Decompositions
Authors: Yongxin Yuan, Kezheng Zuo
Abstract:
In this paper, a system of linear matrix equations is considered. A new necessary and sufficient condition for the consistency of the equations is derived by means of the generalized singular-value decomposition, and the explicit representation of the general solution is provided.
Keywords: Matrix equation, Generalized inverse, Generalized singular-value decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20693209 An Estimation of Variance Components in Linear Mixed Model
Authors: Shuimiao Wan, Chao Yuan, Baoguang Tian
Abstract:
In this paper, a linear mixed model which has two random effects is broken up into two models. This thesis gets the parameter estimation of the original model and an estimation’s statistical qualities based on these two models. Then many important properties are given by comparing this estimation with other general estimations. At the same time, this paper proves the analysis of variance estimate (ANOVAE) about σ2 of the original model is equal to the least-squares estimation (LSE) about σ2 of these two models. Finally, it also proves that this estimation is better than ANOVAE under Stein function and special condition in some degree.Keywords: Linear mixed model, Random effects, Parameter estimation, Stein function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18183208 Ensembling Adaptively Constructed Polynomial Regression Models
Authors: Gints Jekabsons
Abstract:
The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed – a potentially non-trivial (and long) trial and error process. In our research we consider a potentially more efficient approach – Adaptive Basis Function Construction (ABFC). It lets the model building method itself construct the basis functions necessary for creating a model of arbitrary complexity with adequate predictive performance. However, there are two issues that to some extent plague the methods of both the subset selection and the ABFC, especially when working with relatively small data samples: the selection bias and the selection instability. We try to correct these issues by model post-evaluation using Cross-Validation and model ensembling. To evaluate the proposed method, we empirically compare it to ABFC methods without ensembling, to a widely used method of subset selection, as well as to some other well-known regression modeling methods, using publicly available data sets.Keywords: Basis function construction, heuristic search, modelensembles, polynomial regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16743207 Robust Control of a Dynamic Model of an F-16 Aircraft with Improved Damping through Linear Matrix Inequalities
Authors: J. P. P. Andrade, V. A. F. Campos
Abstract:
This work presents an application of Linear Matrix Inequalities (LMI) for the robust control of an F-16 aircraft through an algorithm ensuring the damping factor to the closed loop system. The results show that the zero and gain settings are sufficient to ensure robust performance and stability with respect to various operating points. The technique used is the pole placement, which aims to put the system in closed loop poles in a specific region of the complex plane. Test results using a dynamic model of the F-16 aircraft are presented and discussed.Keywords: F-16 Aircraft, linear matrix inequalities, pole placement, robust control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16353206 Blind Image Deconvolution by Neural Recursive Function Approximation
Authors: Jiann-Ming Wu, Hsiao-Chang Chen, Chun-Chang Wu, Pei-Hsun Hsu
Abstract:
This work explores blind image deconvolution by recursive function approximation based on supervised learning of neural networks, under the assumption that a degraded image is linear convolution of an original source image through a linear shift-invariant (LSI) blurring matrix. Supervised learning of neural networks of radial basis functions (RBF) is employed to construct an embedded recursive function within a blurring image, try to extract non-deterministic component of an original source image, and use them to estimate hyper parameters of a linear image degradation model. Based on the estimated blurring matrix, reconstruction of an original source image from a blurred image is further resolved by an annealed Hopfield neural network. By numerical simulations, the proposed novel method is shown effective for faithful estimation of an unknown blurring matrix and restoration of an original source image.
Keywords: Blind image deconvolution, linear shift-invariant(LSI), linear image degradation model, radial basis functions (rbf), recursive function, annealed Hopfield neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20633205 Delay-Dependent Stability Criteria for Linear Time-Delay System of Neutral Type
Authors: Myeongjin Park, Ohmin Kwon, Juhyun Park, Sangmoon Lee
Abstract:
This paper proposes improved delay-dependent stability conditions of the linear time-delay systems of neutral type. The proposed methods employ a suitable Lyapunov-Krasovskii’s functional and a new form of the augmented system. New delay-dependent stability criteria for the systems are established in terms of Linear matrix inequalities (LMIs) which can be easily solved by various effective optimization algorithms. Numerical examples showed that the proposed method is effective and can provide less conservative results.
Keywords: Neutral systems, Time-delay, Stability, Lyapunovmethod, LMI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18843204 Algorithmic Method for Efficient Cruise Program
Authors: Pelaez Verdet, Antonio, Loscertales Sanchez, Pilar
Abstract:
One of the mayor problems of programming a cruise circuit is to decide which destinations to include and which don-t. Thus a decision problem emerges, that might be solved using a linear and goal programming approach. The problem becomes more complex if several boats in the fleet must be programmed in a limited schedule, trying their capacity matches best a seasonal demand and also attempting to minimize the operation costs. Moreover, the programmer of the company should consider the time of the passenger as a limited asset, and would like to maximize its usage. The aim of this work is to design a method in which, using linear and goal programming techniques, a model to design circuits for the cruise company decision maker can achieve an optimal solution within the fleet schedule.Keywords: Itinerary design, cruise programming, goalprogramming, linear programming
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16523203 Research of Linear Camera Calibration Based on Planar Pattern
Authors: Jin Sun, Hongbin Gu
Abstract:
An important step in three-dimensional reconstruction and computer vision is camera calibration, whose objective is to estimate the intrinsic and extrinsic parameters of each camera. In this paper, two linear methods based on the different planes are given. In both methods, the general plane is used to replace the calibration object with very good precision. In the first method, after controlling the camera to undergo five times- translation movements and taking pictures of the orthogonal planes, a set of linear constraints of the camera intrinsic parameters is then derived by means of homography matrix. The second method is to get all camera parameters by taking only one picture of a given radius circle. experiments on simulated data and real images,indicate that our method is reasonable and is a good supplement to camera calibration.Keywords: camera calibration, 3D reconstruction, computervision
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18303202 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions
Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins
Abstract:
The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.Keywords: Dimensional affect prediction, Output-associative RVM, Multivariate regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16683201 Burning Rate Response of Solid Fuels in Laminar Boundary Layer
Authors: A. M. Tahsini
Abstract:
Solid fuel transient burning behavior under oxidizer gas flow is numerically investigated. It is done using analysis of the regression rate responses to the imposed sudden and oscillatory variation at inflow properties. The conjugate problem is considered by simultaneous solution of flow and solid phase governing equations to compute the fuel regression rate. The advection upstream splitting method is used as flow computational scheme in finite volume method. The ignition phase is completely simulated to obtain the exact initial condition for response analysis. The results show that the transient burning effects which lead to the combustion instabilities and intermittent extinctions could be observed in solid fuels as the solid propellants.Keywords: Extinction, Oscillation, Regression rate, Response, Transient burning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23663200 A Model for Test Case Selection in the Software-Development Life Cycle
Authors: Adtha Lawanna
Abstract:
Software maintenance is one of the essential processes of Software-Development Life Cycle. The main philosophies of retaining software concern the improvement of errors, the revision of codes, the inhibition of future errors, and the development in piece and capacity. While the adjustment has been employing, the software structure has to be retested to an upsurge a level of assurance that it will be prepared due to the requirements. According to this state, the test cases must be considered for challenging the revised modules and the whole software. A concept of resolving this problem is ongoing by regression test selection such as the retest-all selections, random/ad-hoc selection and the safe regression test selection. Particularly, the traditional techniques concern a mapping between the test cases in a test suite and the lines of code it executes. However, there are not only the lines of code as one of the requirements that can affect the size of test suite but including the number of functions and faulty versions. Therefore, a model for test case selection is developed to cover those three requirements by the integral technique which can produce the smaller size of the test cases when compared with the traditional regression selection techniques.
Keywords: Software maintenance, regression test selection, test case.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16983199 A Model for Test Case Selection in the Software-Development Life Cycle
Authors: Adtha Lawanna
Abstract:
Software maintenance is one of the essential processes of Software-Development Life Cycle. The main philosophies of retaining software concern the improvement of errors, the revision of codes, the inhibition of future errors, and the development in piece and capacity. While the adjustment has been employing, the software structure has to be retested to an upsurge a level of assurance that it will be prepared due to the requirements. According to this state, the test cases must be considered for challenging the revised modules and the whole software. A concept of resolving this problem is ongoing by regression test selection such as the retest-all selections, random/ad-hoc selection and the safe regression test selection. Particularly, the traditional techniques concern a mapping between the test cases in a test suite and the lines of code it executes. However, there are not only the lines of code as one of the requirements that can affect the size of test suite but including the number of functions and faulty versions. Therefore, a model for test case selection is developed to cover those three requirements by the integral technique which can produce the smaller size of the test cases when compared with the traditional regression selection techniques.
Keywords: Software maintenance, regression test selection, test case.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15993198 Estimating Saturated Hydraulic Conductivity from Soil Physical Properties using Neural Networks Model
Authors: B. Ghanbarian-Alavijeh, A.M. Liaghat, S. Sohrabi
Abstract:
Saturated hydraulic conductivity is one of the soil hydraulic properties which is widely used in environmental studies especially subsurface ground water. Since, its direct measurement is time consuming and therefore costly, indirect methods such as pedotransfer functions have been developed based on multiple linear regression equations and neural networks model in order to estimate saturated hydraulic conductivity from readily available soil properties e.g. sand, silt, and clay contents, bulk density, and organic matter. The objective of this study was to develop neural networks (NNs) model to estimate saturated hydraulic conductivity from available parameters such as sand and clay contents, bulk density, van Genuchten retention model parameters (i.e. r θ , α , and n) as well as effective porosity. We used two methods to calculate effective porosity: : (1) eff s FC φ =θ -θ , and (2) inf φ =θ -θ eff s , in which s θ is saturated water content, FC θ is water content retained at -33 kPa matric potential, and inf θ is water content at the inflection point. Total of 311 soil samples from the UNSODA database was divided into three groups as 187 for the training, 62 for the validation (to avoid over training), and 62 for the test of NNs model. A commercial neural network toolbox of MATLAB software with a multi-layer perceptron model and back propagation algorithm were used for the training procedure. The statistical parameters such as correlation coefficient (R2), and mean square error (MSE) were also used to evaluate the developed NNs model. The best number of neurons in the middle layer of NNs model for methods (1) and (2) were calculated 44 and 6, respectively. The R2 and MSE values of the test phase were determined for method (1), 0.94 and 0.0016, and for method (2), 0.98 and 0.00065, respectively, which shows that method (2) estimates saturated hydraulic conductivity better than method (1).Keywords: Neural network, Saturated hydraulic conductivity, Soil physical properties.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25573197 Climatic Factors Affecting Influenza Cases in Southern Thailand
Authors: S. Youthao, M. Jaroensutasinee, K. Jaroensutasinee
Abstract:
This study investigated climatic factors associated with influenza cases in Southern Thailand. The main aim for use regression analysis to investigate possible causual relationship of climatic factors and variability between the border of the Andaman Sea and the Gulf of Thailand. Southern Thailand had the highest Influenza incidences among four regions (i.e. north, northeast, central and southern Thailand). In this study, there were 14 climatic factors: mean relative humidity, maximum relative humidity, minimum relative humidity, rainfall, rainy days, daily maximum rainfall, pressure, maximum wind speed, mean wind speed, sunshine duration, mean temperature, maximum temperature, minimum temperature, and temperature difference (i.e. maximum – minimum temperature). Multiple stepwise regression technique was used to fit the statistical model. The results indicated that the mean wind speed and the minimum relative humidity were positively associated with the number of influenza cases on the Andaman Sea side. The maximum wind speed was positively associated with the number of influenza cases on the Gulf of Thailand side.Keywords: Influenza, Climatic Factor, Relative Humidity, Rainfall, Pressure, Wind Speed, sunshine duration, Temperature, Andaman Sea, Gulf of Thailand, Southern Thailand.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16283196 A Simple Low-Cost 2-D Optical Measurement System for Linear Guideways
Authors: Wen-Yuh Jywe, Bor-Jeng Lin, Jing-Chung Shen, Jeng-Dao Lee, Hsueh-Liang Huang, Tung-Hsien Hsieh
Abstract:
In this study, a simple 2-D measurement system based on optical design was developed to measure the motion errors of the linear guideway. Compared with the transitional methods about the linear guideway for measuring the motion errors, our proposed 2-D optical measurement system can simultaneously measure horizontal and vertical running straightness errors for the linear guideway.
The performance of the 2-D optical measurement system is verified by experimental results. The standard deviation of the 2-D optical measurement system is about 0.4μm in the measurement range of
Keywords: 2-D measurement, linear guideway, motion errors, running straightness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231