Search results for: Multi Linear Regression
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3841

Search results for: Multi Linear Regression

3481 Transmit Sub-aperture Optimization in MSTA Ultrasound Imaging Method

Authors: YuriyTasinkevych, Ihor Trots, AndrzejNowicki, Marcin Lewandowski

Abstract:

The paper presents the optimization problem for the multi-element synthetic transmit aperture method (MSTA) in ultrasound imaging applications. The optimal choice of the transmit aperture size is performed as a trade-off between the lateral resolution, penetration depth and the frame rate. Results of the analysis obtained by a developed optimization algorithm are presented. Maximum penetration depth and the best lateral resolution at given depths are chosen as the optimization criteria. The optimization algorithm was tested using synthetic aperture data of point reflectors simulated by Filed II program for Matlab® for the case of 5MHz 128-element linear transducer array with 0.48 mm pitch are presented. The visualization of experimentally obtained synthetic aperture data of a tissue mimicking phantom and in vitro measurements of the beef liver are also shown. The data were obtained using the SonixTOUCH Research systemequipped with a linear 4MHz 128 element transducerwith 0.3 mm element pitch, 0.28 mm element width and 70% fractional bandwidth was excited by one sine cycle pulse burst of transducer's center frequency.

Keywords: synthetic aperture method, ultrasound imaging, beamforming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
3480 Energy-Efficient Electrical Power Distribution with Multi-Agent Control at Parallel DC/DC Converters

Authors: Janos Hamar, Peter Bartal, Daniel T. Sepsi

Abstract:

Consumer electronics are pervasive. It is impossible to imagine a household or office without DVD players, digital cameras, printers, mobile phones, shavers, electrical toothbrushes, etc. All these devices operate at different voltage levels ranging from 1.8 to 20 VDC, in the absence of universal standards. The voltages available are however usually 120/230 VAC at 50/60 Hz. This situation makes an individual electrical energy conversion system necessary for each device. Such converters usually involve several conversion stages and often operate with excessive losses and poor reliability. The aim of the project presented in this paper is to design and implement a multi-channel DC/DC converter system, customizing the output voltage and current ratings according to the requirements of the load. Distributed, multi-agent techniques will be applied for the control of the DC/DC converters.

Keywords: DC/DC converter, energy efficiency, multi-agentcontrol, parallel converters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
3479 Methods for Data Selection in Medical Databases: The Binary Logistic Regression -Relations with the Calculated Risks

Authors: Cristina G. Dascalu, Elena Mihaela Carausu, Daniela Manuc

Abstract:

The medical studies often require different methods for parameters selection, as a second step of processing, after the database-s designing and filling with information. One common task is the selection of fields that act as risk factors using wellknown methods, in order to find the most relevant risk factors and to establish a possible hierarchy between them. Different methods are available in this purpose, one of the most known being the binary logistic regression. We will present the mathematical principles of this method and a practical example of using it in the analysis of the influence of 10 different psychiatric diagnostics over 4 different types of offences (in a database made from 289 psychiatric patients involved in different types of offences). Finally, we will make some observations about the relation between the risk factors hierarchy established through binary logistic regression and the individual risks, as well as the results of Chi-squared test. We will show that the hierarchy built using the binary logistic regression doesn-t agree with the direct order of risk factors, even if it was naturally to assume this hypothesis as being always true.

Keywords: Databases, risk factors, binary logisticregression, hierarchy.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1327
3478 Power Series Form for Solving Linear Fredholm Integral Equations of Second Order via Banach Fixed Point Theorem

Authors: Adil AL-Rammahi

Abstract:

In this paper, a new method for solution of second order linear Fredholm integral equation in power series form was studied. The result is obtained by using Banach fixed point theorem.

Keywords: Fredholm integral equation, power series, Banach fixed point theorem, Linear Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2489
3477 Development of a New CFD Multi-Coupling Tool Based on Immersed Boundary Method: toward SRM Analysis

Authors: Ho Phu TRAN, Frédéric PLOURDE

Abstract:

The ongoing effort to develop an in-house compressible solver with multi-disciplinary physics is presented in this paper. Basic compressible solver combined with IBM technique provides us an effective numerical tool able to tackle the physics phenomena and especially physic phenomena involved in Solid Rocket Motors (SRMs). Main principles are introduced step by step describing its implementation. This paper sheds light on the whole potentiality of our proposed numerical model and we strongly believe a way to introduce multi-physics mechanisms strongly coupled is opened to ablation in nozzle, fluid/structure interaction and burning propellant surface with time.

Keywords: Compressible Flow, Immersed Boundary Method, Multi-disciplinary physics, Solid Rocket Motors.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1837
3476 Calculating Strain Energy in Multi-Surface Models of Cyclic Plasticity

Authors: S. Shahrooi, I. H. Metselaar, Z. Huda

Abstract:

When considering the development of constitutive equations describing the behavior of materials under cyclic plastic strains, different kinds of formulations can be adopted. The primary intention of this study is to develop computer programming of plasticity models to accurately predict the life of engineering components. For this purpose, the energy or cyclic strain is computed in multi-surface plasticity models in non-proportional loading and to present their procedures and codes results.

Keywords: Strain energy, cyclic plasticity model, multi-surface model, codes result.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2093
3475 Preconditioned Generalized Accelerated Overrelaxation Methods for Solving Certain Nonsingular Linear System

Authors: Deyu Sun, Guangbin Wang

Abstract:

In this paper, we present preconditioned generalized accelerated overrelaxation (GAOR) methods for solving certain nonsingular linear system. We compare the spectral radii of the iteration matrices of the preconditioned and the original methods. The comparison results show that the preconditioned GAOR methods converge faster than the GAOR method whenever the GAOR method is convergent. Finally, we give two numerical examples to confirm our theoretical results.

Keywords: Preconditioned, GAOR method, linear system, convergence, comparison.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
3474 Analyzing the Factors Influencing Exclusive Breastfeeding Using the Generalized Poisson Regression Model

Authors: Cheika Jahangeer, Naushad Mamode Khan, Maleika Heenaye-Mamode Khan

Abstract:

Exclusive breastfeeding is the feeding of a baby on no other milk apart from breast milk. Exclusive breastfeeding during the first 6 months of life is of fundamental importance because it supports optimal growth and development during infancy and reduces the risk of obliterating diseases and problems. Moreover, in developed countries, exclusive breastfeeding has decreased the incidence and/or severity of diarrhea, lower respiratory infection and urinary tract infection. In this paper, we study the factors that influence exclusive breastfeeding and use the Generalized Poisson regression model to analyze the practices of exclusive breastfeeding in Mauritius. We develop two sets of quasi-likelihood equations (QLE)to estimate the parameters.

Keywords: Exclusive breastfeeding, Regression model, Quasilikelihood.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1800
3473 Meta-reasoning for Multi-agent Communication of Semantic Web Information

Authors: Visit Hirankitti, Vuong Tran Xuan

Abstract:

Meta-reasoning is essential for multi-agent communication. In this paper we propose a framework of multi-agent communication in which agents employ meta-reasoning to reason with agent and ontology locations in order to communicate semantic information with other agents on the semantic web and also reason with multiple distributed ontologies. We shall argue that multi-agent communication of Semantic Web information cannot be realized without the need to reason with agent and ontology locations. This is because for an agent to be able to communicate with another agent, it must know where and how to send a message to that agent. Similarly, for an agent to be able to reason with an external semantic web ontology, it must know where and how to access to that ontology. The agent framework and its communication mechanism are formulated entirely in meta-logic.

Keywords: Semantic Web, agent communication, ontologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
3472 The Banzhaf-Owen Value for Fuzzy Games with a Coalition Structure

Authors: Fan-Yong Meng

Abstract:

In this paper, a generalized form of the Banzhaf-Owen value for cooperative fuzzy games with a coalition structure is proposed. Its axiomatic system is given by extending crisp case. In order to better understand the Banzhaf-Owen value for fuzzy games with a coalition structure, we briefly introduce the Banzhaf-Owen values for two special kinds of fuzzy games with a coalition structure, and give their explicit forms.

Keywords: Cooperative fuzzy game, Banzhaf-Owen value, multi linear extension, Choquet integral.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1554
3471 Analyzing Data on Breastfeeding Using Dispersed Statistical Models

Authors: Naushad Mamode Khan, Cheika Jahangeer, Maleika Heenaye-Mamode Khan

Abstract:

Exclusive breastfeeding is the feeding of a baby on no other milk apart from breast milk. Exclusive breastfeeding during the first 6 months of life is very important as it supports optimal growth and development during infancy and reduces the risk of obliterating diseases and problems. Moreover, it helps to reduce the incidence and/or severity of diarrhea, lower respiratory infection and urinary tract infection. In this paper, we make a survey of the factors that influence exclusive breastfeeding and use two dispersed statistical models to analyze data. The models are the Generalized Poisson regression model and the Com-Poisson regression models.

Keywords: Exclusive breastfeeding, regression model, generalized poisson, com-poisson.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
3470 Multi-stage Directional Median Filter

Authors: Zong Chen, Li Zhang

Abstract:

Median filter is widely used to remove impulse noise without blurring sharp edges. However, when noise level increased, or with thin edges, median filter may work poorly. This paper proposes a new filter, which will detect edges along four possible directions, and then replace noise corrupted pixel with estimated noise-free edge median value. Simulations show that the proposed multi-stage directional median filter can provide excellent performance of suppressing impulse noise in all situations.

Keywords: Impulse noise, Median filter, Multi-stage, Edgepreserving

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2353
3469 Prediction of Post Underwater Shock Properties of Polymer - Clay/Silica Hybrid Nanocomposites through Regression Models

Authors: D. Lingaraju, K. Ramji, M. Pramiladevi, U. Rajyalakshmi

Abstract:

Exploding concentrated underwater charges to damage underwater structures such as ship hulls is a part of naval warfare strategies. Adding small amounts of foreign particles (like clay or silica) of nanosize significantly improves the engineering properties of the polymers. In the present work the clay in terms 1, 2 and 3 percent by weight was surface treated with a suitable silane agent. The hybrid nanocomposite was prepared by the hand lay-up technique. Mathematical regression models have been employed for theoretical prediction. This will result in considerable savings in terms of project time, effort and cost.

Keywords: ANOVA, clay, halloysite, nanocomposites, underwater shock, regression, silica.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
3468 Analysis of Attention to the Confucius Institute from Domestic and Foreign Mainstream Media

Authors: Wei Yang, Xiaohui Cui, Weiping Zhu, Liqun Liu

Abstract:

The rapid development of the Confucius Institute is attracting more and more attention from mainstream media around the world. Mainstream media plays a large role in public information dissemination and public opinion. This study presents efforts to analyze the correlation and functional relationship between domestic and foreign mainstream media by analyzing the amount of reports on the Confucius Institute. Three kinds of correlation calculation methods, the Pearson correlation coefficient (PCC), the Spearman correlation coefficient (SCC), and the Kendall rank correlation coefficient (KCC), were applied to analyze the correlations among mainstream media from three regions: mainland of China; Hong Kong and Macao (the two special administration regions of China denoted as SARs); and overseas countries excluding China, such as the United States, England, and Canada. Further, the paper measures the functional relationships among the regions using a regression model. The experimental analyses found high correlations among mainstream media from the different regions. Additionally, we found that there is a linear relationship between the mainstream media of overseas countries and those of the SARs by analyzing the amount of reports on the Confucius Institute based on a data set obtained by crawling the websites of 106 mainstream media during the years 2004 to 2014.

Keywords: Confucius Institute, correlation analysis, mainstream media, regression model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1360
3467 Non-Linear Vibration and Stability Analysis of an Axially Moving Beam with Rotating-Prismatic Joint

Authors: M. Najafi, F. Rahimi Dehgolan

Abstract:

In this paper, the dynamic modeling of a single-link flexible beam with a tip mass is given by using Hamilton's principle. The link has been rotational and translational motion and it was assumed that the beam is moving with a harmonic velocity about a constant mean velocity. Non-linearity has been introduced by including the non-linear strain to the analysis. Dynamic model is obtained by Euler-Bernoulli beam assumption and modal expansion method. Also, the effects of rotary inertia, axial force, and associated boundary conditions of the dynamic model were analyzed. Since the complex boundary value problem cannot be solved analytically, the multiple scale method is utilized to obtain an approximate solution. Finally, the effects of several conditions on the differences among the behavior of the non-linear term, mean velocity on natural frequencies and the system stability are discussed.

Keywords: Non-linear vibration, stability, axially moving beam, bifurcation, multiple scales method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1340
3466 Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity

Authors: Ali Keshavarzi, Fereydoon Sarmadian

Abstract:

Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.

Keywords: Easily measurable characteristics, Feed-forwardback propagation, Pedotransfer functions, CEC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2211
3465 Predictive Analytics of Student Performance Determinants in Education

Authors: Mahtab Davari, Charles Edward Okon, Somayeh Aghanavesi

Abstract:

Every institute of learning is usually interested in the performance of enrolled students. The level of these performances determines the approach an institute of study may adopt in rendering academic services. The focus of this paper is to evaluate students' academic performance in given courses of study using machine learning methods. This study evaluated various supervised machine learning classification algorithms such as Logistic Regression (LR), Support Vector Machine (SVM), Random Forest, Decision Tree, K-Nearest Neighbors, Linear Discriminant Analysis (LDA), and Quadratic Discriminant Analysis, using selected features to predict study performance. The accuracy, precision, recall, and F1 score obtained from a 5-Fold Cross-Validation were used to determine the best classification algorithm to predict students’ performances. SVM (using a linear kernel), LDA, and LR were identified as the best-performing machine learning methods. Also, using the LR model, this study identified students' educational habits such as reading and paying attention in class as strong determinants for a student to have an above-average performance. Other important features include the academic history of the student and work. Demographic factors such as age, gender, high school graduation, etc., had no significant effect on a student's performance.

Keywords: Student performance, supervised machine learning, prediction, classification, cross-validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 548
3464 Drainage Prediction for Dam using Fuzzy Support Vector Regression

Authors: S. Wiriyarattanakun, A. Ruengsiriwatanakun, S. Noimanee

Abstract:

The drainage Estimating is an important factor in dam management. In this paper, we use fuzzy support vector regression (FSVR) to predict the drainage of the Sirikrit Dam at Uttaradit province, Thailand. The results show that the FSVR is a suitable method in drainage estimating.

Keywords: Drainage Estimation, Prediction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1270
3463 Performance Assessment of Multi-Level Ensemble for Multi-Class Problems

Authors: Rodolfo Lorbieski, Silvia Modesto Nassar

Abstract:

Many supervised machine learning tasks require decision making across numerous different classes. Multi-class classification has several applications, such as face recognition, text recognition and medical diagnostics. The objective of this article is to analyze an adapted method of Stacking in multi-class problems, which combines ensembles within the ensemble itself. For this purpose, a training similar to Stacking was used, but with three levels, where the final decision-maker (level 2) performs its training by combining outputs from the tree-based pair of meta-classifiers (level 1) from Bayesian families. These are in turn trained by pairs of base classifiers (level 0) of the same family. This strategy seeks to promote diversity among the ensembles forming the meta-classifier level 2. Three performance measures were used: (1) accuracy, (2) area under the ROC curve, and (3) time for three factors: (a) datasets, (b) experiments and (c) levels. To compare the factors, ANOVA three-way test was executed for each performance measure, considering 5 datasets by 25 experiments by 3 levels. A triple interaction between factors was observed only in time. The accuracy and area under the ROC curve presented similar results, showing a double interaction between level and experiment, as well as for the dataset factor. It was concluded that level 2 had an average performance above the other levels and that the proposed method is especially efficient for multi-class problems when compared to binary problems.

Keywords: Stacking, multi-layers, ensemble, multi-class.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1093
3462 Ginzburg-Landau Model : an Amplitude Evolution Equation for Shallow Wake Flows

Authors: Imad Chaddad, Andrei A. Kolyshkin

Abstract:

Linear and weakly nonlinear analysis of shallow wake flows is presented in the present paper. The evolution of the most unstable linear mode is described by the complex Ginzburg-Landau equation (CGLE). The coefficients of the CGLE are calculated numerically from the solution of the corresponding linear stability problem for a one-parametric family of shallow wake flows. It is shown that the coefficients of the CGLE are not so sensitive to the variation of the base flow profile.

Keywords: Ginzburg-Landau equation, shallow wake flow, weakly nonlinear theory.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1578
3461 An Improvement of Multi-Label Image Classification Method Based on Histogram of Oriented Gradient

Authors: Ziad Abdallah, Mohamad Oueidat, Ali El-Zaart

Abstract:

Image Multi-label Classification (IMC) assigns a label or a set of labels to an image. The big demand for image annotation and archiving in the web attracts the researchers to develop many algorithms for this application domain. The existing techniques for IMC have two drawbacks: The description of the elementary characteristics from the image and the correlation between labels are not taken into account. In this paper, we present an algorithm (MIML-HOGLPP), which simultaneously handles these limitations. The algorithm uses the histogram of gradients as feature descriptor. It applies the Label Priority Power-set as multi-label transformation to solve the problem of label correlation. The experiment shows that the results of MIML-HOGLPP are better in terms of some of the evaluation metrics comparing with the two existing techniques.

Keywords: Data mining, information retrieval system, multi-label, problem transformation, histogram of gradients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
3460 Demand and Supply Chain Simulation in Telecommunication Industry by Multi-Rate Expert Systems

Authors: Andrus Pedai, Igor Astrov

Abstract:

In modern telecommunications industry, demand & supply chain management (DSCM) needs reliable design and versatile tools to control the material flow. The objective for efficient DSCM is reducing inventory, lead times and related costs in order to assure reliable and on-time deliveries from manufacturing units towards customers. In this paper the multi-rate expert system based methodology for developing simulation tools that would enable optimal DSCM for multi region, high volume and high complexity manufacturing environment was proposed.

Keywords: Demand & supply chain management, expert systems, inventory control, multi-rate control, performance metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
3459 On Estimating the Headcount Index by Using the Logistic Regression Estimator

Authors: Encarnación Álvarez, Rosa M. García-Fernández, Juan F. Muñoz, Francisco J. Blanco-Encomienda

Abstract:

The problem of estimating a proportion has important applications in the field of economics, and in general, in many areas such as social sciences. A common application in economics is the estimation of the headcount index. In this paper, we define the general headcount index as a proportion. Furthermore, we introduce a new quantitative method for estimating the headcount index. In particular, we suggest to use the logistic regression estimator for the problem of estimating the headcount index. Assuming a real data set, results derived from Monte Carlo simulation studies indicate that the logistic regression estimator can be more accurate than the traditional estimator of the headcount index.

Keywords: Poverty line, poor, risk of poverty, sample, Monte Carlo simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
3458 Prediction of Air-Water Two-Phase Frictional Pressure Drop Using Artificial Neural Network

Authors: H. B. Mehta, Vipul M. Patel, Jyotirmay Banerjee

Abstract:

The present paper discusses the prediction of gas-liquid two-phase frictional pressure drop in a 2.12 mm horizontal circular minichannel using Artificial Neural Network (ANN). The experimental results are obtained with air as gas phase and water as liquid phase. The superficial gas velocity is kept in the range of 0.0236 m/s to 0.4722 m/s while the values of 0.0944 m/s, 0.1416 m/s and 0.1889 m/s are considered for superficial liquid velocity. The experimental results are predicted using different Artificial Neural Network (ANN) models. Networks used for prediction are radial basis, generalised regression, linear layer, cascade forward back propagation, feed forward back propagation, feed forward distributed time delay, layer recurrent, and Elman back propagation. Transfer functions used for networks are Linear (PURELIN), Logistic sigmoid (LOGSIG), tangent sigmoid (TANSIG) and Gaussian RBF. Combination of networks and transfer functions give different possible neural network models. These models are compared for Mean Absolute Relative Deviation (MARD) and Mean Relative Deviation (MRD) to identify the best predictive model of ANN.

Keywords: Minichannel, Two-Phase Flow, Frictional Pressure Drop, ANN, MARD, MRD.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1404
3457 Multivariate Output-Associative RVM for Multi-Dimensional Affect Predictions

Authors: Achut Manandhar, Kenneth D. Morton, Peter A. Torrione, Leslie M. Collins

Abstract:

The current trends in affect recognition research are to consider continuous observations from spontaneous natural interactions in people using multiple feature modalities, and to represent affect in terms of continuous dimensions, incorporate spatio-temporal correlation among affect dimensions, and provide fast affect predictions. These research efforts have been propelled by a growing effort to develop affect recognition system that can be implemented to enable seamless real-time human-computer interaction in a wide variety of applications. Motivated by these desired attributes of an affect recognition system, in this work a multi-dimensional affect prediction approach is proposed by integrating multivariate Relevance Vector Machine (MVRVM) with a recently developed Output-associative Relevance Vector Machine (OARVM) approach. The resulting approach can provide fast continuous affect predictions by jointly modeling the multiple affect dimensions and their correlations. Experiments on the RECOLA database show that the proposed approach performs competitively with the OARVM while providing faster predictions during testing.

Keywords: Dimensional affect prediction, Output-associative RVM, Multivariate regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1668
3456 Rainfall Seasonality Changes over India Based on Changes in the Climate

Authors: Randhir Singh Baghel, Govind Prasad Sahu

Abstract:

An individual seasonality index is used to study the seasonality of rainfall over India. The seasonality indicator is examined for two time periods: early (1901-1970) and recent (1971-2015). In some regions of India throughout the recent time (1971-2015), trend analysis using linear regression during these two periods reveals a downward trend in the seasonality index (i.e., decreasing values of the index), which implies shorter dry spells resulting in more consistent rainfall throughout the year.

Keywords: Individual seasonality index, rainfall distribution, seasonality index, climate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 173
3455 Modeling and Optimization of Abrasive Waterjet Parameters using Regression Analysis

Authors: Farhad Kolahan, A. Hamid Khajavi

Abstract:

Abrasive waterjet is a novel machining process capable of processing wide range of hard-to-machine materials. This research addresses modeling and optimization of the process parameters for this machining technique. To model the process a set of experimental data has been used to evaluate the effects of various parameter settings in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. Depth of cut, as one of the most important output characteristics, has been evaluated based on different parameter settings. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. The pairwise effects of process parameters settings on process response outputs are also shown graphically. The proposed model is then embedded into a Simulated Annealing algorithm to optimize the process parameters. The optimization is carried out for any desired values of depth of cut. The objective is to determine proper levels of process parameters in order to obtain a certain level of depth of cut. Computational results demonstrate that the proposed solution procedure is quite effective in solving such multi-variable problems.

Keywords: AWJ cutting, Mathematical modeling, Simulated Annealing, Optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2154
3454 Independent Design of Multi-loop PI/PID Controllers for Multi-delay Processes

Authors: Truong Nguyen Luan Vu, Moonyong Lee

Abstract:

The interactions between input/output variables are a very common phenomenon encountered in the design of multi-loop controllers for interacting multivariable processes, which can be a serious obstacle for achieving a good overall performance of multiloop control system. To overcome this impediment, the decomposed dynamic interaction analysis is proposed by decomposing the multiloop control system into a set of n independent SISO systems with the corresponding effective open-loop transfer function (EOTF) within the dynamic interactions embedded explicitly. For each EOTF, the reduced model is independently formulated by using the proposed reduction design strategy, and then the paired multi-loop proportional-integral-derivative (PID) controller is derived quite simply and straightforwardly by using internal model control (IMC) theory. This design method can easily be implemented for various industrial processes because of its effectiveness. Several case studies are considered to demonstrate the superior of the proposed method.

Keywords: Multi-loop PID controller, internal model control(IMC), effective open-loop transfer function (EOTF)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2006
3453 Multi-threshold Approach for License Plate Recognition System

Authors: Siti Norul Huda Sheikh Abdullah, Farshid Pirahan Siah, Nor Hanisah Haji Zainal Abidin, Shahnorbanun Sahran

Abstract:

The objective of this paper is to propose an adaptive multi threshold for image segmentation precisely in object detection. Due to the different types of license plates being used, the requirement of an automatic LPR is rather different for each country. The proposed technique is applied on Malaysian LPR application. It is based on Multi Layer Perceptron trained by back propagation. The proposed adaptive threshold is introduced to find the optimum threshold values. The technique relies on the peak value from the graph of the number object versus specific range of threshold values. The proposed approach has improved the overall performance compared to current optimal threshold techniques. Further improvement on this method is in progress to accommodate real time system specification.

Keywords: Multi-threshold approach, license plate recognition system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2523
3452 2 – Block 3 - Point Modified Numerov Block Methods for Solving Ordinary Differential Equations

Authors: Abdu Masanawa Sagir

Abstract:

In this paper, linear multistep technique using power series as the basis function is used to develop the block methods which are suitable for generating direct solution of the special second order ordinary differential equations of the form y′′ = f(x,y), a < = x < = b with associated initial or boundary conditions. The continuaous hybrid formulations enable us to differentiate and evaluate at some grids and off – grid points to obtain two different three discrete schemes, each of order (4,4,4)T, which were used in block form for parallel or sequential solutions of the problems. The computational burden and computer time wastage involved in the usual reduction of second order problem into system of first order equations are avoided by this approach. Furthermore, a stability analysis and efficiency of the block method are tested on linear and non-linear ordinary differential equations whose solutions are oscillatory or nearly periodic in nature, and the results obtained compared favourably with the exact solution.

Keywords: Block Method, Hybrid, Linear Multistep Method, Self – starting, Special Second Order.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1950