Search results for: Haar-Like Feature
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 940

Search results for: Haar-Like Feature

580 A Supervised Learning Data Mining Approach for Object Recognition and Classification in High Resolution Satellite Data

Authors: Mais Nijim, Rama Devi Chennuboyina, Waseem Al Aqqad

Abstract:

Advances in spatial and spectral resolution of satellite images have led to tremendous growth in large image databases. The data we acquire through satellites, radars, and sensors consists of important geographical information that can be used for remote sensing applications such as region planning, disaster management. Spatial data classification and object recognition are important tasks for many applications. However, classifying objects and identifying them manually from images is a difficult task. Object recognition is often considered as a classification problem, this task can be performed using machine-learning techniques. Despite of many machine-learning algorithms, the classification is done using supervised classifiers such as Support Vector Machines (SVM) as the area of interest is known. We proposed a classification method, which considers neighboring pixels in a region for feature extraction and it evaluates classifications precisely according to neighboring classes for semantic interpretation of region of interest (ROI). A dataset has been created for training and testing purpose; we generated the attributes by considering pixel intensity values and mean values of reflectance. We demonstrated the benefits of using knowledge discovery and data-mining techniques, which can be on image data for accurate information extraction and classification from high spatial resolution remote sensing imagery.

Keywords: Remote sensing, object recognition, classification, data mining, waterbody identification, feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2053
579 Analysis of the Energetic Feature of the Loaded Gait with Variation of the Trunk Flexion Angle

Authors: Ji-il Park, Hyungtae Seo, Jihyuk Park, Kwang jin Choi, Kyung-Soo Kim, Soohyun Kim

Abstract:

The purpose of the research is to investigate the energetic feature of the backpack load on soldier’s gait with variation of the trunk flexion angle. It is believed that the trunk flexion variation of the loaded gait may cause a significant difference in the energy cost which is often in practice in daily life. To this end, seven healthy Korea military personnel participated in the experiment and are tested under three different walking postures comprised of the small, natural and large trunk flexion. There are around 5 degree differences of waist angle between each trunk flexion. The ground reaction forces were collected from the force plates and motion kinematic data are measured by the motion capture system. Based on these data, the impulses, momentums and mechanical works done on the center of body mass (COM) during the double support phase were computed. The result shows that the push-off and heel strike impulse are not relevant to the trunk flexion change, however the mechanical work by the push-off and heel strike were changed by the trunk flexion variation. It is because the vertical velocity of the COM during the double support phase is increased significantly with an increase in the trunk flexion. Therefore, we can know that the gait efficiency of the loaded gait depends on the trunk flexion angle. Also, even though the gravitational impulse and pre-collision momentum are changed by the trunk flexion variation, the after-collision momentum is almost constant regardless of the trunk flexion variation.

Keywords: Loaded gait, collision, impulse, gravity, heel strike, push-off, gait analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842
578 Modern Detection and Description Methods for Natural Plants Recognition

Authors: Masoud Fathi Kazerouni, Jens Schlemper, Klaus-Dieter Kuhnert

Abstract:

Green planet is one of the Earth’s names which is known as a terrestrial planet and also can be named the fifth largest planet of the solar system as another scientific interpretation. Plants do not have a constant and steady distribution all around the world, and even plant species’ variations are not the same in one specific region. Presence of plants is not only limited to one field like botany; they exist in different fields such as literature and mythology and they hold useful and inestimable historical records. No one can imagine the world without oxygen which is produced mostly by plants. Their influences become more manifest since no other live species can exist on earth without plants as they form the basic food staples too. Regulation of water cycle and oxygen production are the other roles of plants. The roles affect environment and climate. Plants are the main components of agricultural activities. Many countries benefit from these activities. Therefore, plants have impacts on political and economic situations and future of countries. Due to importance of plants and their roles, study of plants is essential in various fields. Consideration of their different applications leads to focus on details of them too. Automatic recognition of plants is a novel field to contribute other researches and future of studies. Moreover, plants can survive their life in different places and regions by means of adaptations. Therefore, adaptations are their special factors to help them in hard life situations. Weather condition is one of the parameters which affect plants life and their existence in one area. Recognition of plants in different weather conditions is a new window of research in the field. Only natural images are usable to consider weather conditions as new factors. Thus, it will be a generalized and useful system. In order to have a general system, distance from the camera to plants is considered as another factor. The other considered factor is change of light intensity in environment as it changes during the day. Adding these factors leads to a huge challenge to invent an accurate and secure system. Development of an efficient plant recognition system is essential and effective. One important component of plant is leaf which can be used to implement automatic systems for plant recognition without any human interface and interaction. Due to the nature of used images, characteristic investigation of plants is done. Leaves of plants are the first characteristics to select as trusty parts. Four different plant species are specified for the goal to classify them with an accurate system. The current paper is devoted to principal directions of the proposed methods and implemented system, image dataset, and results. The procedure of algorithm and classification is explained in details. First steps, feature detection and description of visual information, are outperformed by using Scale invariant feature transform (SIFT), HARRIS-SIFT, and FAST-SIFT methods. The accuracy of the implemented methods is computed. In addition to comparison, robustness and efficiency of results in different conditions are investigated and explained.

Keywords: SIFT combination, feature extraction, feature detection, natural images, natural plant recognition, HARRIS-SIFT, FAST-SIFT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 729
577 Incorporating Lexical-Semantic Knowledge into Convolutional Neural Network Framework for Pediatric Disease Diagnosis

Authors: Xiaocong Liu, Huazhen Wang, Ting He, Xiaozheng Li, Weihan Zhang, Jian Chen

Abstract:

The utilization of electronic medical record (EMR) data to establish the disease diagnosis model has become an important research content of biomedical informatics. Deep learning can automatically extract features from the massive data, which brings about breakthroughs in the study of EMR data. The challenge is that deep learning lacks semantic knowledge, which leads to impracticability in medical science. This research proposes a method of incorporating lexical-semantic knowledge from abundant entities into a convolutional neural network (CNN) framework for pediatric disease diagnosis. Firstly, medical terms are vectorized into Lexical Semantic Vectors (LSV), which are concatenated with the embedded word vectors of word2vec to enrich the feature representation. Secondly, the semantic distribution of medical terms serves as Semantic Decision Guide (SDG) for the optimization of deep learning models. The study evaluates the performance of LSV-SDG-CNN model on four kinds of Chinese EMR datasets. Additionally, CNN, LSV-CNN, and SDG-CNN are designed as baseline models for comparison. The experimental results show that LSV-SDG-CNN model outperforms baseline models on four kinds of Chinese EMR datasets. The best configuration of the model yielded an F1 score of 86.20%. The results clearly demonstrate that CNN has been effectively guided and optimized by lexical-semantic knowledge, and LSV-SDG-CNN model improves the disease classification accuracy with a clear margin.

Keywords: lexical semantics, feature representation, semantic decision, convolutional neural network, electronic medical record

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 594
576 LSGENSYS - An Integrated System for Pattern Recognition and Summarisation

Authors: Hema Nair

Abstract:

This paper presents a new system developed in Java® for pattern recognition and pattern summarisation in multi-band (RGB) satellite images. The system design is described in some detail. Results of testing the system to analyse and summarise patterns in SPOT MS images and LANDSAT images are also discussed.

Keywords: Pattern recognition, image analysis, feature extraction, blackboard component, linguistic summary.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1547
575 Iris Recognition Based On the Low Order Norms of Gradient Components

Authors: Iman A. Saad, Loay E. George

Abstract:

Iris pattern is an important biological feature of human body; it becomes very hot topic in both research and practical applications. In this paper, an algorithm is proposed for iris recognition and a simple, efficient and fast method is introduced to extract a set of discriminatory features using first order gradient operator applied on grayscale images. The gradient based features are robust, up to certain extents, against the variations may occur in contrast or brightness of iris image samples; the variations are mostly occur due lightening differences and camera changes. At first, the iris region is located, after that it is remapped to a rectangular area of size 360x60 pixels. Also, a new method is proposed for detecting eyelash and eyelid points; it depends on making image statistical analysis, to mark the eyelash and eyelid as a noise points. In order to cover the features localization (variation), the rectangular iris image is partitioned into N overlapped sub-images (blocks); then from each block a set of different average directional gradient densities values is calculated to be used as texture features vector. The applied gradient operators are taken along the horizontal, vertical and diagonal directions. The low order norms of gradient components were used to establish the feature vector. Euclidean distance based classifier was used as a matching metric for determining the degree of similarity between the features vector extracted from the tested iris image and template features vectors stored in the database. Experimental tests were performed using 2639 iris images from CASIA V4-Interival database, the attained recognition accuracy has reached up to 99.92%.

Keywords: Iris recognition, contrast stretching, gradient features, texture features, Euclidean metric.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1965
574 Development of an Ensemble Classification Model Based on Hybrid Filter-Wrapper Feature Selection for Email Phishing Detection

Authors: R. B. Ibrahim, M. S. Argungu, I. M. Mungadi

Abstract:

It is obvious in this present time, internet has become an indispensable part of human life since its inception. The Internet has provided diverse opportunities to make life so easy for human beings, through the adoption of various channels. Among these channels are email, internet banking, video conferencing, and the like. Email is one of the easiest means of communication hugely accepted among individuals and organizations globally. But over decades the security integrity of this platform has been challenged with malicious activities like Phishing. Email phishing is designed by phishers to fool the recipient into handing over sensitive personal information such as passwords, credit card numbers, account credentials, social security numbers, etc. This activity has caused a lot of financial damage to email users globally which has resulted in bankruptcy, sudden death of victims, and other health-related sicknesses. Although many methods have been proposed to detect email phishing, in this research, the results of multiple machine-learning methods for predicting email phishing have been compared with the use of filter-wrapper feature selection. It is worth noting that all three models performed substantially but one outperformed the other. The dataset used for these models is obtained from Kaggle online data repository, while three classifiers: decision tree, Naïve Bayes, and Logistic regression are ensemble (Bagging) respectively. Results from the study show that the Decision Tree (CART) bagging ensemble recorded the highest accuracy of 98.13% using PEF (Phishing Essential Features). This result further demonstrates the dependability of the proposed model.

Keywords: Ensemble, hybrid, filter-wrapper, phishing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 178
573 Faster Pedestrian Recognition Using Deformable Part Models

Authors: Alessandro Preziosi, Antonio Prioletti, Luca Castangia

Abstract:

Deformable part models achieve high precision in pedestrian recognition, but all publicly available implementations are too slow for real-time applications. We implemented a deformable part model algorithm fast enough for real-time use by exploiting information about the camera position and orientation. This implementation is both faster and more precise than alternative DPM implementations. These results are obtained by computing convolutions in the frequency domain and using lookup tables to speed up feature computation. This approach is almost an order of magnitude faster than the reference DPM implementation, with no loss in precision. Knowing the position of the camera with respect to horizon it is also possible prune many hypotheses based on their size and location. The range of acceptable sizes and positions is set by looking at the statistical distribution of bounding boxes in labelled images. With this approach it is not needed to compute the entire feature pyramid: for example higher resolution features are only needed near the horizon. This results in an increase in mean average precision of 5% and an increase in speed by a factor of two. Furthermore, to reduce misdetections involving small pedestrians near the horizon, input images are supersampled near the horizon. Supersampling the image at 1.5 times the original scale, results in an increase in precision of about 4%. The implementation was tested against the public KITTI dataset, obtaining an 8% improvement in mean average precision over the best performing DPM-based method. By allowing for a small loss in precision computational time can be easily brought down to our target of 100ms per image, reaching a solution that is faster and still more precise than all publicly available DPM implementations.

Keywords: Autonomous vehicles, deformable part model, dpm, pedestrian recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1397
572 Design and Implementation of Client Server Network Management System for Ethernet LAN

Authors: May Paing Paing Zaw, Su Myat Marlar Soe

Abstract:

Network Management Systems have played a great important role in information systems. Management is very important and essential in any fields. There are many managements such as configuration management, fault management, performance management, security management, accounting management and etc. Among them, configuration, fault and security management is more important than others. Because these are essential and useful in any fields. Configuration management is to monitor and maintain the whole system or LAN. Fault management is to detect and troubleshoot the system. Security management is to control the whole system. This paper intends to increase the network management functionalities including configuration management, fault management and security management. In configuration management system, this paper specially can support the USB ports and devices to detect and read devices configuration and solve to detect hardware port and software ports. In security management system, this paper can provide the security feature for the user account setting and user management and proxy server feature. And all of the history of the security such as user account and proxy server history are kept in the java standard serializable file. So the user can view the history of the security and proxy server anytime. If the user uses this system, the user can ping the clients from the network and the user can view the result of the message in fault management system. And this system also provides to check the network card and can show the NIC card setting. This system is used RMI (Remote Method Invocation) and JNI (Java Native Interface) technology. This paper is to implement the client/server network management system using Java 2 Standard Edition (J2SE). This system can provide more than 10 clients. And then this paper intends to show data or message structure of client/server and how to work using TCP/IP protocol.

Keywords: TCP/ IP based client server application

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3602
571 Transformer Life Enhancement Using Dynamic Switching of Second Harmonic Feature in IEDs

Authors: K. N. Dinesh Babu, P. K. Gargava

Abstract:

Energization of a transformer results in sudden flow of current which is an effect of core magnetization. This current will be dominated by the presence of second harmonic, which in turn is used to segregate fault and inrush current, thus guaranteeing proper operation of the relay. This additional security in the relay sometimes obstructs or delays differential protection in a specific scenario, when the 2nd harmonic content was present during a genuine fault. This kind of scenario can result in isolation of the transformer by Buchholz and pressure release valve (PRV) protection, which is acted when fault creates more damage in transformer. Such delays involve a huge impact on the insulation failure, and chances of repairing or rectifying fault of problem at site become very dismal. Sometimes this delay can cause fire in the transformer, and this situation becomes havoc for a sub-station. Such occurrences have been observed in field also when differential relay operation was delayed by 10-15 ms by second harmonic blocking in some specific conditions. These incidences have led to the need for an alternative solution to eradicate such unwarranted delay in operation in future. Modern numerical relay, called as intelligent electronic device (IED), is embedded with advanced protection features which permit higher flexibility and better provisions for tuning of protection logic and settings. Such flexibility in transformer protection IEDs, enables incorporation of alternative methods such as dynamic switching of second harmonic feature for blocking the differential protection with additional security. The analysis and precautionary measures carried out in this case, have been simulated and discussed in this paper to ensure that similar solutions can be adopted to inhibit analogous issues in future.

Keywords: Differential protection, intelligent electronic device (IED), 2nd harmonic, inrush inhibit.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1048
570 E-Learning Management Systems General Framework

Authors: Hamed Fawareh

Abstract:

The recent development in learning technologies leads to emerge many learning management systems (LMS). In this study, we concentrate on the specifications and characteristics of LMSs. Furthermore, this paper emphasizes on the feature of e-learning management systems. The features take on the account main indicators to assist and evaluate the quality of e-learning systems. The proposed indicators based of ten dimensions.

Keywords: E-Learning, System Requirement, Social Requirement, Learning Management System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2522
569 Remaining Useful Life Estimation of Bearings Based on Nonlinear Dimensional Reduction Combined with Timing Signals

Authors: Zhongmin Wang, Wudong Fan, Hengshan Zhang, Yimin Zhou

Abstract:

In data-driven prognostic methods, the prediction accuracy of the estimation for remaining useful life of bearings mainly depends on the performance of health indicators, which are usually fused some statistical features extracted from vibrating signals. However, the existing health indicators have the following two drawbacks: (1) The differnet ranges of the statistical features have the different contributions to construct the health indicators, the expert knowledge is required to extract the features. (2) When convolutional neural networks are utilized to tackle time-frequency features of signals, the time-series of signals are not considered. To overcome these drawbacks, in this study, the method combining convolutional neural network with gated recurrent unit is proposed to extract the time-frequency image features. The extracted features are utilized to construct health indicator and predict remaining useful life of bearings. First, original signals are converted into time-frequency images by using continuous wavelet transform so as to form the original feature sets. Second, with convolutional and pooling layers of convolutional neural networks, the most sensitive features of time-frequency images are selected from the original feature sets. Finally, these selected features are fed into the gated recurrent unit to construct the health indicator. The results state that the proposed method shows the enhance performance than the related studies which have used the same bearing dataset provided by PRONOSTIA.

Keywords: Continuous wavelet transform, convolution neural network, gated recurrent unit, health indicators, remaining useful life.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 767
568 Machine Learning Techniques for COVID-19 Detection: A Comparative Analysis

Authors: Abeer Aljohani

Abstract:

The COVID-19 virus spread has been one of the extreme pandemics across the globe. It is also referred as corona virus which is a contagious disease that continuously mutates into numerous variants. Currently, the B.1.1.529 variant labeled as Omicron is detected in South Africa. The huge spread of COVID-19 disease has affected several lives and has surged exceptional pressure on the healthcare systems worldwide. Also, everyday life and the global economy have been at stake. Numerous COVID-19 cases have produced a huge burden on hospitals as well as health workers. To reduce this burden, this paper predicts COVID-19 disease based on the symptoms and medical history of the patient. As machine learning is a widely accepted area and gives promising results for healthcare, this research presents an architecture for COVID-19 detection using ML techniques integrated with feature dimensionality reduction. This paper uses a standard University of California Irvine (UCI) dataset for predicting COVID-19 disease. This dataset comprises symptoms of 5434 patients. This paper also compares several supervised ML techniques on the presented architecture. The architecture has also utilized 10-fold cross validation process for generalization and Principal Component Analysis (PCA) technique for feature reduction. Standard parameters are used to evaluate the proposed architecture including F1-Score, precision, accuracy, recall, Receiver Operating Characteristic (ROC) and Area under Curve (AUC). The results depict that Decision tree, Random Forest and neural networks outperform all other state-of-the-art ML techniques. This result can be used to effectively identify COVID-19 infection cases.

Keywords: Supervised machine learning, COVID-19 prediction, healthcare analytics, Random Forest, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 384
567 Integrating Context Priors into a Decision Tree Classification Scheme

Authors: Kasim Terzic, Bernd Neumann

Abstract:

Scene interpretation systems need to match (often ambiguous) low-level input data to concepts from a high-level ontology. In many domains, these decisions are uncertain and benefit greatly from proper context. This paper demonstrates the use of decision trees for estimating class probabilities for regions described by feature vectors, and shows how context can be introduced in order to improve the matching performance.

Keywords: Classification, Decision Trees, Interpretation, Vision

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1300
566 Ratio-Dependent Food Chain Models with Three Trophic Levels

Authors: R. Kara, M. Can

Abstract:

In this paper we study a food chain model with three trophic levels and Michaelis-Menten type ratio-dependent functional response. Distinctive feature of this model is the sensitive dependence of the dynamical behavior on the initial populations and parameters of the real world. The stability of the equilibrium points are also investigated.

Keywords: Food chain, Ratio dependent models, Three level models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
565 The Mouth and Gastrointestinal Tract of the African Lung Fish Protopterus annectens in River Niger at Agenebode, Nigeria

Authors: Marian Agbugui

Abstract:

The West African Lung fishes are fishes rich in protein and serve as an important source of food supply for man. The kind of food ingested by this group of fishes is dependent on the alimentary canal as well as the fish’s digestive processes which provide suitable modifications for maximum utilization of food taken. A study of the alimentary canal of P. annectens will expose the best information on the anatomy and histology of the fish. Samples of P. annectens were dissected to reveal the liver, pancreas and entire gut wall. Digital pictures of the mouth, jaws and the Gastrointestinal Tract (GIT) were taken. The entire gut was identified, sectioned and micro graphed. P. annectens was observed to possess a terminal mouth that opens up to 10% of its total body length, an adaptive feature to enable the fish to swallow the whole of its pry. Its dentition is made up of incisors- scissor-like teeth which also help to firmly grip, seize and tear through the skin of prey before swallowing. A short, straight and longitudinal GIT was observed in P. annectens which is known to be common feature in lungfishes, though it is thought to be a primitive characteristic similar to the lamprey. The oesophagus is short and distensible similar to other predatory and carnivorous species. Food is temporarily stored in the stomach before it is passed down into the intestine. A pyloric aperture is seen at the end of the double folded pyloric valve which leads into an intestine that makes up 75% of the whole GIT. The intestine begins at the posterior end of the pyloric aperture and winds down in six coils through the whole length intestine and ends at the cloaca. From this study it is concluded that P. annectens possess a composite GIT with organs similar to other lung fishes; it is a detritor with carnivorous abilities.

Keywords: Gastrointestinal tract, incisors scissor-like teeth, intestine, mucus, Protopterus annectens, serosa.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742
564 Lung Cancer Detection and Multi Level Classification Using Discrete Wavelet Transform Approach

Authors: V. Veeraprathap, G. S. Harish, G. Narendra Kumar

Abstract:

Uncontrolled growth of abnormal cells in the lung in the form of tumor can be either benign (non-cancerous) or malignant (cancerous). Patients with Lung Cancer (LC) have an average of five years life span expectancy provided diagnosis, detection and prediction, which reduces many treatment options to risk of invasive surgery increasing survival rate. Computed Tomography (CT), Positron Emission Tomography (PET), and Magnetic Resonance Imaging (MRI) for earlier detection of cancer are common. Gaussian filter along with median filter used for smoothing and noise removal, Histogram Equalization (HE) for image enhancement gives the best results without inviting further opinions. Lung cavities are extracted and the background portion other than two lung cavities is completely removed with right and left lungs segmented separately. Region properties measurements area, perimeter, diameter, centroid and eccentricity measured for the tumor segmented image, while texture is characterized by Gray-Level Co-occurrence Matrix (GLCM) functions, feature extraction provides Region of Interest (ROI) given as input to classifier. Two levels of classifications, K-Nearest Neighbor (KNN) is used for determining patient condition as normal or abnormal, while Artificial Neural Networks (ANN) is used for identifying the cancer stage is employed. Discrete Wavelet Transform (DWT) algorithm is used for the main feature extraction leading to best efficiency. The developed technology finds encouraging results for real time information and on line detection for future research.

Keywords: ANN, DWT, GLCM, KNN, ROI, artificial neural networks, discrete wavelet transform, gray-level co-occurrence matrix, k-nearest neighbor, region of interest.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 960
563 An Analysis of Learners’ Reports for Measuring Co-Creational Education

Authors: Takatoshi Ishii, Koji Kimita, Keiichi Muramatsu, Yoshiki Shimomura

Abstract:

To increase the quality of learning, teacher and learner need mutual effort for realization of educational value. For this purpose, we need to manage the co-creational education among teacher and learners. In this research, we try to find a feature of co-creational education. To be more precise, we analyzed learners’ reports by natural language processing, and extract some features that describe the state of the co-creational education.

Keywords: Co-creational education, e-portfolios, ICT integration, labeled Latent Dirichlet allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
562 Using Data Fusion for Biometric Verification

Authors: Richard A. Wasniowski

Abstract:

A wide spectrum of systems require reliable personal recognition schemes to either confirm or determine the identity of an individual person. This paper considers multimodal biometric system and their applicability to access control, authentication and security applications. Strategies for feature extraction and sensor fusion are considered and contrasted. Issues related to performance assessment, deployment and standardization are discussed. Finally future directions of biometric systems development are discussed.

Keywords: Multimodal, biometric, recognition, fusion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
561 Producing Graphical User Interface from Activity Diagrams

Authors: Ebitisam K. Elberkawi, Mohamed M. Elammari

Abstract:

Graphical User Interface (GUI) is essential to programming, as is any other characteristic or feature, due to the fact that GUI components provide the fundamental interaction between the user and the program. Thus, we must give more interest to GUI during building and development of systems. Also, we must give a greater attention to the user who is the basic corner in the dealing with the GUI. This paper introduces an approach for designing GUI from one of the models of business workflows which describe the workflow behavior of a system, specifically through Activity Diagrams (AD).

Keywords: Activity Diagram, Graphical User Interface.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2823
560 Javanese Character Recognition Using Hidden Markov Model

Authors: Anastasia Rita Widiarti, Phalita Nari Wastu

Abstract:

Hidden Markov Model (HMM) is a stochastic method which has been used in various signal processing and character recognition. This study proposes to use HMM to recognize Javanese characters from a number of different handwritings, whereby HMM is used to optimize the number of state and feature extraction. An 85.7 % accuracy is obtained as the best result in 16-stated vertical model using pure HMM. This initial result is satisfactory for prompting further research.

Keywords: Character recognition, off-line handwritingrecognition, Hidden Markov Model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1989
559 Representation of Memory of Forced Displacement in Central and Eastern Europe after World War II in Polish and German Cinemas

Authors: Ilona Copik

Abstract:

The aim of this study is to analyze the representation of memories of the forced displacement of Poles and Germans from the eastern territories in 1945 as depicted by Polish and German feature films between the years 1945-1960. The aftermath of World War II and the Allied agreements concluded at Yalta and Potsdam (1945) resulted in changes in national borders in Central and Eastern Europe and the large-scale transfer of civilians. The westward migration became a symbol of the new post-war division of Europe, new spheres of influence separated by the Iron Curtain. For years it was a controversial topic in both Poland and Germany due to the geopolitical alignment (the socialist East and capitalist West of Europe), as well as the unfinished debate between the victims and perpetrators of the war. The research premise is to take a comparative view of the conflicted cultures of Polish and German memory, to reflect on the possibility of an international dialogue about the past recorded in film images, and to discover the potential of film as a narrative warning against totalitarian inclinations. Until now, films made between 1945 and 1960 in Poland and the German occupation zones have been analyzed mainly in the context of artistic strategies subordinated to ideology and historical politics. In this study, the intention is to take a critical approach leading to the recognition of how films work as collective memory media, how they reveal the mechanisms of memory/ forgetting, and what settlement topoi and migration myths they contain. The main hypothesis is that feature films about forced displacement, in addition to the politics of history - separate in each country - reveal comparable transnational individual experiences: the chaos of migration, the trauma of losing one's home, the conflicts accompanying the familiar/foreign, the difficulty of cultural adaptation, the problem of lost identity, etc.

Keywords: Forced displacement, Polish and German cinema, war victims, World War II.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 150
558 Web Data Scraping Technology Using Term Frequency Inverse Document Frequency to Enhance the Big Data Quality on Sentiment Analysis

Authors: Sangita Pokhrel, Nalinda Somasiri, Rebecca Jeyavadhanam, Swathi Ganesan

Abstract:

Tourism is a booming industry with huge future potential for global wealth and employment. There are countless data generated over social media sites every day, creating numerous opportunities to bring more insights to decision-makers. The integration of big data technology into the tourism industry will allow companies to conclude where their customers have been and what they like. This information can then be used by businesses, such as those in charge of managing visitor centres or hotels, etc., and the tourist can get a clear idea of places before visiting. The technical perspective of natural language is processed by analysing the sentiment features of online reviews from tourists, and we then supply an enhanced long short-term memory (LSTM) framework for sentiment feature extraction of travel reviews. We have constructed a web review database using a crawler and web scraping technique for experimental validation to evaluate the effectiveness of our methodology. The text form of sentences was first classified through VADER and RoBERTa model to get the polarity of the reviews. In this paper, we have conducted study methods for feature extraction, such as Count Vectorization and Term Frequency – Inverse Document Frequency (TFIDF) Vectorization and implemented Convolutional Neural Network (CNN) classifier algorithm for the sentiment analysis to decide if the tourist’s attitude towards the destinations is positive, negative, or simply neutral based on the review text that they posted online. The results demonstrated that from the CNN algorithm, after pre-processing and cleaning the dataset, we received an accuracy of 96.12% for the positive and negative sentiment analysis.

Keywords: Counter vectorization, Convolutional Neural Network, Crawler, data technology, Long Short-Term Memory, LSTM, Web Scraping, sentiment analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 175
557 Improving Security by Using Secure Servers Communicating via Internet with Standalone Secure Software

Authors: Carlos Gonzalez

Abstract:

This paper describes the use of the Internet as a feature to enhance the security of our software that is going to be distributed/sold to users potentially all over the world. By placing in a secure server some of the features of the secure software, we increase the security of such software. The communication between the protected software and the secure server is done by a double lock algorithm. This paper also includes an analysis of intruders and describes possible responses to detect threats.

Keywords: Internet, secure software, threats, cryptography process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1045
556 Analysis of Sonographic Images of Breast

Authors: M. Bastanfard, S. Jafari, B.Jalaeian

Abstract:

Ultrasound images are very useful diagnostic tool to distinguish benignant from malignant masses of the breast. However, there is a considerable overlap between benignancy and malignancy in ultrasonic images which makes it difficult to interpret. In this paper, a new noise removal algorithm was used to improve the images and classification process. The masses are classified by wavelet transform's coefficients, morphological and textural features as a novel feature set for this goal. The Bayesian estimation theory is used to classify the tissues in three classes according to their features.

Keywords: Bayesian estimation theory, breast, ultrasound, wavelet.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1446
555 A Multiresolution Approach for Noised Texture Classification based on the Co-occurrence Matrix and First Order Statistics

Authors: M. Ben Othmen, M. Sayadi, F. Fnaiech

Abstract:

Wavelet transform provides several important characteristics which can be used in a texture analysis and classification. In this work, an efficient texture classification method, which combines concepts from wavelet and co-occurrence matrices, is presented. An Euclidian distance classifier is used to evaluate the various methods of classification. A comparative study is essential to determine the ideal method. Using this conjecture, we developed a novel feature set for texture classification and demonstrate its effectiveness

Keywords: Classification, Wavelet, Co-occurrence, Euclidian Distance, Classifier, Texture.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1481
554 Robust Artificial Neural Network Architectures

Authors: A. Schuster

Abstract:

Many artificial intelligence (AI) techniques are inspired by problem-solving strategies found in nature. Robustness is a key feature in many natural systems. This paper studies robustness in artificial neural networks (ANNs) and proposes several novel, nature inspired ANN architectures. The paper includes encouraging results from experimental studies on these networks showing increased robustness.

Keywords: robustness, robust artificial neural networks architectures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407
553 Development System for Emotion Detection Based on Brain Signals and Facial Images

Authors: Suprijanto, Linda Sari, Vebi Nadhira , IGN. Merthayasa. Farida I.M

Abstract:

Detection of human emotions has many potential applications. One of application is to quantify attentiveness audience in order evaluate acoustic quality in concern hall. The subjective audio preference that based on from audience is used. To obtain fairness evaluation of acoustic quality, the research proposed system for multimodal emotion detection; one modality based on brain signals that measured using electroencephalogram (EEG) and the second modality is sequences of facial images. In the experiment, an audio signal was customized which consist of normal and disorder sounds. Furthermore, an audio signal was played in order to stimulate positive/negative emotion feedback of volunteers. EEG signal from temporal lobes, i.e. T3 and T4 was used to measured brain response and sequence of facial image was used to monitoring facial expression during volunteer hearing audio signal. On EEG signal, feature was extracted from change information in brain wave, particularly in alpha and beta wave. Feature of facial expression was extracted based on analysis of motion images. We implement an advance optical flow method to detect the most active facial muscle form normal to other emotion expression that represented in vector flow maps. The reduce problem on detection of emotion state, vector flow maps are transformed into compass mapping that represents major directions and velocities of facial movement. The results showed that the power of beta wave is increasing when disorder sound stimulation was given, however for each volunteer was giving different emotion feedback. Based on features derived from facial face images, an optical flow compass mapping was promising to use as additional information to make decision about emotion feedback.

Keywords: Multimodal Emotion Detection, EEG, Facial Image, Optical Flow, compass mapping, Brain Wave

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2292
552 Implementation of a Serializer to Represent PHP Objects in the Extensible Markup Language

Authors: Lidia N. Hernández-Piña, Carlos R. Jaimez-González

Abstract:

Interoperability in distributed systems is an important feature that refers to the communication of two applications written in different programming languages. This paper presents a serializer and a de-serializer of PHP objects to and from XML, which is an independent library written in the PHP programming language. The XML generated by this serializer is independent of the programming language, and can be used by other existing Web Objects in XML (WOX) serializers and de-serializers, which allow interoperability with other object-oriented programming languages.

Keywords: Interoperability, PHP object serialization, PHP to XML, web objects in XML, WOX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 753
551 A Novel FFT-Based Frequency Offset Estimator for OFDM Systems

Authors: Mahdi Masoumi, Mehrdad Ardebilipoor, Seyed Aidin Bassam

Abstract:

This paper proposes a novel frequency offset (FO) estimator for orthogonal frequency division multiplexing. Simplicity is most significant feature of this algorithm and can be repeated to achieve acceptable accuracy. Also fractional and integer part of FO is estimated jointly with use of the same algorithm. To do so, instead of using conventional algorithms that usually use correlation function, we use DFT of received signal. Therefore, complexity will be reduced and we can do synchronization procedure by the same hardware that is used to demodulate OFDM symbol. Finally, computer simulation shows that the accuracy of this method is better than other conventional methods.

Keywords: DFT, Estimator, Frequency Offset, IEEE802.11a, OFDM.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1497