Search results for: Contentbased Image Retrieval System
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 9647

Search results for: Contentbased Image Retrieval System

9287 A Novel VLSI Architecture for Image Compression Model Using Low power Discrete Cosine Transform

Authors: Vijaya Prakash.A.M, K.S.Gurumurthy

Abstract:

In Image processing the Image compression can improve the performance of the digital systems by reducing the cost and time in image storage and transmission without significant reduction of the Image quality. This paper describes hardware architecture of low complexity Discrete Cosine Transform (DCT) architecture for image compression[6]. In this DCT architecture, common computations are identified and shared to remove redundant computations in DCT matrix operation. Vector processing is a method used for implementation of DCT. This reduction in computational complexity of 2D DCT reduces power consumption. The 2D DCT is performed on 8x8 matrix using two 1-Dimensional Discrete cosine transform blocks and a transposition memory [7]. Inverse discrete cosine transform (IDCT) is performed to obtain the image matrix and reconstruct the original image. The proposed image compression algorithm is comprehended using MATLAB code. The VLSI design of the architecture is implemented Using Verilog HDL. The proposed hardware architecture for image compression employing DCT was synthesized using RTL complier and it was mapped using 180nm standard cells. . The Simulation is done using Modelsim. The simulation results from MATLAB and Verilog HDL are compared. Detailed analysis for power and area was done using RTL compiler from CADENCE. Power consumption of DCT core is reduced to 1.027mW with minimum area[1].

Keywords: Discrete Cosine Transform (DCT), Inverse DiscreteCosine Transform (IDCT), Joint Photographic Expert Group (JPEG), Low Power Design, Very Large Scale Integration (VLSI) .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3144
9286 Medical Image Registration by Minimizing Divergence Measure Based on Tsallis Entropy

Authors: Shaoyan Sun, Liwei Zhang, Chonghui Guo

Abstract:

As the use of registration packages spreads, the number of the aligned image pairs in image databases (either by manual or automatic methods) increases dramatically. These image pairs can serve as a set of training data. Correspondingly, the images that are to be registered serve as testing data. In this paper, a novel medical image registration method is proposed which is based on the a priori knowledge of the expected joint intensity distribution estimated from pre-aligned training images. The goal of the registration is to find the optimal transformation such that the distance between the observed joint intensity distribution obtained from the testing image pair and the expected joint intensity distribution obtained from the corresponding training image pair is minimized. The distance is measured using the divergence measure based on Tsallis entropy. Experimental results show that, compared with the widely-used Shannon mutual information as well as Tsallis mutual information, the proposed method is computationally more efficient without sacrificing registration accuracy.

Keywords: Multimodality images, image registration, Shannonentropy, Tsallis entropy, mutual information, Powell optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1643
9285 Multilevel Activation Functions For True Color Image Segmentation Using a Self Supervised Parallel Self Organizing Neural Network (PSONN) Architecture: A Comparative Study

Authors: Siddhartha Bhattacharyya, Paramartha Dutta, Ujjwal Maulik, Prashanta Kumar Nandi

Abstract:

The paper describes a self supervised parallel self organizing neural network (PSONN) architecture for true color image segmentation. The proposed architecture is a parallel extension of the standard single self organizing neural network architecture (SONN) and comprises an input (source) layer of image information, three single self organizing neural network architectures for segmentation of the different primary color components in a color image scene and one final output (sink) layer for fusion of the segmented color component images. Responses to the different shades of color components are induced in each of the three single network architectures (meant for component level processing) by applying a multilevel version of the characteristic activation function, which maps the input color information into different shades of color components, thereby yielding a processed component color image segmented on the basis of the different shades of component colors. The number of target classes in the segmented image corresponds to the number of levels in the multilevel activation function. Since the multilevel version of the activation function exhibits several subnormal responses to the input color image scene information, the system errors of the three component network architectures are computed from some subnormal linear index of fuzziness of the component color image scenes at the individual level. Several multilevel activation functions are employed for segmentation of the input color image scene using the proposed network architecture. Results of the application of the multilevel activation functions to the PSONN architecture are reported on three real life true color images. The results are substantiated empirically with the correlation coefficients between the segmented images and the original images.

Keywords: Colour image segmentation, fuzzy set theory, multi-level activation functions, parallel self-organizing neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2026
9284 A Robust Data Hiding Technique based on LSB Matching

Authors: Emad T. Khalaf, Norrozila Sulaiman

Abstract:

Many researchers are working on information hiding techniques using different ideas and areas to hide their secrete data. This paper introduces a robust technique of hiding secret data in image based on LSB insertion and RSA encryption technique. The key of the proposed technique is to encrypt the secret data. Then the encrypted data will be converted into a bit stream and divided it into number of segments. However, the cover image will also be divided into the same number of segments. Each segment of data will be compared with each segment of image to find the best match segment, in order to create a new random sequence of segments to be inserted then in a cover image. Experimental results show that the proposed technique has a high security level and produced better stego-image quality.

Keywords: steganography; LSB Matching; RSA Encryption; data segments

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2226
9283 A CBR System to New Product Development: An Application for Hearing Devices Design

Authors: J.L. Castro, K. Benghazi, M.V. Hurtado, M. Navarro, J.M. Zurita

Abstract:

Nowadays, quick technological changes force companies to develop innovative products in an increasingly competitive environment. Therefore, how to enhance the time of new product development is very important. This design problem often lacks the exact formula for getting it, and highly depends upon human designers- past experiences. For these reasons, in this work, a Casebased reasoning (CBR) system to assist in new product development is proposed. When a case is recovered from the case base, the system will take into account not only the attribute-s specific value and how important it is. It will also take into account if the attribute has a positive influence over the product development. Hence the manufacturing time will be improved. This information will be introduced as a new concept called “adaptability". An application to this method for hearing instrument new design illustrates the proposed approach.

Keywords: Case based reasoning, Fuzzy logic, New product development, Retrieval stage, Similarity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
9282 Building Facade Study in Lahijan City, Iran: The Impact of Facade's Visual Elements on Historical Image

Authors: N. Utaberta, A. Jalali, S. Johar, M. Surat, A. I. Che-Ani

Abstract:

Buildings are considered as significant part in the cities, which plays main role in organization and arrangement of city appearance, which is affects image of that building facades, as an connective between inner and outer space, have a main role in city image and they are classified as rich image and poor image by people evaluation which related to visual architectural and urban elements in building facades. the buildings in Karimi street , in Lahijan city where, lies in north of Iran, contain the variety of building's facade types which, have made a city image in Historical part of Lahijan city, while reflected the Iranian cities identity. The study attempt to identify the architectural and urban elements that impression the image of building facades in historical area, based on public evaluation. Quantitative method were used and the data was collected through questionnaire survey, the result presented architectural style, color, shape, and design evaluated by people as most important factor which should be understate in future development. in fact, the rich architectural style with strong design make strong city image as weak design make poor city image.

Keywords: Building's facade, historical area.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3919
9281 A New Categorization of Image Quality Metrics Based On a Model of Human Quality Perception

Authors: Maria Grazia Albanesi, Riccardo Amadeo

Abstract:

This study presents a new model of the human image quality assessment process: the aim is to highlightthe foundations of the image quality metrics proposed in literature, by identifyingthe cognitive/physiological or mathematical principles of their development and the relation with the actual human quality assessment process. The model allows to createa novel categorization of objective and subjective image quality metrics. Our work includes an overview of the most used or effectiveobjective metrics in literature, and, for each of them, we underline its main characteristics, with reference to the rationale of the proposed model and categorization. From the results of this operation, we underline a problem that affects all the presented metrics: the fact that many aspects of human biasesare not taken in account at all. We then propose a possible methodology to address this issue.

Keywords: Eye-Tracking, image quality assessment metric, MOS, quality of user experience, visual perception.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
9280 Effects of Data Correlation in a Sparse-View Compressive Sensing Based Image Reconstruction

Authors: Sajid Abbas, Joon Pyo Hong, Jung-Ryun Lee, Seungryong Cho

Abstract:

Computed tomography and laminography are heavily investigated in a compressive sensing based image reconstruction framework to reduce the dose to the patients as well as to the radiosensitive devices such as multilayer microelectronic circuit boards. Nowadays researchers are actively working on optimizing the compressive sensing based iterative image reconstruction algorithm to obtain better quality images. However, the effects of the sampled data’s properties on reconstructed the image’s quality, particularly in an insufficient sampled data conditions have not been explored in computed laminography. In this paper, we investigated the effects of two data properties i.e. sampling density and data incoherence on the reconstructed image obtained by conventional computed laminography and a recently proposed method called spherical sinusoidal scanning scheme. We have found that in a compressive sensing based image reconstruction framework, the image quality mainly depends upon the data incoherence when the data is uniformly sampled.

Keywords: Computed tomography, Computed laminography, Compressive sending, Low-dose.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1676
9279 Evaluation of Mixed-Mode Stress Intensity Factor by Digital Image Correlation and Intelligent Hybrid Method

Authors: K. Machida, H. Yamada

Abstract:

Displacement measurement was conducted on compact normal and shear specimens made of acrylic homogeneous material subjected to mixed-mode loading by digital image correlation. The intelligent hybrid method proposed by Nishioka et al. was applied to the stress-strain analysis near the crack tip. The accuracy of stress-intensity factor at the free surface was discussed from the viewpoint of both the experiment and 3-D finite element analysis. The surface images before and after deformation were taken by a CMOS camera, and we developed the system which enabled the real time stress analysis based on digital image correlation and inverse problem analysis. The great portion of processing time of this system was spent on displacement analysis. Then, we tried improvement in speed of this portion. In the case of cracked body, it is also possible to evaluate fracture mechanics parameters such as the J integral, the strain energy release rate, and the stress-intensity factor of mixed-mode. The 9-points elliptic paraboloid approximation could not analyze the displacement of submicron order with high accuracy. The analysis accuracy of displacement was improved considerably by introducing the Newton-Raphson method in consideration of deformation of a subset. The stress-intensity factor was evaluated with high accuracy of less than 1% of the error.

Keywords: Digital image correlation, mixed mode, Newton-Raphson method, stress intensity factor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1708
9278 Image Compression Using Hybrid Vector Quantization

Authors: S.Esakkirajan, T. Veerakumar, V. Senthil Murugan, P.Navaneethan

Abstract:

In this paper, image compression using hybrid vector quantization scheme such as Multistage Vector Quantization (MSVQ) and Pyramid Vector Quantization (PVQ) are introduced. A combined MSVQ and PVQ are utilized to take advantages provided by both of them. In the wavelet decomposition of the image, most of the information often resides in the lowest frequency subband. MSVQ is applied to significant low frequency coefficients. PVQ is utilized to quantize the coefficients of other high frequency subbands. The wavelet coefficients are derived using lifting scheme. The main aim of the proposed scheme is to achieve high compression ratio without much compromise in the image quality. The results are compared with the existing image compression scheme using MSVQ.

Keywords: Lifting Scheme, Multistage Vector Quantization and Pyramid Vector Quantization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1941
9277 Local Spectrum Feature Extraction for Face Recognition

Authors: Muhammad Imran Ahmad, Ruzelita Ngadiran, Mohd Nazrin Md Isa, Nor Ashidi Mat Isa, Mohd Zaizu Ilyas, Raja Abdullah Raja Ahmad, Said Amirul Anwar Ab Hamid, Muzammil Jusoh

Abstract:

This paper presents two techniques, local feature extraction using image spectrum and low frequency spectrum modelling using GMM to capture the underlying statistical information to improve the performance of face recognition system. Local spectrum features are extracted using overlap sub block window that are mapped on the face image. For each of this block, spatial domain is transformed to frequency domain using DFT. A low frequency coefficient is preserved by discarding high frequency coefficients by applying rectangular mask on the spectrum of the facial image. Low frequency information is non- Gaussian in the feature space and by using combination of several Gaussian functions that has different statistical properties, the best feature representation can be modelled using probability density function. The recognition process is performed using maximum likelihood value computed using pre-calculated GMM components. The method is tested using FERET datasets and is able to achieved 92% recognition rates.

Keywords: Local features modelling, face recognition system, Gaussian mixture models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260
9276 Bridging Quantitative and Qualitative of Glaucoma Detection

Authors: Noor Elaiza Abdul Khalid, Noorhayati Mohamed Noor, Zamalia Mahmud, Saadiah Yahya, and Norharyati Md Ariff

Abstract:

Glaucoma diagnosis involves extracting three features of the fundus image; optic cup, optic disc and vernacular. Present manual diagnosis is expensive, tedious and time consuming. A number of researches have been conducted to automate this process. However, the variability between the diagnostic capability of an automated system and ophthalmologist has yet to be established. This paper discusses the efficiency and variability between ophthalmologist opinion and digital technique; threshold. The efficiency and variability measures are based on image quality grading; poor, satisfactory or good. The images are separated into four channels; gray, red, green and blue. A scientific investigation was conducted on three ophthalmologists who graded the images based on the image quality. The images are threshold using multithresholding and graded as done by the ophthalmologist. A comparison of grade from the ophthalmologist and threshold is made. The results show there is a small variability between result of ophthalmologists and digital threshold.

Keywords: Digital Fundus Image, Glaucoma Detection, Multithresholding, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2048
9275 Adaptive Bidirectional Flow for Image Interpolation and Enhancement

Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang

Abstract:

Image interpolation is a common problem in imaging applications. However, most interpolation algorithms in existence suffer visually the effects of blurred edges and jagged artifacts in the image to some extent. This paper presents an adaptive feature preserving bidirectional flow process, where an inverse diffusion is performed to sharpen edges along the normal directions to the isophote lines (edges), while a normal diffusion is done to remove artifacts (“jaggies") along the tangent directions. In order to preserve image features such as edges, corners and textures, the nonlinear diffusion coefficients are locally adjusted according to the directional derivatives of the image. Experimental results on synthetic images and nature images demonstrate that our interpolation algorithm substantially improves the subjective quality of the interpolated images over conventional interpolations.

Keywords: anisotropic diffusion, bidirectional flow, directional derivatives, edge enhancement, image interpolation, inverse flow, shock filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
9274 Comparison of Compression Ability Using DCT and Fractal Technique on Different Imaging Modalities

Authors: Sumathi Poobal, G. Ravindran

Abstract:

Image compression is one of the most important applications Digital Image Processing. Advanced medical imaging requires storage of large quantities of digitized clinical data. Due to the constrained bandwidth and storage capacity, however, a medical image must be compressed before transmission and storage. There are two types of compression methods, lossless and lossy. In Lossless compression method the original image is retrieved without any distortion. In lossy compression method, the reconstructed images contain some distortion. Direct Cosine Transform (DCT) and Fractal Image Compression (FIC) are types of lossy compression methods. This work shows that lossy compression methods can be chosen for medical image compression without significant degradation of the image quality. In this work DCT and Fractal Compression using Partitioned Iterated Function Systems (PIFS) are applied on different modalities of images like CT Scan, Ultrasound, Angiogram, X-ray and mammogram. Approximately 20 images are considered in each modality and the average values of compression ratio and Peak Signal to Noise Ratio (PSNR) are computed and studied. The quality of the reconstructed image is arrived by the PSNR values. Based on the results it can be concluded that the DCT has higher PSNR values and FIC has higher compression ratio. Hence in medical image compression, DCT can be used wherever picture quality is preferred and FIC is used wherever compression of images for storage and transmission is the priority, without loosing picture quality diagnostically.

Keywords: DCT, FIC, PIFS, PSNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
9273 Multiplayer Game System for Therapeutic Exercise in Which Players with Different Athletic Abilities Can Participate on an Even Competitive Footing

Authors: Kazumoto Tanaka, Takayuki Fujino

Abstract:

Sports games conducted as a group are a form of therapeutic exercise for aged people with decreased strength and for people suffering from permanent damage of stroke and other conditions. However, it is difficult for patients with different athletic abilities to play a game on an equal footing. This study specifically examines a computer video game designed for therapeutic exercise, and a game system with support given depending on athletic ability. Thereby, anyone playing the game can participate equally. This video-game, to be specific, is a popular variant of balloon volleyball, in which players hit a balloon by hand before it falls to the floor. In this game system, each player plays the game watching a monitor on which the system displays tailor-made video-game images adjusted to the person’s athletic ability, providing players with player-adaptive assist support. We have developed a multiplayer game system with an image generation technique for the tailor-made video-game and conducted tests to evaluate it.

Keywords: Therapeutic exercise, computer video game, disability-adaptive assist, tailor-made video-game image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109
9272 Sounds Alike Name Matching for Myanmar Language

Authors: Yuzana, Khin Marlar Tun

Abstract:

Personal name matching system is the core of essential task in national citizen database, text and web mining, information retrieval, online library system, e-commerce and record linkage system. It has necessitated to the all embracing research in the vicinity of name matching. Traditional name matching methods are suitable for English and other Latin based language. Asian languages which have no word boundary such as Myanmar language still requires sounds alike matching system in Unicode based application. Hence we proposed matching algorithm to get analogous sounds alike (phonetic) pattern that is convenient for Myanmar character spelling. According to the nature of Myanmar character, we consider for word boundary fragmentation, collation of character. Thus we use pattern conversion algorithm which fabricates words in pattern with fragmented and collated. We create the Myanmar sounds alike phonetic group to help in the phonetic matching. The experimental results show that fragmentation accuracy in 99.32% and processing time in 1.72 ms.

Keywords: natural language processing, name matching, phonetic matching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
9271 Lecture Video Indexing and Retrieval Using Topic Keywords

Authors: B. J. Sandesh, Saurabha Jirgi, S. Vidya, Prakash Eljer, Gowri Srinivasa

Abstract:

In this paper, we propose a framework to help users to search and retrieve the portions in the lecture video of their interest. This is achieved by temporally segmenting and indexing the lecture video using the topic keywords. We use transcribed text from the video and documents relevant to the video topic extracted from the web for this purpose. The keywords for indexing are found by applying the non-negative matrix factorization (NMF) topic modeling techniques on the web documents. Our proposed technique first creates indices on the transcribed documents using the topic keywords, and these are mapped to the video to find the start and end time of the portions of the video for a particular topic. This time information is stored in the index table along with the topic keyword which is used to retrieve the specific portions of the video for the query provided by the users.

Keywords: Video indexing and retrieval, lecture videos, content based video search, multimodal indexing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1562
9270 Calibration of Parallel Multi-View Cameras

Authors: M. Ali-Bey, N. Manamanni, S. Moughamir

Abstract:

This paper focuses on the calibration problem of a multi-view shooting system designed for the production of 3D content for auto-stereoscopic visualization. The considered multiview camera is characterized by coplanar and decentered image sensors regarding to the corresponding optical axis. Based on the Faugéras and Toscani-s calibration approach, a calibration method is herein proposed for the case of multi-view camera with parallel and decentered image sensors. At first, the geometrical model of the shooting system is recalled and some industrial prototypes with some shooting simulations are presented. Next, the development of the proposed calibration method is detailed. Finally, some simulation results are presented before ending with some conclusions about this work.

Keywords: Auto-stereoscopic display, camera calibration, multi-view cameras, visual servoing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1705
9269 Image Dehazing Using Dark Channel Prior and Fast Guided Filter in Daubechies Lifting Wavelet Transform Domain

Authors: Harpreet Kaur, Sudipta Majumdar

Abstract:

In this paper a method for image dehazing is proposed in lifting wavelet transform domain. Lifting Daubechies (D4) wavelet has been used to obtain the approximate image and detail images.  As the haze is contained in low frequency part, only the approximate image is used for further processing. This region is processed by dehazing algorithm based on dark channel prior (DCP). The dehazed approximate image is then recombined with the detail images using inverse lifting wavelet transform. Implementation of lifting wavelet transform has the advantage of auxiliary memory saving, fast implementation and simplicity. Also, the proposed method deals with near white scene problem, blue horizon issue and localized light sources in a way to enhance image quality and makes the algorithm robust. Simulation results present improvement in terms of visual quality, parameters such as root mean square (RMS) contrast, structural similarity index (SSIM), entropy and execution time.

Keywords: Dark channel prior, image dehazing, lifting wavelet transform.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
9268 An Active Set Method in Image Inpainting

Authors: Marrick Neri, Esmeraldo Ronnie Rey Zara

Abstract:

In this paper, we apply a semismooth active set method to image inpainting. The method exploits primal and dual features of a proposed regularized total variation model, following after the technique presented in [4]. Numerical results show that the method is fast and efficient in inpainting sufficiently thin domains.

Keywords: Active set method, image inpainting, total variation model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
9267 Edge Detection in Low Contrast Images

Authors: Koushlendra Kumar Singh, Manish Kumar Bajpai, Rajesh K. Pandey

Abstract:

The edges of low contrast images are not clearly distinguishable to human eye. It is difficult to find the edges and boundaries in it. The present work encompasses a new approach for low contrast images. The Chebyshev polynomial based fractional order filter has been used for filtering operation on an image. The preprocessing has been performed by this filter on the input image. Laplacian of Gaussian method has been applied on preprocessed image for edge detection. The algorithm has been tested on two test images.

Keywords: Chebyshev polynomials, Fractional order differentiator, Laplacian of Gaussian (LoG) method, Low contrast image.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3280
9266 Feature Preserving Image Interpolation and Enhancement Using Adaptive Bidirectional Flow

Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang

Abstract:

Image interpolation is a common problem in imaging applications. However, most interpolation algorithms in existence suffer visually to some extent the effects of blurred edges and jagged artifacts in the image. This paper presents an adaptive feature preserving bidirectional flow process, where an inverse diffusion is performed to enhance edges along the normal directions to the isophote lines (edges), while a normal diffusion is done to remove artifacts (''jaggies'') along the tangent directions. In order to preserve image features such as edges, angles and textures, the nonlinear diffusion coefficients are locally adjusted according to the first and second order directional derivatives of the image. Experimental results on synthetic images and nature images demonstrate that our interpolation algorithm substantially improves the subjective quality of the interpolated images over conventional interpolations.

Keywords: anisotropic diffusion, bidirectional flow, directionalderivatives, edge enhancement, image interpolation, inverse flow, shock filter.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1501
9265 Advanced Information Extraction with n-gram based LSI

Authors: Ahmet Güven, Ö. Özgür Bozkurt, Oya Kalıpsız

Abstract:

Number of documents being created increases at an increasing pace while most of them being in already known topics and little of them introducing new concepts. This fact has started a new era in information retrieval discipline where the requirements have their own specialties. That is digging into topics and concepts and finding out subtopics or relations between topics. Up to now IR researches were interested in retrieving documents about a general topic or clustering documents under generic subjects. However these conventional approaches can-t go deep into content of documents which makes it difficult for people to reach to right documents they were searching. So we need new ways of mining document sets where the critic point is to know much about the contents of the documents. As a solution we are proposing to enhance LSI, one of the proven IR techniques by supporting its vector space with n-gram forms of words. Positive results we have obtained are shown in two different application area of IR domain; querying a document database, clustering documents in the document database.

Keywords: Document clustering, Information Extraction, Information Retrieval, LSI, n-gram.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
9264 A Study of Dose Distribution and Image Quality under an Automatic Tube Current Modulation (ATCM) System for a Toshiba Aquilion 64 CT Scanner Using a New Design of Phantom

Authors: S. Sookpeng, C. J. Martin, D. J. Gentle

Abstract:

Automatic tube current modulation (ATCM) systems are available for all CT manufacturers and are used for the majority of patients. Understanding how the systems work and their influence on patient dose and image quality is important for CT users, in order to gain the most effective use of the systems. In the present study, a new phantom was used for evaluating dose distribution and image quality under the ATCM operation for the Toshiba Aquilion 64 CT scanner using different ATCM options and a fixed mAs technique. A routine chest, abdomen and pelvis (CAP) protocol was selected for study and Gafchromic film was used to measure entrance surface dose (ESD), peripheral dose and central axis dose in the phantom. The results show the dose reductions achievable with various ATCM options, in relation with the target noise. The doses and image noise distribution were more uniform when the ATCM system was implemented compared with the fixed mAs technique. The lower limit set for the tube current will affect the modulations especially for the lower dose option. This limit prevented the tube current being reduced further and therefore the lower dose ATCM setting resembled a fixed mAs technique. Selection of a lower tube current limit is likely to reduce doses for smaller patients in scans of chest and neck regions.

Keywords: Computed Tomography (CT), Automatic Tube Current Modulation (ATCM), Automatic Exposure Control (AEC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2628
9263 Measurement of Steady Streaming from an Oscillating Bubble Using Particle Image Velocimetry

Authors: Yongseok Kwon, Woowon Jeong, Eunjin Cho, Sangkug Chung, Kyehan Rhee

Abstract:

Steady streaming flow fields induced by a 500 mm bubble oscillating at 12 kHz were measured using microscopic particle image velocimetry (PIV). The accuracy of velocity measurement using a micro PIV system was checked by comparing the measured velocity fields with the theoretical velocity profiles in fully developed laminar flow. The steady streaming flow velocities were measured in the sagittal plane of the bubble attached on the wall. Measured velocity fields showed upward jet flow with two symmetric counter-rotating vortices, and the maximum streaming velocity was about 12 mm/s, which was within the velocity ranges measured by other researchers. The measured streamlines were compared with the analytical solution, and they also showed a reasonable agreement.

Keywords: Oscillating bubble, Particle-Image-Velocimetry microstreaming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1825
9262 Statistical Feature Extraction Method for Wood Species Recognition System

Authors: Mohd Iz'aan Paiz Bin Zamri, Anis Salwa Mohd Khairuddin, Norrima Mokhtar, Rubiyah Yusof

Abstract:

Effective statistical feature extraction and classification are important in image-based automatic inspection and analysis. An automatic wood species recognition system is designed to perform wood inspection at custom checkpoints to avoid mislabeling of timber which will results to loss of income to the timber industry. The system focuses on analyzing the statistical pores properties of the wood images. This paper proposed a fuzzy-based feature extractor which mimics the experts’ knowledge on wood texture to extract the properties of pores distribution from the wood surface texture. The proposed feature extractor consists of two steps namely pores extraction and fuzzy pores management. The total number of statistical features extracted from each wood image is 38 features. Then, a backpropagation neural network is used to classify the wood species based on the statistical features. A comprehensive set of experiments on a database composed of 5200 macroscopic images from 52 tropical wood species was used to evaluate the performance of the proposed feature extractor. The advantage of the proposed feature extraction technique is that it mimics the experts’ interpretation on wood texture which allows human involvement when analyzing the wood texture. Experimental results show the efficiency of the proposed method.

Keywords: Classification, fuzzy, inspection system, image analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
9261 Semi-automatic Background Detection in Microscopic Images

Authors: Alessandro Bevilacqua, Alessandro Gherardi, Ludovico Carozza, Filippo Piccinini

Abstract:

The last years have seen an increasing use of image analysis techniques in the field of biomedical imaging, in particular in microscopic imaging. The basic step for most of the image analysis techniques relies on a background image free of objects of interest, whether they are cells or histological samples, to perform further analysis, such as segmentation or mosaicing. Commonly, this image consists of an empty field acquired in advance. However, many times achieving an empty field could not be feasible. Or else, this could be different from the background region of the sample really being studied, because of the interaction with the organic matter. At last, it could be expensive, for instance in case of live cell analyses. We propose a non parametric and general purpose approach where the background is built automatically stemming from a sequence of images containing even objects of interest. The amount of area, in each image, free of objects just affects the overall speed to obtain the background. Experiments with different kinds of microscopic images prove the effectiveness of our approach.

Keywords: Microscopy, flat field correction, background estimation, image segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1839
9260 Analytical Analysis of Image Representation by Their Discrete Wavelet Transform

Authors: R. M. Farouk

Abstract:

In this paper, we present an analytical analysis of the representation of images as the magnitudes of their transform with the discrete wavelets. Such a representation plays as a model for complex cells in the early stage of visual processing and of high technical usefulness for image understanding, because it makes the representation insensitive to small local shifts. We found that if the signals are band limited and of zero mean, then reconstruction from the magnitudes is unique up to the sign for almost all signals. We also present an iterative reconstruction algorithm which yields very good reconstruction up to the sign minor numerical errors in the very low frequencies.

Keywords: Wavelets, Image processing signal processing, Image reconstruction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1393
9259 Automatic 2D/2D Registration using Multiresolution Pyramid based Mutual Information in Image Guided Radiation Therapy

Authors: Jing Jia, Shanqing Huang, Fang Liu, Qiang Ren, Gui Li, Mengyun Cheng, Chufeng Jin, Yican Wu

Abstract:

Medical image registration is the key technology in image guided radiation therapy (IGRT) systems. On the basis of the previous work on our IGRT prototype with a biorthogonal x-ray imaging system, we described a method focused on the 2D/2D rigid-body registration using multiresolution pyramid based mutual information in this paper. Three key steps were involved in the method : firstly, four 2D images were obtained including two x-ray projection images and two digital reconstructed radiographies(DRRs ) as the input for the registration ; Secondly, each pair of the corresponding x-ray image and DRR image were matched using multiresolution pyramid based mutual information under the ITK registration framework ; Thirdly, we got the final couch offset through a coordinate transformation by calculating the translations acquired from the two pairs of the images. A simulation example of a parotid gland tumor case and a clinical example of an anthropomorphic head phantom were employed in the verification tests. In addition, the influence of different CT slice thickness were tested. The simulation results showed that the positioning errors were 0.068±0.070, 0.072±0.098, 0.154±0.176mm along three axes which were lateral, longitudinal and vertical. The clinical test indicated that the positioning errors of the planned isocenter were 0.066, 0.07, 2.06mm on average with a CT slice thickness of 2.5mm. It can be concluded that our method with its verified accuracy and robustness can be effectively used in IGRT systems for patient setup.

Keywords: 2D/2D registration, image guided radiation therapy, multi resolution pyramid, mutual information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
9258 Unsupervised Image Segmentation Based on Fuzzy Connectedness with Sale Space Theory

Authors: Yuanjie Zheng, Jie Yang, Yue Zhou

Abstract:

In this paper, we propose an approach of unsupervised segmentation with fuzzy connectedness. Valid seeds are first specified by an unsupervised method based on scale space theory. A region is then extracted for each seed with a relative object extraction method of fuzzy connectedness. Afterwards, regions are merged according to the values between them of an introduced measure. Some theorems and propositions are also provided to show the reasonableness of the measure for doing mergence. Experiment results on a synthetic image, a color image and a large amount of MR images of our method are reported.

Keywords: Image segmentation, unsupervised imagesegmentation, fuzzy connectedness, scale space.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1349