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Abstract—In this paper, we apply a semismooth active set 

method to image inpainting. The method exploits primal and dual 
features of a proposed regularized total variation model, following 
after the technique presented in [4]. Numerical results show that the 
method is fast and efficient in inpainting sufficiently thin domains. 
 

Keywords—Active set method, image inpainting, total variation 
model.  

I. INTRODUCTION 
HE  process of filling-in removed, damaged, or unwanted 
regions in images is called inpainting. This is synonymous 

with image interpolation wherein continuously defined data is 
constructed on a region in such a way that the region blends 
well with the surrounding features. For a long time, inpainting 
has been used by artists in restoring artistic paintings. In [1], 
Bertalmio et al first applied inpainting to digital images by 
using high order PDE models. Since then, numerous 
approaches to inpainting have been developed: variational 
techniques, wavelet-based methods, combination of wavelets 
and total variation minimization, elastica model, isotropic 
diffusion, etc.. 

In [2], Chan and Shen introduced the following total 
variation model that inpaints non-texture type images: 

 

�������	
�� � � ������
�� � ��� 	� � ���
 �����������������������	� 
 
where the observed image is denoted by ��, E is any fixed 
closed domain outside D, and ��� denotes the Euclidean norm. 
The image domain � � � is taken to be a square. The model is 
closely related to the Rudin, Osher, and Fatemi (ROF) model 
for image denoising. Since the TV model is nondifferentiable, 
Chan and Shen introduced a global smoothing parameter to 
the TV term and a steady solution is obtained using a low pass 
filter and a Gauss-Jordan iteration scheme. 

A variational model for image reconstruction on a 
rectangular image domain � with Lipschitz continuous 
boundary �  is   

 

�������	! "� � ��������! � ��� �#� � ���! �� � �� �������!  

 
In [4], Hintermueller and Stadler regularized the above 
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model by local smoothing on the TV term, i.e., by replacing $ �������!  with$ %&	����'!  where 
 

%&	�� ( ) ��&������ �*����� + ,����� � &� �*����� - , 

 
and, . /0 The resulting model is  
 �������	! 12 $ ��������! � 32 $ �#� � ���! �� �� $ %&	��!                         (2) 

 
Further, they developed a semismooth Newton-type method 

that solves the resulting regularized version of the TV model 
using an active set strategy. The method was shown to 
converge superlinearly. 

In this paper, we modify the regularized variational model 
(2) to make it amenable to image inpainting. The primary 
change is in the restriction of the fidelity term $ 32	�452 to the 
non-inpainting domain E. We develop an active-set approach 
to solve the resulting model and we show that the method 
exhibits good inpainting capabilities.  

II.   MODEL 
In the discrete setting, each (i,j) pixel in the 6 7 6 grid of 

pixels in� � � is represented by �8'9. For ease in computation, 
we stack the image matrix u to an image vector v. The 
components of the image vector vare described as:  

 :	94�;<8 ( �8'9*=>�� ? @' A ? 6 
 

where: � BC'D ( 6�0 The discrete total variation of v is 
formulated as 

����������������������������EF	: (G�H�:IJ�C
JK�

(GL	�M:J� � N�O:PJ������������	Q
C
JK�

 

 

whereH�:IJ ( � R	�M:J' N�O:PJ<;ST0The gradient compo-
nents�Mand �O are approximated using forward differences. 
The discrete total variation image inpainting model for (1) is 
 

���U�VW EF	: � X	: ( �G�H�:IJ�C
JK� � �Y �: � :��Z
[\� �������	] 

where we define ���Z^\ ( _` �8�8�^  for an index set W, and 
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:� is the observed image in stacked form. We propose the 
following regularized variation model for inpainting: 

 

���U�Va )�%&	�: � ���U4Ub�cdef2 � "�G�H�:IJ��C
JK� g�������������	h& 

 
 

where 

%&	�� ( ) i�&G �H�UIj�2a
jk3 �*�H�:IJ� + ,����� � &� �*�H�:IJ� - , 

 
Forl ( �'Y' m ' D0Clearly, model 	h& is convex and is 
guaranteed a unique solution. When the inpainting region D is 
empty, Nh&Preverts to the working model in [4]. 

The active set method that we implement exploits the 
primal-dual features of 	h&, whose Fenchel pre-dual is the 
supremum of 

 �����������n�o�p�q � :��nZ
[\� � ��n:�nZ
[\� � ��n�o�p�q�nZ�e\� ��������	h& 
 

where q � B�C'�the Euclidean norm nHqIJn ? r,  
 

n���nZs\� ( tu	vC � wx4��' �y �*�z ( �['u	�wx4��' �y �*�z ( �0e  

 xis the discrete Laplacian, and o�p ( ���T is the discretized 
divergence (cf. [5]).     

III. OPTIMALITY CONDITIONS 

The solutions to the primal Nh&Pand dual N�&Pproblems, 
given by :{& and q{&respectively, satisfy the following optimal-
ity conditions ([4],[5]): 

 �����������wx:{& � :{& � o�p�q{& ( :� =���[��������������������	|���������������������������������������������wx:{& ( o�p�q{& =���e�������������������	}  

 

~ ,�q{&�J � r��:{&�J ( / �* ��q{&�J� + r'
���:{&�J� �q{&�J ( r��:{&�J �* ��q{&�J� ( r =���[ � ��e 	� 

 
forl ( �'Y' m 'D0 

Let � � BCwith �8 ( �if pixel-index @ � �, and 0 
otherwise. We combine equations (5) and (6) as 

������������������������wx:{& � o�p�q{&��
[N:{& � :�P ( /�������������������	� 
 

where�
[ ( �	�' the D 7 D diagonal matrix. 
The optimal conditions in (7) can also be combined as: ����������������������N,' �H�:{&IJ�P Hq{&IJ � r��:{&�J ( /������������������	� 

for every l ( �'Y' m 'D0 In the next section, we present a 
Newton-type solution method based on the optimality 
conditions presented here. 

IV. A SEMISMOOTH METHOD 
Using equations (8) and (9), we determine a Newton 

method that mirrors the active set approach in [4] for image 
denoising. Results in generalized differentiability and 
semismoothness (cf. [3]) allow the use of a Newton step to 
(5),(6), and (9) at thek-th approximations :� and q�: 

 

��=�wx:� � o�p�q� � �
[	�:� � :�r�:� � �	��q� �                (10) 

where 

� = �wx � �
[ �o�p�� �	���' � ( ��U���'����������������������� ��������������������� ( �rv�C � ����3�	q��	�:�' �� ( ���N,v�C' �	�:�P � B�C 
 

with the mapping �� B�C � B�C given by 
 N�	:P8 ( n:8nwith: � B�C' @ ( �'Y' m 'YD 
 
Now, the active set indicator ����3 ( �	�� which is a 
2D 7 D diagonal matrix with 
 

�8� � )� �*N�	�:�P8 - ,/ �*N�	�:�P8 + , 

determines whether a component is part of the active 
set��<�by setting �8�= 1, or not.The matrix J is the Jacobianof �, that is, 

�	�: ( ��N�	�:P�4� ��	�M: �N�O:P�	�M: �N�O:P� 

 
With all components of ��> 0, this means that the diagonal 
matrix �	�� is invertible. We obtain�� and�U as 
 ������������� ( r�4�	���:� � q� � �4�	�����U�������������	�� 
and ������������������������������������������������U ( X�����������������������������������������	�Y 
with �� ( �wx � �
[ � o�p�4�	����X� ( wx:� � o�p� �4�	���:� � �
[	�:� � :�0 

 
Whenever �� is not positive definite, we use the shift 

modifications in [4] to get a positive definite matrix ��<0 
We propose the following active set method for inpainting: 

 
Algorithm: Active Set Method 
1)  Set k = 0 and initialize 	:�' q� � BC 7 B�C0 
2) Determine the members of the active set by solving ���������3 � B�C 7 B�C0 
3) Compute��<  if q� is not feasible for all @ ( �'m 'D0 
Otherwise set ��< ( ��0 
4) Solve for �U in ��<�U ( X� and compute ��. 
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