Search results for: High performance computing
6977 Cost-Effective Design of Space Structures Joints: A Review
Authors: Mohammed I. Ali, Feng Fan, Peter N. Khakina, Ma H.H
Abstract:
In construction of any structure, the aesthetic and utility values should be considered in such a way as to make the structure cost-effective. Most structures are composed of elements and joints which are very critical in any skeletal space structure because they majorly determine the performance of the structure. In early times, most space structures were constructed using rigid joints which had the advantage of better performing structures as compared to pin-jointed structures but with the disadvantage of requiring all the construction work to be done on site. The discovery of semi-rigid joints now enables connections to be prefabricated and quickly assembled on site while maintaining good performance. In this paper, cost-effective is discussed basing on strength of connectors at the joints, buckling of joints and overall structure, and the effect of initial geometrical imperfections. Several existing joints are reviewed by classifying them into categories and discussing where they are most suited and how they perform structurally. Also, finite element modeling using ABAQUS is done to determine the buckling behavior. It is observed that some joints are more economical than others. The rise to span ratio and imperfections are also found to affect the buckling of the structures. Based on these, general principles that guide the design of cost-effective joints and structures are discussed.
Keywords: Buckling, Connectors, Joint stiffness, Eccentricity, Second moment of area, Semi-rigid joints.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 47766976 Research on Transformer Condition-based Maintenance System using the Method of Fuzzy Comprehensive Evaluation
Authors: Po-Chun Lin, Jyh-Cherng Gu
Abstract:
This study adopted previous fault patterns, results of detection analysis, historical records and data, and experts- experiences to establish fuzzy principles and estimate the failure probability index of components of a power transformer. Considering that actual parameters and limiting conditions of parameters may differ, this study used the standard data of IEC, IEEE, and CIGRE as condition parameters. According to the characteristics of each condition parameter, relative degradation was introduced to reflect the degree of influence of the factors on the transformer condition. The method of fuzzy mathematics was adopted to determine the subordinate function of the transformer condition. The calculation used the Matlab Fuzzy Tool Box to select the condition parameters of coil winding, iron core, bushing, OLTC, insulating oil and other auxiliary components and factors (e.g., load records, performance history, and maintenance records) of the transformer to establish the fuzzy principles. Examples were presented to support the rationality and effectiveness of the evaluation method of power transformer performance conditions, as based on fuzzy comprehensive evaluation.Keywords: Fuzzy, relative degradation degree, condition-basedmaintenance, power transformer
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24706975 Polymer Aerostatic Thrust Bearing under Circular Support for High Static Stiffness
Abstract:
A new design of aerostatic thrust bearing is proposed for high static stiffness. The bearing body, which is mead of polymer covered with metallic membrane, is held by a circular ring. Such a support helps form a concave air gap to grasp the air pressure. The polymer body, which can be made rapidly by either injection or molding is able to provide extra damping under dynamic loading. The smooth membrane not only serves as the bearing surface but also protects the polymer body. The restrictor is a capillary inside a silicone tube. It can passively compensate the variation of load by expanding the capillary diameter for more air flux. In the present example, the stiffness soars from 15.85 N/μm of typical bearing to 349.85 N/μm at bearing elevation 9.5 μm; meanwhile the load capacity also enhances from 346.86 N to 704.18 N.Keywords: Aerostatic, bearing, polymer, static stiffness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20856974 Numerical Simulations of Electronic Cooling with In-Line and Staggered Pin Fin Heat Sinks
Authors: Yue-Tzu Yang, Hsiang-Wen Tang, Jian-Zhang Yin, Chao-Han Wu
Abstract:
Three-dimensional incompressible turbulent fluid flow and heat transfer of pin fin heat sinks using air as a cooling fluid are numerically studied in this study. Two different kinds of pin fins are compared in the thermal performance, including circular and square cross sections, both are in-line and staggered arrangements. The turbulent governing equations are solved using a control-volume- based finite-difference method. Subsequently, numerical computations are performed with the realizable k - ԑ turbulence for the parameters studied, the fin height H, fin diameter D, and Reynolds number (Re) in the range of 7 ≤ H ≤ 10, 0.75 ≤ D ≤ 2, 2000 ≤ Re ≤ 126000 respectively. The numerical results are validated with available experimental data in the literature and good agreement has been found. It indicates that circular pin fins are streamlined in comparing with the square pin fins, the pressure drop is small than that of square pin fins, and heat transfer is not as good as the square pin fins. The thermal performance of the staggered pin fins is better than that of in-line pin fins because the staggered arrangements produce large disturbance. Both in-line and staggered arrangements show the same behavior for thermal resistance, pressure drop, and the entropy generation.
Keywords: Pin-fin, heat sinks, simulations, turbulent flow.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12706973 A Biomimetic Structural Form: Developing a Paradigm to Attain Vital Sustainability in Tall Architecture
Authors: Osama Al-Sehail
Abstract:
This paper argues for sustainability as a necessity in the evolution of tall architecture. It provides a different mode for dealing with sustainability in tall architecture, taking into consideration the speciality of its typology. To this end, the article develops a Biomimetic Structural Form as a paradigm to attain Vital Sustainability. A Biomimetic Structural Form, which is derived from the amalgamation of biomimicry as an approach for sustainability defining nature as source of knowledge and inspiration in solving humans’ problems and a Structural Form as a catalyst for evolving tall architecture, is a dynamic paradigm emerging from a conceptualizing and morphological process. A Biomimetic Structural Form is a flow system whose different forces and functions tend to be “better”, more "fit", to “survive”, and to be efficient. Through geometry and function—the two aspects of knowledge extracted from nature—the attributes of the Biomimetic Structural Form are formulated. Vital Sustainability is the survival level of sustainability in natural systems through which a system enhances the performance of its internal working and its interaction with the external environment. A Biomimetic Structural Form, in this context, is a medium for evolving tall architecture to emulate natural models in their ways of coexistence with the environment. As an integral part of this article, the sustainable super tall building 3Ts is discussed as a case study of applying Biomimetic Structural Form.Keywords: Biomimicry, design in nature, high-rise buildings, sustainability, structural form, tall architecture, vital sustainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15226972 Durability Study Partially Saturated Fly Ash Blended Cement Concrete
Authors: N. Shafiq, M. F. Nuruddin, S. C. Chin
Abstract:
This paper presents the experimental results of the investigation of various properties related to the durability and longterm performance of mortars made of Fly Ash blended cement, FA and Ordinary Portland cement, OPC. The properties that were investigated in an experimental program include; equilibration of specimen in different relative humidity, determination of total porosity, compressive strength, chloride permeability index, and electrical resistivity. Fly Ash blended cement mortar specimens exhibited 10% to 15% lower porosity when measured at equilibrium conditions in different relative humidities as compared to the specimens made of OPC mortar, which resulted in 6% to 8% higher compressive strength of FA blended cement mortar specimens. The effects of ambient relative humidity during sample equilibration on porosity and strength development were also studied. For specimens equilibrated in higher relative humidity conditions, such as 75%, the total porosity of different mortar specimens was between 35% to 50% less than the porosity of samples equilibrated in 12% relative humidity, consequently leading to higher compressive strengths of these specimens.A valid statistical correlation between values of compressive strength, porosity and the degree of saturation was obtained. Measured values of chloride permeability index of fly ash blended cement mortar were obtained as one fourth to one sixth of those measured for OPC mortar specimens, which indicates high resistance against chloride ion penetration in FA blended cement specimens, hence resulting in a highly durable mortar.Keywords: chloride permeability index, equilibrium condition, electrical resistivity, fly ash
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19436971 Analysis of Scattering Behavior in the Cavity of Phononic Crystals with Archimedean Tilings
Authors: Yi-Hua Chen, Hsiang-Wen Tang, I-Ling Chang, Lien-Wen Chen
Abstract:
The defect mode of two-dimensional phononic crystals with Archimedean tilings was explored in the present study. Finite element method and supercell method were used to obtain dispersion relation of phononic crystals. The simulations of the acoustic wave propagation within phononic crystals are demonstrated. Around the cavity which is created by removing several cylinders in the perfect Archimedean tilings, whispering-gallery mode (WGM) can be observed. The effects of the cavity geometry on the WGM modes are investigated. The WGM modes with high Q-factor and high cavity pressure can be obtained by phononic crystals with Archimedean tilings.
Keywords: Defect mode, Archimedean tilings, phononic crystals, whispering- gallery modes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11406970 Use of Cellulosic Fibres in Double Layer Porous Asphalt
Authors: Márcia Afonso, Marisa Dinis-Almeida, Cristina Fael
Abstract:
Climate change, namely precipitation patterns alteration, has led to extreme conditions such as floods and droughts. In turn, excessive construction has led to the waterproofing of the soil, increasing the surface runoff and decreasing the groundwater recharge capacity. The permeable pavements used in areas with low traffic lead to a decrease in the probability of floods peaks occurrence and the sediments reduction and pollutants transport, ensuring rainwater quality improvement. This study aims to evaluate the porous asphalt performance, developed in the laboratory, with addition of cellulosic fibres. One of the main objectives of cellulosic fibres use is to stop binder drainage, preventing its loss during storage and transport. Comparing to the conventional porous asphalt the cellulosic fibres addition improved the porous asphalt performance. The cellulosic fibres allowed the bitumen content increase, enabling retention and better aggregates coating and, consequently, a greater mixture durability. With this solution, it is intended to develop better practices of resilience and adaptation to the extreme climate changes and respond to the sustainability current demands, through the eco-friendly materials use. The mix design was performed for different size aggregates (with fine aggregates – PA1 and with coarse aggregates – PA2). The percentage influence of the fibres to be used was studied. It was observed that overall, the binder drainage decreases as the cellulose fibres percentage increases. It was found that the PA2 mixture obtained most binder drainage relative to PA1 mixture, irrespective of the fibres percentage used. Subsequently, the performance was evaluated through laboratory tests of indirect tensile stiffness modulus, water sensitivity, permeability and permanent deformation. The stiffness modulus for the two mixtures groups (with and without cellulosic fibres) presented very similar values between them. For the water sensitivity test it was observed that porous asphalt containing more fine aggregates are more susceptible to the water presence than mixtures with coarse aggregates. The porous asphalt with coarse aggregates have more air voids which allow water to pass easily leading to ITSR higher values. In the permeability test was observed that asphalt porous without cellulosic fibres presented had lower permeability than asphalt porous with cellulosic fibres. The resistance to permanent deformation results indicates better behaviour of porous asphalt with cellulosic fibres, verifying a bigger rut depth in porous asphalt without cellulosic fibres. In this study, it was observed that porous asphalt with bitumen higher percentages improve the performance to permanent deformation. This fact was only possible due to the bitumen retention by the cellulosic fibres.
Keywords: Binder drainage, cellulosic fibres, permanent deformation, porous asphalt.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7436969 Design and Simulation of Portable Telemedicine System for High Risk Cardiac Patients
Authors: V. Thulasi Bai, Srivatsa S. K.
Abstract:
Deaths from cardiovascular diseases have decreased substantially over the past two decades, largely as a result of advances in acute care and cardiac surgery. These developments have produced a growing population of patients who have survived a myocardial infarction. These patients need to be continuously monitored so that the initiation of treatment can be given within the crucial golden hour. The available conventional methods of monitoring mostly perform offline analysis and restrict the mobility of these patients within a hospital or room. Hence the aim of this paper is to design a Portable Cardiac Telemedicine System to aid the patients to regain their independence and return to an active work schedule, there by improving the psychological well being. The portable telemedicine system consists of a Wearable ECG Transmitter (WET) and a slightly modified mobile phone, which has an inbuilt ECG analyzer. The WET is placed on the body of the patient that continuously acquires the ECG signals from the high-risk cardiac patients who can move around anywhere. This WET transmits the ECG to the patient-s Bluetooth enabled mobile phone using blue tooth technology. The ECG analyzer inbuilt in the mobile phone continuously analyzes the heartbeats derived from the received ECG signals. In case of any panic condition, the mobile phone alerts the patients care taker by an SMS and initiates the transmission of a sample ECG signal to the doctor, via the mobile network.
Keywords: WET, ECG analyzer, Bluetooth, mobilecellular network, high risk cardiac patients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21026968 Clustering Mixed Data Using Non-normal Regression Tree for Process Monitoring
Authors: Youngji Yoo, Cheong-Sool Park, Jun Seok Kim, Young-Hak Lee, Sung-Shick Kim, Jun-Geol Baek
Abstract:
In the semiconductor manufacturing process, large amounts of data are collected from various sensors of multiple facilities. The collected data from sensors have several different characteristics due to variables such as types of products, former processes and recipes. In general, Statistical Quality Control (SQC) methods assume the normality of the data to detect out-of-control states of processes. Although the collected data have different characteristics, using the data as inputs of SQC will increase variations of data, require wide control limits, and decrease performance to detect outof- control. Therefore, it is necessary to separate similar data groups from mixed data for more accurate process control. In the paper, we propose a regression tree using split algorithm based on Pearson distribution to handle non-normal distribution in parametric method. The regression tree finds similar properties of data from different variables. The experiments using real semiconductor manufacturing process data show improved performance in fault detecting ability.Keywords: Semiconductor, non-normal mixed process data, clustering, Statistical Quality Control (SQC), regression tree, Pearson distribution system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17806967 Design and Control of PEM Fuel Cell Diffused Aeration System using Artificial Intelligence Techniques
Authors: Doaa M. Atia, Faten H. Fahmy, Ninet M. Ahmed, Hassen T. Dorrah
Abstract:
Fuel cells have become one of the major areas of research in the academia and the industry. The goal of most fish farmers is to maximize production and profits while holding labor and management efforts to the minimum. Risk of fish kills, disease outbreaks, poor water quality in most pond culture operations, aeration offers the most immediate and practical solution to water quality problems encountered at higher stocking and feeding rates. Many units of aeration system are electrical units so using a continuous, high reliability, affordable, and environmentally friendly power sources is necessary. Aeration of water by using PEM fuel cell power is not only a new application of the renewable energy, but also, it provides an affordable method to promote biodiversity in stagnant ponds and lakes. This paper presents a new design and control of PEM fuel cell powered a diffused air aeration system for a shrimp farm in Mersa Matruh in Egypt. Also Artificial intelligence (AI) techniques control is used to control the fuel cell output power by control input gases flow rate. Moreover the mathematical modeling and simulation of PEM fuel cell is introduced. A comparison study is applied between the performance of fuzzy logic control (FLC) and neural network control (NNC). The results show the effectiveness of NNC over FLC.Keywords: PEM fuel cell, Diffused aeration system, Artificialintelligence (AI) techniques, neural network control, fuzzy logiccontrol
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22146966 Conception of a Reliable, Low Cost and Autonomous Explorative Hovercraft
Authors: S. Burgalat, L. Teilhac, A. Brand, E. Chastel, M. Jumeline
Abstract:
The paper presents actual benefits and drawbacks of a multidirectional autonomous hovercraft conceived with limited resources and designed for indoor exploration. Recent developments in the field have led to the apparition of very powerful automotive systems capable of very high calculation and exploration in complex unknown environments. They usually propose very complex algorithms, high precision/cost sensors and sometimes have heavy calculation consumption with complex data fusion. These systems are usually powerful but have a certain price, and the benefits may not be worth the cost, especially considering their hardware limitations and their power consumption. The present approach is to build a compromise between cost, power consumption and results preciseness.
Keywords: Hovercraft, Indoor Exploration, Autonomous, Multidirectional, Wireless Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22276965 Rheological Modeling for Production of High Quality Polymeric
Authors: H.Hosseini, A.A. Azemati
Abstract:
The fundamental defect inherent to the thermoforming technology is wall-thickness variation of the products due to inadequate thermal processing during production of polymer. A nonlinear viscoelastic rheological model is implemented for developing the process model. This model describes deformation process of a sheet in thermoforming process. Because of relaxation pause after plug-assist stage and also implementation of two stage thermoforming process have minor wall-thickness variation and consequently better mechanical properties of polymeric articles. For model validation, a comparative analysis of the theoretical and experimental data is presented.Keywords: High-quality polymeric article, Thermal Processing, Rheological model, Minor wall-thickness variation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16136964 Classifying Biomedical Text Abstracts based on Hierarchical 'Concept' Structure
Authors: Rozilawati Binti Dollah, Masaki Aono
Abstract:
Classifying biomedical literature is a difficult and challenging task, especially when a large number of biomedical articles should be organized into a hierarchical structure. In this paper, we present an approach for classifying a collection of biomedical text abstracts downloaded from Medline database with the help of ontology alignment. To accomplish our goal, we construct two types of hierarchies, the OHSUMED disease hierarchy and the Medline abstract disease hierarchies from the OHSUMED dataset and the Medline abstracts, respectively. Then, we enrich the OHSUMED disease hierarchy before adapting it to ontology alignment process for finding probable concepts or categories. Subsequently, we compute the cosine similarity between the vector in probable concepts (in the “enriched" OHSUMED disease hierarchy) and the vector in Medline abstract disease hierarchies. Finally, we assign category to the new Medline abstracts based on the similarity score. The results obtained from the experiments show the performance of our proposed approach for hierarchical classification is slightly better than the performance of the multi-class flat classification.Keywords: Biomedical literature, hierarchical text classification, ontology alignment, text mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20116963 Effect of Core Stability Ex ercises on Trunk Muscle Balance in Healthy Adult Individuals
Authors: Amira A. A. Abdallah, Amir A. Beltagi
Abstract:
Background: Core stability training has recently attracted attention for improving muscle balance and optimizing performance in healthy and unhealthy individuals. Purpose: This study investigated the effect of beginner’s core stability exercises on trunk flexors’/extensors’ peak torque ratio and trunk flexors’ and extensors’ peak torques. Methods: Thirty five healthy individuals participated in the study. They were randomly assigned to two groups; experimental “group I, n=20” and control “group II, n=15”. Their mean age, weight and height were 20.7±2.4 vs. 20.3±0.61 years, 66.5±12.1 vs. 68.57±12.2 kg and 166.7±7.8 vs. 164.28 ±7.59 cm. for group I vs. group II. Data were collected using the Biodex Isokinetic system. The participants were tested twice; before and after a 6-week period during which group I performed a core stability training program. Results: The 2x2 Mixed Design ANOVA revealed that there were no significant differences (p>0.025) in the trunk flexors’/extensors’ peak torque ratio between the pre-test and post-test conditions for either group. Moreover, there were no significant differences (p>0.025) in the trunk flexion/extension ratios between both groups at either condition. However, the 2x2 Mixed Design MANOVA revealed significant increases (p<0.025) in the trunk flexors’ and extensors’ peak torques in the post-test condition compared with the pre-test in group I with no significant differences (p>0.025) in group II. Moreover, there was a significant increase (p<0.025) in the trunk flexors’ peak torque only in group I compared with group II in the post-test condition with no significant differences in the other conditions. Interpretation/Conclusion: The improvement in muscle performance indicated by the increase in the trunk flexors’ and extensors’ peak torques in the experimental group recommends including core stability training in the exercise programs that aim to improve muscle performance.
Keywords: Core Stability, Isokinetic, Trunk Muscles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36786962 Hygrothermal Assessment of Internally Insulated Prefabricated Concrete Wall in Polish Climatic Condition
Authors: D. Kaczorek
Abstract:
Internal insulation of external walls is often problematic due to increased moisture content in the wall and interstitial or surface condensation risk. In this paper, the hygrothermal performance of prefabricated, concrete, large panel, external wall typical for WK70 system, commonly used in Poland in the 70’s, with inside, additional insulation was investigated. Thermal insulation board made out of hygroscopic, natural materials with moisture buffer capacity and extruded polystyrene (EPS) board was used as interior insulation. Experience with this natural insulation is rare in Poland. The analysis was performed using WUFI software. First of all, the impact of various standard boundary conditions on the behavior of the different wall assemblies was tested. The comparison of results showed that the moisture class according to the EN ISO 13788 leads to too high values of total moisture content in the wall since the boundary condition according to the EN 15026 should be usually applied. Then, hygrothermal 1D-simulations were conducted by WUFI Pro for analysis of internally added insulation, and the weak point like the joint of the wall with the concrete ceiling was verified using 2D simulations. Results showed that, in the Warsaw climate and the indoor conditions adopted in accordance with EN 15026, in the tested wall assemblies, regardless of the type of interior insulation, there would not be any problems with moisture - inside the structure and on the interior surface.
Keywords: Concrete large panel wall, hygrothermal simulation, internal insulation, moisture related issues.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7196961 Multi-Objective Evolutionary Computation Based Feature Selection Applied to Behaviour Assessment of Children
Authors: F. Jiménez, R. Jódar, M. Martín, G. Sánchez, G. Sciavicco
Abstract:
Abstract—Attribute or feature selection is one of the basic strategies to improve the performances of data classification tasks, and, at the same time, to reduce the complexity of classifiers, and it is a particularly fundamental one when the number of attributes is relatively high. Its application to unsupervised classification is restricted to a limited number of experiments in the literature. Evolutionary computation has already proven itself to be a very effective choice to consistently reduce the number of attributes towards a better classification rate and a simpler semantic interpretation of the inferred classifiers. We present a feature selection wrapper model composed by a multi-objective evolutionary algorithm, the clustering method Expectation-Maximization (EM), and the classifier C4.5 for the unsupervised classification of data extracted from a psychological test named BASC-II (Behavior Assessment System for Children - II ed.) with two objectives: Maximizing the likelihood of the clustering model and maximizing the accuracy of the obtained classifier. We present a methodology to integrate feature selection for unsupervised classification, model evaluation, decision making (to choose the most satisfactory model according to a a posteriori process in a multi-objective context), and testing. We compare the performance of the classifier obtained by the multi-objective evolutionary algorithms ENORA and NSGA-II, and the best solution is then validated by the psychologists that collected the data.Keywords: Feature selection, multi-objective evolutionary computation, unsupervised classification, behavior assessment system for children.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14476960 Development of Integrated GIS Interface for Characteristics of Regional Daily Flow
Authors: Ju Young Lee, Jung-Seok Yang, Jaeyoung Choi
Abstract:
The purpose of this paper primarily intends to develop GIS interface for estimating sequences of stream-flows at ungauged stations based on known flows at gauged stations. The integrated GIS interface is composed of three major steps. The first, precipitation characteristics using statistical analysis is the procedure for making multiple linear regression equation to get the long term mean daily flow at ungauged stations. The independent variables in regression equation are mean daily flow and drainage area. Traditionally, mean flow data are generated by using Thissen polygon method. However, method for obtaining mean flow data can be selected by user such as Kriging, IDW (Inverse Distance Weighted), Spline methods as well as other traditional methods. At the second, flow duration curve (FDC) is computing at unguaged station by FDCs in gauged stations. Finally, the mean annual daily flow is computed by spatial interpolation algorithm. The third step is to obtain watershed/topographic characteristics. They are the most important factors which govern stream-flows. In summary, the simulated daily flow time series are compared with observed times series. The results using integrated GIS interface are closely similar and are well fitted each other. Also, the relationship between the topographic/watershed characteristics and stream flow time series is highly correlated.Keywords: Integrated GIS interface, spatial interpolation algorithm, FDC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15106959 Motor Imagery Signal Classification for a Four State Brain Machine Interface
Authors: Hema C. R., Paulraj M. P., S. Yaacob, A. H. Adom, R. Nagarajan
Abstract:
Motor imagery classification provides an important basis for designing Brain Machine Interfaces [BMI]. A BMI captures and decodes brain EEG signals and transforms human thought into actions. The ability of an individual to control his EEG through imaginary mental tasks enables him to control devices through the BMI. This paper presents a method to design a four state BMI using EEG signals recorded from the C3 and C4 locations. Principle features extracted through principle component analysis of the segmented EEG are analyzed using two novel classification algorithms using Elman recurrent neural network and functional link neural network. Performance of both classifiers is evaluated using a particle swarm optimization training algorithm; results are also compared with the conventional back propagation training algorithm. EEG motor imagery recorded from two subjects is used in the offline analysis. From overall classification performance it is observed that the BP algorithm has higher average classification of 93.5%, while the PSO algorithm has better training time and maximum classification. The proposed methods promises to provide a useful alternative general procedure for motor imagery classification
Keywords: Motor Imagery, Brain Machine Interfaces, Neural Networks, Particle Swarm Optimization, EEG signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24566958 Comparison between the Efficiency of Heterojunction Thin Film InGaP\GaAs\Ge and InGaP\GaAs Solar Cell
Authors: F. Djaafar, B. Hadri, G. Bachir
Abstract:
This paper presents the design parameters for a thin film 3J InGaP/GaAs/Ge solar cell with a simulated maximum efficiency of 32.11% using Tcad Silvaco. Design parameters include the doping concentration, molar fraction, layers’ thickness and tunnel junction characteristics. An initial dual junction InGaP/GaAs model of a previous published heterojunction cell was simulated in Tcad Silvaco to accurately predict solar cell performance. To improve the solar cell’s performance, we have fixed meshing, material properties, models and numerical methods. However, thickness and layer doping concentration were taken as variables. We, first simulate the InGaP\GaAs dual junction cell by changing the doping concentrations and thicknesses which showed an increase in efficiency. Next, a triple junction InGaP/GaAs/Ge cell was modeled by adding a Ge layer to the previous dual junction InGaP/GaAs model with an InGaP /GaAs tunnel junction.
Keywords: Heterojunction, modeling, simulation, thin film, Tcad Silvaco.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12456957 Ethanol Fuelled HCCI Engine: A Review
Authors: B. Bahri, A. A. Aziz, M. Shahbakhti, M. F. Muhamad Said
Abstract:
The greenhouse effect and limitations on carbon dioxide emissions concern engine maker and the future of the internal combustion engines should go toward substantially and improved thermal efficiency engine. Homogeneous charge compression ignition (HCCI) is an alternative high-efficiency technology for combustion engines to reduce exhaust emissions and fuel consumption. However, there are still tough challenges in the successful operation of HCCI engines, such as controlling the combustion phasing, extending the operating range, and high unburned hydrocarbon and CO emissions. HCCI and the exploitation of ethanol as an alternative fuel is one way to explore new frontiers of internal combustion engines with an eye towards maintaining its sustainability. This study was done to extend database knowledge about HCCI with ethanol a fuel.
Keywords: Ethanol combustion, Ethanol fuel, HCCI.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28256956 Impact of Process Parameters on Tensile Strength of Fused Deposition Modeling Printed Crisscross Poylactic Acid
Authors: Shilpesh R. Rajpurohit, Harshit K. Dave
Abstract:
Additive manufacturing gains the popularity in recent times, due to its capability to create prototype as well functional as end use product directly from CAD data without any specific requirement of tooling. Fused deposition modeling (FDM) is one of the widely used additive manufacturing techniques that are used to create functional end use part of polymer that is comparable with the injection-molded parts. FDM printed part has an application in various fields such as automobile, aerospace, medical, electronic, etc. However, application of FDM part is greatly affected by poor mechanical properties. Proper selection of the process parameter could enhance the mechanical performance of the printed part. In the present study, experimental investigation has been carried out to study the behavior of the mechanical performance of the printed part with respect to process variables. Three process variables viz. raster angle, raster width and layer height have been varied to understand its effect on tensile strength. Further, effect of process variables on fractured surface has been also investigated.
Keywords: 3D printing, fused deposition modeling, layer height, raster angle, raster width, tensile strength.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16606955 Supercompression for Full-HD and 4k-3D (8k)Digital TV Systems
Authors: Mario Mastriani
Abstract:
In this work, we developed the concept of supercompression, i.e., compression above the compression standard used. In this context, both compression rates are multiplied. In fact, supercompression is based on super-resolution. That is to say, supercompression is a data compression technique that superpose spatial image compression on top of bit-per-pixel compression to achieve very high compression ratios. If the compression ratio is very high, then we use a convolutive mask inside decoder that restores the edges, eliminating the blur. Finally, both, the encoder and the complete decoder are implemented on General-Purpose computation on Graphics Processing Units (GPGPU) cards. Specifically, the mentio-ned mask is coded inside texture memory of a GPGPU.Keywords: General-Purpose computation on Graphics Processing Units, Image Compression, Interpolation, Super-resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19806954 Automatic Distance Compensation for Robust Voice-based Human-Computer Interaction
Authors: Randy Gomez, Keisuke Nakamura, Kazuhiro Nakadai
Abstract:
Distant-talking voice-based HCI system suffers from performance degradation due to mismatch between the acoustic speech (runtime) and the acoustic model (training). Mismatch is caused by the change in the power of the speech signal as observed at the microphones. This change is greatly influenced by the change in distance, affecting speech dynamics inside the room before reaching the microphones. Moreover, as the speech signal is reflected, its acoustical characteristic is also altered by the room properties. In general, power mismatch due to distance is a complex problem. This paper presents a novel approach in dealing with distance-induced mismatch by intelligently sensing instantaneous voice power variation and compensating model parameters. First, the distant-talking speech signal is processed through microphone array processing, and the corresponding distance information is extracted. Distance-sensitive Gaussian Mixture Models (GMMs), pre-trained to capture both speech power and room property are used to predict the optimal distance of the speech source. Consequently, pre-computed statistic priors corresponding to the optimal distance is selected to correct the statistics of the generic model which was frozen during training. Thus, model combinatorics are post-conditioned to match the power of instantaneous speech acoustics at runtime. This results to an improved likelihood in predicting the correct speech command at farther distances. We experiment using real data recorded inside two rooms. Experimental evaluation shows voice recognition performance using our method is more robust to the change in distance compared to the conventional approach. In our experiment, under the most acoustically challenging environment (i.e., Room 2: 2.5 meters), our method achieved 24.2% improvement in recognition performance against the best-performing conventional method.
Keywords: Human Machine Interaction, Human Computer Interaction, Voice Recognition, Acoustic Model Compensation, Acoustic Speech Enhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18856953 E-Government Continuance Intention of Media Psychology: Some Insights from Psychographic Characteristics
Authors: Azlina Binti Abu Bakar, Fahmi Zaidi Bin Abdul Razak, Wan Salihin Wong Abdullah
Abstract:
Psychographic is a psychological study of values, attitudes, interests and it is used mostly in prediction, opinion research and social research. This study predicts the influence of performance expectancy, effort expectancy, social influence and facilitating condition on e-government acceptance among Malaysian citizens. The survey responses of 543 e-government users have been validated and analyzed by means of covariance-based Structural Equation Modeling. The findings indicate that e-government acceptance among Malaysian citizens are mainly influenced by performance expectancy (β = 0.66, t = 11.53, p < 0.01) and social influence (β = 0.20, t = 4.23, p < 0.01). Surprisingly, there is no significant effect of facilitating condition and effort expectancy on e-government continuance intention (β = 0.01, t = 0.27, p > 0.05; β = -0.01, t = -0.40, p > 0.05). This study offers government and vendors a frame of reference to analyze citizen’s situation before initiating new innovations. In case of Malaysian e-government technology, adoption strategies should be built around fostering level of citizens’ technological expectation and social influence on e-government usage.
Keywords: Continuance intention, Malaysian citizens, media psychology, structural equation modeling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13956952 The Bright Side of Organizational Politics as a Driver of Firm Competitiveness: The Mediating Role of Corporate Entrepreneurship
Authors: Monika Kulikowska-Pawlak, Katarzyna Bratnicka-Myśliwiec, Tomasz Ingram
Abstract:
This study seeks to contribute to the literature on firm competitiveness by advancing the perspective of organizational politics that views this process as a driver which creates identifiable differences in firm performance. The hypothesized relationships were tested on the basis of data from 355 Polish medium and large-sized enterprises. Data were analyzed using correlation analysis, EFA and robustness tests. The main result of the conducted analyses proved the coexistence, previously examined in the literature, of corporate entrepreneurship and firm performance. The obtained research findings made it possible to add organizational politics to a wide range of elements determining corporate entrepreneurship, followed by competitive advantage, in addition to antecedents such as strategic leadership, corporate culture, opportunity-oriented resource-based management, etc. Also, the empirical results suggest that four dimensions of organizational politics (dominant coalition, influence exertion, making organizational changes, and information openness) are positively related to firm competitiveness. In addition, these findings seem to underline a supposition that corporate entrepreneurship is an important mediator which strengthens the competitive effects of organizational politics.
Keywords: Corporate entrepreneurship, firm competitiveness organizational politics, sensemaking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9326951 Brain Image Segmentation Using Conditional Random Field Based On Modified Artificial Bee Colony Optimization Algorithm
Authors: B. Thiagarajan, R. Bremananth
Abstract:
Tumor is an uncontrolled growth of tissues in any part of the body. Tumors are of different types and they have different characteristics and treatments. Brain tumor is inherently serious and life-threatening because of its character in the limited space of the intracranial cavity (space formed inside the skull). Locating the tumor within MR (magnetic resonance) image of brain is integral part of the treatment of brain tumor. This segmentation task requires classification of each voxel as either tumor or non-tumor, based on the description of the voxel under consideration. Many studies are going on in the medical field using Markov Random Fields (MRF) in segmentation of MR images. Even though the segmentation process is better, computing the probability and estimation of parameters is difficult. In order to overcome the aforementioned issues, Conditional Random Field (CRF) is used in this paper for segmentation, along with the modified artificial bee colony optimization and modified fuzzy possibility c-means (MFPCM) algorithm. This work is mainly focused to reduce the computational complexities, which are found in existing methods and aimed at getting higher accuracy. The efficiency of this work is evaluated using the parameters such as region non-uniformity, correlation and computation time. The experimental results are compared with the existing methods such as MRF with improved Genetic Algorithm (GA) and MRF-Artificial Bee Colony (MRF-ABC) algorithm.
Keywords: Conditional random field, Magnetic resonance, Markov random field, Modified artificial bee colony.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29486950 Deficits and Solutions in the Development of Modular Factory Systems
Authors: Achim Kampker, Peter Burggräf, Moritz Krunke, Hanno Voet
Abstract:
As a reaction to current challenges in factory planning, many companies think about introducing factory standards to lower planning times and decrease planning costs. If these factory standards are set-up with a high level of modularity, they are defined as modular factory systems. This paper deals with the main current problems in the application of modular factory systems in practice and presents a solution approach with its basic models. The methodology is based on methods from factory planning but also uses the tools of other disciplines like product development or technology management to deal with the high complexity, which the development of modular factory systems implies. The four basic models that such a methodology has to contain are introduced and pointed out.
Keywords: Factory planning, modular factory systems, factory standards, cost-benefit analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9856949 Dependence of Densification, Hardness and Wear Behaviors of Ti6Al4V Powders on Sintering Temperature
Authors: Adewale O. Adegbenjo, Elsie Nsiah-Baafi, Mxolisi B. Shongwe, Mercy Ramakokovhu, Peter A. Olubambi
Abstract:
The sintering step in powder metallurgy (P/M) processes is very sensitive as it determines to a large extent the properties of the final component produced. Spark plasma sintering over the past decade has been extensively used in consolidating a wide range of materials including metallic alloy powders. This novel, non-conventional sintering method has proven to be advantageous offering full densification of materials, high heating rates, low sintering temperatures, and short sintering cycles over conventional sintering methods. Ti6Al4V has been adjudged the most widely used α+β alloy due to its impressive mechanical performance in service environments, especially in the aerospace and automobile industries being a light metal alloy with the capacity for fuel efficiency needed in these industries. The P/M route has been a promising method for the fabrication of parts made from Ti6Al4V alloy due to its cost and material loss reductions and the ability to produce near net and intricate shapes. However, the use of this alloy has been largely limited owing to its relatively poor hardness and wear properties. The effect of sintering temperature on the densification, hardness, and wear behaviors of spark plasma sintered Ti6Al4V powders was investigated in this present study. Sintering of the alloy powders was performed in the 650–850°C temperature range at a constant heating rate, applied pressure and holding time of 100°C/min, 50 MPa and 5 min, respectively. Density measurements were carried out according to Archimedes’ principle and microhardness tests were performed on sectioned as-polished surfaces at a load of 100gf and dwell time of 15 s. Dry sliding wear tests were performed at varied sliding loads of 5, 15, 25 and 35 N using the ball-on-disc tribometer configuration with WC as the counterface material. Microstructural characterization of the sintered samples and wear tracks were carried out using SEM and EDX techniques. The density and hardness characteristics of sintered samples increased with increasing sintering temperature. Near full densification (99.6% of the theoretical density) and Vickers’ micro-indentation hardness of 360 HV were attained at 850°C. The coefficient of friction (COF) and wear depth improved significantly with increased sintering temperature under all the loading conditions examined, except at 25 N indicating better mechanical properties at high sintering temperatures. Worn surface analyses showed the wear mechanism was a synergy of adhesive and abrasive wears, although the former was prevalent.
Keywords: Hardness, powder metallurgy, Spark plasma sintering, wear.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15806948 Performance Evaluation of Compression Algorithms for Developing and Testing Industrial Imaging Systems
Authors: Daniel F. Garcia, Julio Molleda, Francisco Gonzalez, Ruben Usamentiaga
Abstract:
The development of many measurement and inspection systems of products based on real-time image processing can not be carried out totally in a laboratory due to the size or the temperature of the manufactured products. Those systems must be developed in successive phases. Firstly, the system is installed in the production line with only an operational service to acquire images of the products and other complementary signals. Next, a recording service of the image and signals must be developed and integrated in the system. Only after a large set of images of products is available, the development of the real-time image processing algorithms for measurement or inspection of the products can be accomplished under realistic conditions. Finally, the recording service is turned off or eliminated and the system operates only with the real-time services for the acquisition and processing of the images. This article presents a systematic performance evaluation of the image compression algorithms currently available to implement a real-time recording service. The results allow establishing a trade off between the reduction or compression of the image size and the CPU time required to get that compression level.Keywords: Lossless image compression, codec performanceevaluation, grayscale codec comparison, real-time image recording.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420