
 

 

  
Abstract—In this work, we developed the concept of 

supercompression, i.e., compression above the compression standard 
used. In this context, both compression rates are multiplied. In fact, 
supercompression is based on super-resolution. That is to say, 
supercompression is a data compression technique that superpose 
spatial image compression on top of bit-per-pixel compression to 
achieve very high compression ratios. If the compression ratio is very 
high, then we use a convolutive mask inside decoder that restores the 
edges, eliminating the blur. Finally, both, the encoder and the 
complete decoder are implemented on General-Purpose computation 
on Graphics Processing Units (GPGPU) cards. Specifically, the 
mentio-ned mask is coded inside texture memory of a GPGPU. 
 

Keywords—General-Purpose computation on Graphics Process 
ing Units, Image Compression, Interpolation, Super-resolution.  

I. INTRODUCTION 
UPERCOMPRESSION represents the most revolutionary 
concept in image and video compression [1]. This concept 

is based on two simple principles: a) 
Downsampling/upsampling, i.e., spatial decimation, and b) 
deblurring, super-resolution, or sharpening [2-6]. While the 
first was performed using bilinear interpolation, the second we 
do through a horizontal rafter with a convolution mask, which 
is based on the Van Cittert’s iterative algorithm [7, 8], and an 
improvement (non-iterative) that makes the mentioned 
algorithm computationally more efficient, and which was 
developed by our team [1]. 

Specifically, the super-compression is a combination of two 
compressions, i.e., the spatial decimation and the compression 
of the employed standard. Therefore, the super-compression is 
a compression above the compression standard used. In this 
context, both compression rates are multiplied. 
Supercompression is based on super-resolution, because, it 
increases the compression on the basis of a reduction in size 
of the image (or frame, in the case of videos) [1]. 

 That is to say, super-compression is a lossy compression 
technique that superpose spatial image compression on top of 
bit-per-pixel compression to achieve very high compression 
ratios. If the compression ratio is very high, then we use a 
convolutive mask inside decoder that restores the edges, 
eliminating the blur. Finally, both, the encoder and the 
comple-te decoder are implemented on General-Purpose 
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computation on Graphics Processing Units (GPGPU) cards. 
Specifically, the mentioned mask is coded inside texture 
memory of a GPGPU [1, 9-12]. 

The Bilinear Interpolation is outlined in Section II, where 
we discuss the problem of interpolating visually acceptable 
images at a higher resolution. We first present the 
interpolation problem and why linear interpolation filters are 
inadequate for image data. To represent the major 
mathematical approaches to image processing, we discuss and 
evaluate five different image interpolation methods. 
Superresolution scheme for compression including linear 
interpolation are outlined in Section III. Metrics are outlined 
in Section IV. Simulations are outline in Section V. Finally, 
Section VI provides a conclusion of the paper.  

II. BILINEAR INTERPOLATION 
Bilinear interpolation is by far the most common 

interpolation method [1-6]. The idea is to interpolate along 
one dimension using values that were themselves interpolated 
along the other dimension, see Fig.1. 

 
Fig.1: Bilinear interpolation. 

 
If we have values at (x, y0) and (x, y1), then we could 

linearly interpolate along the vertical line. This is not a 
problem, just generate them by interpolating along the 
horizontals. 
 
zx0 = (1 − α) z00 + α z10      α = (x − x0)/(x1 − x0)                              

zx1 = (1 − α) z01 + α z11                                                                                         (1) 
zxy = (1 − β) zx0 + β zx1      β = (y − y0)/(y1 − y0) 
 

Note that it does not matter whether we interpolate across 
and then down or down and then across (i.e. on x first or y 
first). Either way we end up with 

 
zxy = (1 − α) (1 − β) z00 + (1 − α) β z01 + α (1 − β) z10 + α β z11    (2) 

This is bilinear interpolation. It results in a piecewise 
function that is not piecewise linear—of course it can’t be, 
because  
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it matches the data at four different points, and three points 
uniquely determine the linear function. It has a piece for each 
cell in the grid of data points, but the interpolation defined 
over that rectangle is not linear. Look at this most recent 
equation, remembering that α is a linear function of x and β is 
a linear function of y. The full expression for zxy is going to 
contain a constant term, an x term, a y term, and a xy term. 
Because of the presence of this last term is not linear. 

This kind of function is called bilinear because it is linear as 
a function of x when y is held fixed and also linear as a 
function of y when x is held fixed. The quality is obvious, see 
Fig.2. 

 

 

 

 

Fig.2: Image interpolation using bilinear method of interp2 built-in 
MATLAB® function. Top: original image. Medium: close-up of      

eye in image. Down: interpolated image. 

III. SUPER-RESOLUTION SCHEME FOR COMPRESSION  
This section is organized into four parts, for a better 

understanding of the concepts:  
A. Super-resolution vs Deblurring,  
B. Compression vs Super-compression,  
C.  Deduction of the mask 
D. Applications 

A.  Super-resolution vs Deblurring: 
As we saw in Section I, there is much confusion between 

the concepts of super-resolution and deblurring in Digital 
Image Processing [13, 14]. We are going to establish here two 
rigorous definitions for the purpose of eliminating this 
confusion. 

 
We say that a process is super-resolution if it restores the 

sharpness of an image involving an increase in the resolution 
of the same [1-6, 13, 14]. 

 
We say that a process is deblurring if it restores the sharp-

ness of an image not involving an increase in the resolution of 
the same. This process is applied when the image sharpness 
suffers an aberration called blur [13, 14], which comes from a 
high relative speed of the object in focus in relation to the 
camera, fast opening and closing the shutter, etc. 

 
We consider important to mention that both processes can 

involve each other as part of the process of improving the 
sharpness of the image. In fact, we can understand the super-
resolution as a process of increasing the resolution followed 
by a restoration of the edges by a deblurring process. On the 
other hand, previously established definitions are fundamental 
to understanding what follows. 

B.  Compression vs Super-compression: 
We define compression as the process reduces the average 

number of bit-per-pixel (bpp) of an image. In Fig. 3, we repre-
sent the set of bit-planes in which decomposes a gray or color 
image. As seen in Fig. 3, the compression process does not 
alter the image size [13, 14]. 

Instead, we define supercompression as the process reduces 
the average number of bit-per-pixel (bpp) of an image after 
downsizing. The size reduction process is performed by 
down-sampling, which takes shrinkage in rows and columns, 
without obligation to respect the aspect ratio (16:9). In fact, 
for ISDB-Tb (Integrated Services Digital Broadcasting) Brazilian 
Digital TV System we use 5:1 as compression rate over the 
original com-pression of the system, which uses H.264 as 
video compress-ion standard [15]. When we say, we increase 
the standard compression 5 times, this means that we move 
from a resolu-tion of 1920x1080 (Full-High Definition: Full-
HD) to another 5 times lower of 720x576 (Standard 
Definition: SD). The standard video compression H.264 is not 
affected by the supercompression. As discussed in Sub-
Section D, supercom-pression requires minimal equipment at 
the transmitter and the reverse procedure to supercompression 
in the receiver (set-top-box) [16].  
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Fig.3: Compression. 

 
However, the unavailability of the latter, the system is 

compatible, since the receiver will send the SD signal to the 
Liquid Display Crystal (LCD) TV, which naturally made 
upsampling obviously changing the aspect ratio, as when a 
Full-HD LCD TV receive a SD signal. In Fig. 4, we represent 
the set of bit-planes in which decomposes a gray or color 
image.  

As discussed in Sub-Section D, our supercompression 
procedure consists in two parts spread in transmitter and 
receiver. 

In transmitter we have three steps: 
 
1. Video slicing: frame-by-frame 
2. Downsampling 
3. Video reassembling 

 
and in receiver inside set-top-box we have four steps: 
 

1. Receiver of streaming/H.264 
2. H.264-1 
3. Upsampling 
4. Deblurring 

 
In our case, the downsampling and upsampling is done 

with bilinear interpolation, while the deblurring is done by a 
bidimensional convolutive mask of NxN pixels, which makes 
a rafter over the upsampled (blurred) image. 

 
Fig.4: Supercompression. 

 

The parameters of this squared mask (where N is odd) are 
criticals, therefore, the such parameters must be calculated and 
adjusted with total accu-racy. 

In the next section, we will proceed to deduct the mask and 
set the optimal relationship between its parameters. Later we 
will proceed to adjust them via trial and error. 

C.  Deduction of the mask: 
Based on the last section, the single frame is recovered after 

suffering a pair of processes: downsampling and upsampling, 
see left side of Fig.5. In this figure:                                                               

 
Xt  means original single frame. 
Yt  means recovered (blurred) single frame. 
Mb  means square mask of NxN pixels (where N is odd).  
      This mask is known as a blurred mask, smoothing ope 
      rator or Point Spread Function (PSF) [2]. 
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Sub-index t means t-iteration. 
↓ means downsampling. 

↑ means upsampling. 
 

 
Fig.5: Downsampling/upsampling as a blurred mask. 

 
In these processes ( ↓ and ↑ ), the single frame is affected 

by a space/time invariant blur. On the basis of this, we need an 
estimator to recover the single frame of the processes affecting 
it. Then, for an image affected by a 
downsampling/upsampling as Fig.5, we deduce that the best 
estimator is the Van Cittert’s recursive algorithm [7, 8]. 

The set of equations reflecting the above model can be 
divided into two stages: the model and the estimator [1].  

Based on Fig.5, we have: 
 

Model: 

tt XX =+1                                 (3) 

tudt XMY ⊗= /                        (4) 
 
Where ⊗ means bidimensional convolution, and Md/u 
represents a convolutive and unknown mask which 
summarizes the combined action of downsampling and 
upsampling together. 
 
Estimator: 

ttt XX ελ ×+=+

))
1                                (5) 

ttt YY
)

−=ε                                              (6) 

tudt XMY
))

⊗= /                            (7) 
           

Where 0<λ<2 is a constant parameter to adjust. Therefore, 
 

YX =0

)
                                                (8) 

On the other hand, the computational implementation of the 
above set of equations involves the use of four nested for’s 
plus a strict control of the stability of the Eq.5 (with a 
predictor form) from restricting the possible values of λ, i.e., 
only it is possible to use 0<λ <2.  

 
Therefore, it is much more efficient to implement such 

filtering through a simple bidimensional mask convolution, 
eliminating the predictor form of Eq.5, which allows much 
more efficient implementations using - for example - a 
convolution through the Fast Fourier Transform (FFT) [13, 
14]. In consequence, we need deduce such mask. If we replace 

Eq.7 in Eq.6, we have, 

tudtt XMY
)

⊗−= /ε                                  (9) 
 
Now, we replace Eq. 9 inside Eq.5, obtaining, 
 

( )tudttt XMYXX
)))

⊗−×+=+ /1 λ                    (10) 
 
Reagrouping terms of Eq.10, and remembering a model of 

low noise and linear space and time invariant blur, we have, 
 

tst YMX ⊗=+1

)
                            (11) 

 
Where Ms is a mask as shown in Fig.6, and the following 
relationships to consider are very important, 

 
1)1( 2 =+×− βαN ,  (for deblurring)                    (12) 

0)1( 2 =+×− βαN ,  (for edge detection)                   (13) 
 
Thus, a new and simplified model of deblurring appears on 

the scene, see Fig.7, where α < 0 and β > 1. We need to 
establish precisely both parameters, then, there are two possi-
ble ways forward: 

 
1. Choose N (integer, positive, odd and small), and β > 1 

(and arbitrarily less than 2), then α is derived from 
Eq.12. 

2. Start with arbitrary values of α and β (about certain 
recommendations, e.g., -0.1 < α < 0 and 1 < β ≤ 2) and 
generating a random population of the pair [α, β], and  
deducting N from Eq.12.  

 

 
 

Fig.6: Deblurring mask Ms 
 
The action of this mask can be seen in Fig.8. First, we 

performed an up-scaling of the image, and second, we apply 
the mask of the Fig.6 on the middle image, thus, obtaining a 
much higher quality final image [1]. 
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Fig.7: New and simplified model of deblurring. 

 
 

 
Fig.8: Our technology with super-resolution 

 

D. Applications: 
We present three main applications of video compression in 

real time for Digital TV, according to standard ISDB-Tb [17]. 
In the first, we move from a resolution of 1920x1080 Full-

HD to another 5 times lower of 720x576 SD. As we have said 
before, the standard video compression H.264 is not affected 
by the supercompression. 

The Fig.9 shows a diagram of the encoder with three 
modules embedded into GPGPU cards [1, 9-12]. In fact, we 
work with three GPUs in the encoder. 

For starters, the camera delivers pictures with a resolution 
of 1920x1080 pixels HD-SDI, SDI which means Serial Digital 
Interface [1]. 

The first GPU performs a separation of the frames of the 
video, frame by frame. This procedure is called video slicing 
[1]. This allows us to individually access each frame to apply 
downsampling.  

The above sampling is conducted in the second GPU, for 
which, we have selected NVIDIA ® Tesla 2050 [18] for strict 
customer requirements (see Fig.10), however, can be carried 
out the same downsampling with a much less powerful, and 
therefore much less expensive NVIDIA ® GPU, without any 
problem.  

By downsampling, we pass from a resolution of 1920x1080 
pixels to another 5 times less, i.e. 720x576. That is to say, 
from Full-HD to SD. Therefore, we achieve lower bit rate 
(and therefore the bandwidth used) 5 times. 

This seemingly arbitrary compression ratio and reduction of 
Full-HD format to SD is required by the Argentine 
government, so that if a user does not have our decoder, to 
enjoy the SD broadcast. In this case is the same TV who makes 

the upscaling, with an obvious change in the original aspect 
ratio, i.e., 

 
Fig.9: Encoder. 

 
from 16:9 to 4:3. 

A very important aspect to consider is that this procedure 
does not require any kind of color transform, i.e., it works 
directly on the RGB (reed, green and blue) components of 
each frame. This eliminates the two possible conversions and 
thus the computational cost they entail. 

We used Texture Memory of GPGPU to a computational 
efficient implementation of the different modules of encoder 
and decoder, allowing us to reach TV times. 

Fig.10 shows in detail the employed technology for the real 
implementation of Fig.9, which consists in two Quadro GPUs 
[18] the first for video slicing. frame-by-frame, and the second 
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Fig.10: Encoder implementation with GPGPUs. 
 
for video reassembling, respectively. The downsampling is 
im-plemented on a Tesla 250 [18]. However, currently, we 
have found a way to perform this experiment using only one 
Quadro GPU. Moreover, in Fig.10: 
 
TX means transmitter 

 
On the other hand, Fig.11 shows a diagram of the decoder 

implemented inside a set-top-box (STB). So that, if the STB 
has the superdecompression and depending on the resolution 
of the LCD TV, we obtain resolutions of High Definition 
(HD) 720x1280 or Full-HD 1080x1920. However, if the STB 
hasn’t the superdecompression, the system must be 
compatible, there-fore we obtain only SD 576x720.  

The Fig.12 shows the Super-Resolution Module (SRM) 
used inside STB of Fig.11, which includes upsampling and 
deblurring, thus restoring the original resolution. 

 
Fig.11: Decoder. 

 
Fig.13 represents the real implementation of Fig.11, in 

which, we can see, the set-top-box used in this work, 
developed by Dixar Inc. [16]. This STB works equally with 
Terres-trial Digital TV, IPTV, WebTV, 3DTV and Digital 
Cinema. Besides, this STB has camera and motion sensors, 
which can be used as interactive gaming platform. 

Actually, we are working on an integrated circuit (chip) 
[19] to replace the current GPGPU inside the STB, 
minimizing the power consumption and the size of this [16]. 

Finally, the second application of this technology presented 
here is shows in Fig.14, where we use a mobile phone with 
High-Definition Multimedia Interface (HDMI) video out as a 
receptor. 

World Academy of Science, Engineering and Technology
International Journal of Electrical and Computer Engineering

 Vol:4, No:12, 2010 

1804International Scholarly and Scientific Research & Innovation 4(12) 2010 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 E
le

ct
ri

ca
l a

nd
 C

om
pu

te
r 

E
ng

in
ee

ri
ng

 V
ol

:4
, N

o:
12

, 2
01

0 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/7
66

4.
pd

f



 

 

 
Fig.12: Super-resolution Module (SRM). 

 
 

 

 

 
 

Fig.13: Set-top-box of Dixar Inc. 

 
Fig.14: Mobile phone as HD or Full-HD receptor. 

 
As shows in Fig.14, we take the HDMI video out, and we 

introduce it in the STB. Depending on the resolution of the 
LCD TV we obtain HD o Full-HD resolutions.  

The original resolution of the mobile phone employed is 
Low Definition (LD) 320x240 One-Seg (one of 13 segments 
that form the ISDB-T norm, see Fig.15). In this case, the 
additional compression rate of STB on H.264 is 27:1 [16]. 

 

 
Fig.15: Detail of 13 segments inside ISDB-T channel. 
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Finally, the third and last application of this technology 
presented here is shows in Fig.16 (at the end of this paper), 
which constitutes the modern Digital TV System 4k-3D 
designed for Argentine government, which has the same 
information rate 8k monochannel. 

All encoders currently in use (without exception) use intra 
and interframe compression simultaneously, even modern 
European coder known as HEVC/H.265 (High Efficiency 
Video Coding), and which will begin testing in 2013. 

The interframe compression is composed of three parts: 
 
1. Scene detection 
2. Motion detection 
3. Region of Interest (ROI detection) 

 
These three modules are responsible for the delay known as 

latency, which for European system of digital TV knowed as 
DVB (Digital Video Broadcasting) is 5.5 seconds, while for 
the Brazilian system of digital TV knowed as ISDB-Tb system 
is 4.5 seconds. 

If an encoder such as H.264 is used for 3D-4k, thus, the 
latency would be between 25 and 35 seconds. This is 
unacceptable. At this point, we define latency as the delay 
between the digital and analog transmission.  On the other 
hand, H.264 was originally designed for video transmission of 
low and medium resolution. In fact, for trans-mission for 2k 
resolution and up, it has shortcomings, morpho-logical 
defects, and chromatic aberrations. That is to say, it does not 
fit the 4K-3D, as well as other codecs.  

This is the reason that since 2k resolutions can only use 
intraframe compression, especially the JPEG2000 codec [21, 
22].  Since it can not serve interframe compression, then, the 
compression rates obtained are very low, with the spending 
disproportionate bandwidth of the channel for transmissions 
of this type.  Moreover, given that the Argentine government 
wishes to reuse the digital TV platform installed of Full-HD, 
then the only viable solution that meets all boundary 
conditions is one based on supercompression [1]. 

As shown in Fig.16, we have two images of 3840x2160 
pixeles, one for right eye and one for left eye, i.e. a total 
resolution of 3840 x 2160 x 2 (i.e., stereo). We first performed 
the downsampling, obtaining two images of 1920x1080 each, 
which are encoded in H.264 and sent to the transmitter. Once 
the receiver, upsampling and deblurring is applied to both 
images, thereby restoring the original resolution. 

That is to say, we lower the bit rate of the two images 
combined with a quarter of its value, but, however, both 
images of 1920x1080 combined occupy about 60% of the bit 
rate that would occupy the original image transmitted by a 
system of single-channel Full-HD. This turns out to be a 
product arising from the characteristics of the method itself 
[1], which creates a seamless smoothing. 

IV. METRICS 

A. Data Compression Ratio (CR) 
    Data compression ratio, also known as compression power, 
is a computer-science term used to quantify the reduction in 
data-representation size produced by a data compression algo-
rithm. The data compression ratio is analogous to the physical 
compression ratio used to measure physical compression of 
substances, and is defined in the same way, as the ratio bet-
ween the uncompressed size and the compressed size [13, 14]: 
 

SizeCompressed
SizeedUncompress

CR =                                                 (14) 

 
Thus a representation that compresses a 10MB file to 2MB 

has a compression ratio of 10/2 = 5, often notated as an 
explicit ratio, 5:1 (read "five to one"), or as an implicit ratio, 
5X. Note that this formulation applies equally for 
compression, where the uncompressed size is that of the 
original; and for decompression, where the uncompressed size 
is that of the reproduction. 

B. Bit-per-pixel (bpp) 
    The "bits per pixel" refers to the sum of the bits in all three 
color channels and represents the sum colors available at each 
pixel before compression (

bc
bpp ). However, as a compression 

metric, the bits-per-pixel refers to the average of the bits in all 
three color channels, after of compression process (

ac
bpp ). 

CR
bcbpp

bc
bpp

SizeedUncompress
SizeCompressed

ac
bpp =×=                (15) 

 
Besides, bpp is also defined as 

pixelsofNumber
bitscodedofNumber

ac
bpp =                                         (16) 

C. Mean Absolute Error (MAE) 
    The mean absolute error is a quantity used to measure how 
close forecasts or predictions are to the eventual outcomes. 
The mean absolute error (MAE) is given by 
 

∑ ∑
−

=

−

=

−=
1

0

1

0
),(),(1 NR

nr

NC

ncNRxNC
ncnrXncnrXMAE

)
          (17) 

 
which for two NR×NC (rows-by-columns) monochrome 
images X and X

)
, where the second one of the images is 

considered a decompressed approximation of the other of the 
first one.  

D.  Mean Squared Error (MSE) 
    The mean square error or MSE in Image Compression is 
one of many ways to quantify the difference between an 
original 
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Fig.16: Detail of the resolutions involved in the proposed 4k-3D TV System. 
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image and the true value of the quantity being decompressed 
image, which for two NR×NC (rows-by-columns) 
monochrome images X and X

)
, where the second one of the 

images is considered a decompressed approximation of the 
other is defined as: 
 

∑ ∑
−

=

−

=

−=
1

0

1

0

2
),(),(1 NR

nr

NC

ncNRxNC
ncnrXncnrXMSE

)
          (18) 

 

E. Peak Signal-To-Noise Ratio (PSNR) 
The phrase peak signal-to-noise ratio, often abbreviated 

PSNR, is an engineering term for the ratio between the 
maximum possible power of a signal and the power of 
corrupting noise that affects the fidelity of its representation. 
Because many signals have a very wide dynamic range, PSNR 
is usually expressed in terms of the logarithmic decibel scale. 
The PSNR is most commonly used as a measure of quality of 
reconstruction in image compression, etc [13]. It is most easily 
defined via the mean squared error (MSE), so, the PSNR is 
defined as [14]: 

 

)(10log20)
2

(10log10
MSE

XMAX

MSE
XMAX

PSNR ==              (19) 

 
Here, MAXX is the maximum pixel value of the image. 

When the pixels are represented using 8 bits per sample, this 
is 256. More generally, when samples are represented using 
linear pulse code modulation (PCM) with B bits per sample 
(bps), maximum possible value of MAXX is 2B-1. 
 

For color images with three red-green-blue (RGB) values 
per pixel, the definition of PSNR is the same except the MSE 
is the sum over all squared value differences divided by image 
size and by three [13, 14]. 
 

Typical values for the PSNR in lossy image and video 
compression are between 30 and 50 dB, where higher is 
better. 

V. SIMULATIONS 
The simulations are organized in four experiments, separa-

ted in two groups: still images (for obvious reasons, however, 
identical results were achieved in video, HDTV and Digital 
Cinema) by color and gray. All experiments include calcula-
tions of MAE, MSE, PSNR, bpp and CR. 

 
All these experiments involve the comparison between the 

use of JPEG vs SC (JPEG+SR), and JPEG2000 vs SC 
(JPEG2000+SR) for still color and gray images, in both cases 
over a BMP file (which doesn’t have compression, to raw data 
mode), where the used acronym means: 
 
BMP: BitMap file format [20] 
JPEG: Joint Picture Group [20] 
JPEG2000: JPEG with wavelets [21, 22] 

SC: Super-compression 
SR: Super-resolution 
 

A. Group 1: Main characteristics of employed image: 
File = angelina.bmp 
Color = yes 
Size = 1920-by-1080 pixels 
Original bpp = 24 
 
Experiment 1: JPEG vs SC (JPEG+SR) 
JPEG:  See Table I, column JPEG, and Fig.17 (2nd from top). 

Encoder: 
1. From BMP (24 bpp, 1920x1080) 
2. To JPEG (0.6853 bpp, 1920x1080) 

Channel/storage 
Decoder: 

1. From JPEG (0.6853 bpp, 1920x1080) 
2. To BMP(24 bpp, 1920x1080) 

 
SC (JPEG+SR):  See Table I, column SC (JPEG+SR), and  
                             Fig.17 (3rd from top). 

Encoder: 
1. BMP (24 bpp, 1920x1080) 
2. Downsampling (24 bpp, 720x576) 
3.  JPEG (0.1445 bpp, 720x576) 

Channel/storage 
Decoder: 

1. JPEG (0.1445 bpp, 720x576) 
2. Upsampling (0.4323 bpp, 1920x1080) 
3. Deblurring (0.5004 bpp, 1920x1080) 
4.  BMP (24 bpp, 1920x1080) 

 
Experiment 2: JPEG2000 vs SC (JPEG2000+SR) 
JPEG2000:  See Table II, column JPEG2000, and Fig.17 (4th  
                     from top). 

Encoder: 
1. From BMP (24 bpp, 1920x1080) 
2. To JPEG2000 (2.6285 bpp, 1920x1080) 

Channel/storage 
Decoder: 

1. From JPEG2000 (2.6285 bpp, 1920x1080) 
2. To BMP (24 bpp, 1920x1080) 

 
SC (JPEG2000+SR):  See Table II, column SC (JPEG2000+  
                                     SR), and Fig.17 (down). 

Encoder: 
1. BMP (24 bpp, 1920x1080) 
2. Downsampling (24 bpp, 720x576) 
3.  JPEG2000 (0.8148 bpp, 720x576) 

Channel/storage 
Decoder: 

1. JPEG2000 (0.8148 bpp, 720x576) 
2. Upsampling (1.3903 bpp, 1920x1080) 
3. Deblurring (2.2397 bpp, 1920x1080) 
4.  BMP (24 bpp, 1920x1080) 

 
    The following tables show the metrics vs the Algorithms for 
both cases, i.e., JPEG and JPEG2000 vs Supercompression.  
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TABLE I 
ANGELINA (COLOR, 24 BPP, 1920X1080): JPEG VS SC (JPEG+SR)  

Metrics JPEG SC (JPEG+SR) 

MAE 0.5333 1.0009 
MSE 2.3137 7.6264
PSNR 43.6693 38.2393 
bpp 0.6853 0.1445 
CR 35.0210 166.1154 

  
TABLE II 

ANGELINA (COLOR, 24 BPP, 1920X1080): JPEG2000 VS SC (JPEG2000+SR) 

Metrics JPEG2000 SC (JPEG2000+SR) 

MAE 0.0446 0.2961 
MSE 0.0472 1.1385
PSNR 61.3884 47.5673 
bpp 2.6285 0.8148 
CR 9.1307 29.4538 

 
B. Group 2: Main characteristics of employed image: 

File = lena.bmp 
Color = gray 
Size = 512-by-512 pixels 
Original bpp = 8 
 
Experiment 3: JPEG vs SC (JPEG+SR) 
JPEG:  See Table III, column JPEG, and Fig.18 (2nd from  
             top). 

Encoder: 
1. From BMP (8 bpp, 512x512) 
2. To JPEG (0.8953 bpp, 512x512) 

Channel/storage 
Decoder: 

1. From JPEG (0.8953 bpp, 512x512) 
2. To BMP(24 bpp, 512x512) 

 
SC (JPEG+SR):  See Table III, column SC (JPEG+SR), and  
                             Fig.18 (3rd from top). 

Encoder: 
1. BMP (8 bpp, 512x512) 
2. Downsampling (8 bpp, 256x256) 
3.  JPEG (0.2957 bpp, 256x256) 

Channel/storage 
Decoder: 

1. JPEG (0.2957 bpp, 256x256) 
2. Upsampling (0.6502 bpp, 512x512) 
3. Deblurring (0.7727 bpp, 512x512) 
4.  BMP (8 bpp, 512x512) 

 
Experiment 4: JPEG2000 vs SC (JPEG2000+SR) 
JPEG2000:  See Table IV, column JPEG2000, and Fig.18 (4th  
                     from top). 

Encoder: 
1. From BMP (8 bpp, 512x512) 
2. To JPEG2000 (3.7242 bpp, 512x512) 

Channel/storage 
Decoder: 

1. From JPEG2000 (3.7242 bpp, 512x512) 
2. To BMP (8 bpp, 512x512) 

 

 

 

 

 
 

Fig.17: First (top) original image, second (coded and decoded with 
JPEG), third (coded and decoded with JPEG+Supercompression), 

fourth (coded and decoded with JPEG2000), fifth (down, coded and 
decoded with JPEG2000+Supercompression). 
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SC (JPEG2000+SR):  See Table IV, column SC (JPEG2000+  
                                     SR), and Fig.18 (down). 

Encoder: 
1. BMP (8 bpp, 512x512) 
2. Downsampling (8 bpp, 256x256) 
3.  JPEG2000 (1.0066 bpp, 256x256) 

Channel/storage 
Decoder: 

1. JPEG2000 (1.0066 bpp, 256x256) 
2. Upsampling (1.6421 bpp, 512x512) 
3. Deblurring (2.4230 bpp, 512x512) 
4.  BMP (8 bpp, 512x512) 

 
    The following tables show the metrics vs the Algorithms for 
both cases, i.e., JPEG and JPEG2000 vs Supercompression.  
 
 

TABLE III 
LENA (GRAY, 8 BPP, 512X512): JPEG VS SC (JPEG+SR) 

Metrics JPEG SC (JPEG+SR) 

MAE 1.0785 2.0243 
MSE 4.4363 14.6230
PSNR 41.6606 36.4804 
bpp 0.8953 0.2957 
CR 8.9358 27.0526 

 
TABLE IV 

LENA (GRAY, 8 BPP, 512X512): JPEG2000 VS SC (JPEG2000+SR) 

Metrics JPEG2000 SC (JPEG2000+SR) 

MAE 0.0902 1.5312 
MSE 0.0905 9.2596
PSNR 58.5647 38.4649 
bpp 3.7242 1.0066 
CR 2.1481 7.9475 

 
 

Finally, all techniques were previously implemented in 
MATLAB® R2010b (Mathworks, Natick, MA) [23] on a 
Notebook with Intel® Core(TM) i5 CPU M 430 @ 2.27 GHz 
and 6 GB RAM on Microsoft® Windows 7© Home Premium 
64 bits, and then in NetStream© of Dixar Inc.® [18] on 
NVIDIA® [18] two Quadro 6000 + Tesla 2050 GPUs for 
encoder, and NVIDIA® GTX285 GPU inside STB developed 
by Dixar Inc.® [16] for decoder, as shown in Fig.16. 

VI. CONCLUSION 
A. Group 1:  

Experiment 1: JPEG vs SC (JPEG+SR) 
     In this experiment SC (JPEG+SR) has MAE, MSE and 

PSNR with practically the same order of magnitude than 
JPEG alone, however, bpp is five times lower, at the same 
time, CR is five times higher, see Table I. 

    As shown in Fig.17, the second (coded and decoded with 
JPEG) and the third (coded and decoded with 
JPEG+Supercompression) from the top, have the same look-
and-feel and image quality than the top, i.e., original image of 
Angelina. 

 
Experiment 2: JPEG2000 vs SC (JPEG2000+SR) 
We make similar considerations for this experiment, regar 

 

 

 

 

 
 

Fig.18: First (top) original image, second (coded and decoded with 
JPEG), third (coded and decoded with JPEG+Supercompression), 

fourth (coded and decoded with JPEG2000), fifth (down, coded and 
decoded with JPEG2000+Supercompression). 
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ding to the last experiment, see Table II and Fig.17 (fourth 
coded and decoded with JPEG2000 alone, and fifth coded and 
decoded with JPEG2000+Supercompression), however, there 
is a big difference between JPEG and JPEG-2000 to compress 
this type of image (compare bpp and CR of Table I and II). 

 
B. Group 2:  

Experiment 3: JPEG vs SC (JPEG+SR) 
In this experiment SC (JPEG+SR) has MAE, MSE and PSNR 

with practically the same order of magnitude than JPEG alone, 
however, bpp is five times lower, at the same time, CR is five 
times higher, see Table III, idem Experiment 1. 

 As shown in Fig.18, the second (coded and decoded with 
JPEG) and the third (coded and decoded with 
JPEG+Supercompression) from the top, have the same look-
and-feel and image quality than the top, i.e., original image of 
Lena. 

 
Experiment 4: JPEG2000 vs SC (JPEG2000+SR) 

Identical considerations than Experiment 2 are necessary,  
see Table IV and Fig.18, with the same conclusions about the 
difference between JPEG and JPEG-2000 to compress this 
type of image (compare bpp and CR of Table III and IV). 

 
C. For both groups:  
 We used Texture Memory inside STB [16] GPGPU to a 

computational efficient implementation of the bidimensional 
convolutive mask of deblurring module, allowing us to reach 
TV times, i.e., a frame every 40 milliseconds. 
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