Search results for: vibration monitoring.
987 The Application of Distributed Optical Strain Sensing to Measure Rock Bolt Deformation Subject to Bedding Shear
Authors: Thomas P. Roper, Brad Forbes, Jurij Karlovšek
Abstract:
Shear displacement along bedding defects is a well-recognised behaviour when tunnelling and mining in stratified rock. This deformation can affect the durability and integrity of installed rock bolts. In-situ monitoring of rock bolt deformation under bedding shear cannot be accurately derived from traditional strain gauge bolts as sensors are too large and spaced too far apart to accurately assess concentrated displacement along discrete defects. A possible solution to this is the use of fiber optic technologies developed for precision monitoring. Distributed Optic Sensor (DOS) embedded rock bolts were installed in a tunnel project with the aim of measuring the bolt deformation profile under significant shear displacements. This technology successfully measured the 3D strain distribution along the bolts when subjected to bedding shear and resolved the axial and lateral strain constituents in order to determine the deformational geometry of the bolts. The results are compared well with the current visual method for monitoring shear displacement using borescope holes, considering this method as suitable.
Keywords: Distributed optical strain sensing, geotechnical monitoring, rock bolt stain measurement, bedding shear displacement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 934986 Free Vibration Analysis of Gabled Frame Considering Elastic Supports and Semi-Rigid Connections
Authors: A. Shooshtari, A. R. Masoodi, S. Heyrani Moghaddam
Abstract:
Free vibration analysis of a gabled frame with elastic support and semi-rigid connections is performed by using a program in OpenSees software. Natural frequencies and mode shape details of frame are obtained for two states, which are semi-rigid connections and elastic supports, separately. The members of this structure are analyzed as a prismatic nonlinear beam-column element in software. The mass of structure is considered as two equal lumped masses at the head of two columns in horizontal and vertical directions. Note that the degree of freedom, allocated to all nodes, is equal to three. Furthermore, the mode shapes of frame are achieved. Conclusively, the effects of connections and supports flexibility on the natural frequencies and mode shapes of structure are investigated.
Keywords: Natural frequency, mode shape, gabled frame, semi-rigid connection, elastic support, OpenSees software.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3017985 Controller Design for Euler-Bernoulli Smart Structures Using Robust Decentralized FOS via Reduced Order Modeling
Authors: T.C. Manjunath, B. Bandyopadhyay
Abstract:
This paper features the modeling and design of a Robust Decentralized Fast Output Sampling (RDFOS) Feedback control technique for the active vibration control of a smart flexible multimodel Euler-Bernoulli cantilever beams for a multivariable (MIMO) case by retaining the first 6 vibratory modes. The beam structure is modeled in state space form using the concept of piezoelectric theory, the Euler-Bernoulli beam theory and the Finite Element Method (FEM) technique by dividing the beam into 4 finite elements and placing the piezoelectric sensor / actuator at two finite element locations (positions 2 and 4) as collocated pairs, i.e., as surface mounted sensor / actuator, thus giving rise to a multivariable model of the smart structure plant with two inputs and two outputs. Five such multivariable models are obtained by varying the dimensions (aspect ratios) of the aluminium beam. Using model order reduction technique, the reduced order model of the higher order system is obtained based on dominant Eigen value retention and the Davison technique. RDFOS feedback controllers are designed for the above 5 multivariable-multimodel plant. The closed loop responses with the RDFOS feedback gain and the magnitudes of the control input are obtained and the performance of the proposed multimodel smart structure system is evaluated for vibration control.Keywords: Smart structure, Euler-Bernoulli beam theory, Fastoutput sampling feedback control, Finite Element Method, Statespace model, Vibration control, LMI, Model order Reduction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1753984 In-Situ Monitoring the Thermal Forming of Glass and Si Foils for Space X-Ray Telescopes
Authors: L. Pina, M. Mika, R. Havlikova, M. Landova, L. Sveda, R. Hudec, V. Marsikova, A. Inneman
Abstract:
We developed a non-contact method for the in-situ monitoring of the thermal forming of glass and Si foils to optimize the manufacture of mirrors for high-resolution space x-ray telescopes. Their construction requires precise and light-weight segmented optics with angular resolution better than 5 arcsec. We used 75x25 mm Desag D263 glass foils 0.75 mm thick and 0.6 mm thick Si foils. The glass foils were shaped by free slumping on a frame at viscosities in the range of 109.3-1012 dPa·s, the Si foils by forced slumping above 1000°C. Using a Nikon D80 digital camera, we took snapshots of a foil-s shape every 5 min during its isothermal heat treatment. The obtained results we can use for computer simulations. By comparing the measured and simulated data, we can more precisely define material properties of the foils and optimize the forming technology.Keywords: Glass, in-situ monitoring, silicone, thermal forming, x-ray telescope
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1586983 Large Vibration Amplitudes of Circular Functionally Graded Thin Plates Resting on Winkler Elastic Foundations
Authors: El Kaak, Rachid, El Bikri, Khalid, Benamar, Rhali
Abstract:
This paper describes a study of geometrically nonlinear free vibration of thin circular functionally graded (CFGP) plates resting on Winkler elastic foundations. The material properties of the functionally graded composites examined here are assumed to be graded smoothly and continuously through the direction of the plate thickness according to a power law and are estimated using the rule of mixture. The theoretical model is based on the classical Plate theory and the Von-Kármán geometrical nonlinearity assumptions. An homogenization procedure (HP) is developed to reduce the problem considered here to that of isotropic homogeneous circular plates resting on Winkler foundation. Hamilton-s principle is applied and a multimode approach is derived to calculate the fundamental nonlinear frequency parameters which are found to be in a good agreement with the published results. On the other hand, the influence of the foundation parameters on the nonlinear fundamental frequency has also been analysed.Keywords: Functionally graded materials, nonlinear vibrations, Winkler foundation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1841982 Intelligent Condition Monitoring Systems for Unmanned Aerial Vehicle Robots
Authors: A. P. Anvar, T. Dowling, T. Putland, A. M. Anvar, S.Grainger
Abstract:
This paper presents the application of Intelligent Techniques to the various duties of Intelligent Condition Monitoring Systems (ICMS) for Unmanned Aerial Vehicle (UAV) Robots. These Systems are intended to support these Intelligent Robots in the event of a Fault occurrence. Neural Networks are used for Diagnosis, whilst Fuzzy Logic is intended for Prognosis and Remedy. The ultimate goals of ICMS are to save large losses in financial cost, time and data.Keywords: Intelligent Techniques, Condition Monitoring Systems, ICMS, Robots, Fault, Unmanned Aerial Vehicle, UAV, Neural Networks, Diagnosis, Fuzzy Logic, Prognosis, Remedy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2354981 Vibration Attenuation in Layered and Welded Beams with Unequal Thickness
Authors: B. Singh, K. K. Agrawal, B. K. Nanda
Abstract:
In built-up structures, one of the effective ways of dissipating unwanted vibration is to exploit the occurrence of slip at the interfaces of structural laminates. The present work focuses on the dynamic analysis of welded structures. A mathematical formulation has been developed for the mechanism of slip damping in layered and welded mild steel beams with unequal thickness subjected to both periodic and non-periodic forces. It is observed that a number of vital parameters such as; thickness ratio, pressure distribution characteristics, relative slip and kinematic co-efficient of friction at the interfaces, nature of exciting forces, length and thickness of the beam specimen govern the damping characteristics of these structures. Experimental verification has been carried out to validate the analysis and study the effect of these parameters. The developed damping model for the structure is found to be in fairly good agreement with the measured data. Finally, the results of the analysis are discussed and rationalized.Keywords: Slip damping, tack welded joint, thickness ratio, inplane bending stress
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1494980 Development of New Control Techniques for Vibration Isolation of Structures using Smart Materials
Authors: Shubha P Bhat, Krishnamurthy, T.C.Manjunath, C. Ardil
Abstract:
In this paper, the effects of the restoring force device on the response of a space frame structure resting on sliding type of bearing with a restoring force device is studied. The NS component of the El - Centro earthquake and harmonic ground acceleration is considered for earthquake excitation. The structure is modeled by considering six-degrees of freedom (three translations and three rotations) at each node. The sliding support is modeled as a fictitious spring with two horizontal degrees of freedom. The response quantities considered for the study are the top floor acceleration, base shear, bending moment and base displacement. It is concluded from the study that the displacement of the structure reduces by the use of the restoring force device. Also, the peak values of acceleration, bending moment and base shear also decreases. The simulation results show the effectiveness of the developed and proposed method.Keywords: DOF, Space structures, Acceleration, Excitation, Smart structure, Vibration, Isolation, Earthquakes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1840979 Investigating the Geopolymerization Process of Aluminosilicates and Its Impact on the Compressive Strength of the Produced Geopolymers
Authors: Heba Z. Fouad, Tarek M. Madkour, Safwan A. Khedr
Abstract:
This paper investigates multiple factors that impact the formation of geopolymers and their compressive strength to be utilized in construction as an environmentally-friendly material. Bentonite and Kaolinite were thermally calcinated at 750 °C to obtain Metabentonite and Metakaolinite with higher reactivity. Both source materials were activated using a solution of sodium hydroxide (NaOH). Thereafter, samples were cured at different temperatures. The samples were analyzed chemically using a host of spectroscopic techniques. The bulk density and compressive strength of the produced geopolymer pastes were studied. Findings indicate that the ratio of NaOH solution to source material affects the compressive strength, being optimal at 0.54. Moreover, controlled heat curing was proven effective to improve compressive strength. The existence of characteristic Fourier Transform Infrared Spectroscopy (FTIR) peaks at approximately 1020 cm-1 and 460 cm-1 which correspond to the asymmetric stretching vibration of Si-O-T and bending vibration of Si-O-Si, hence, confirming the formation of the target geopolymer.
Keywords: alcination of metakaolinite, compressive strength, FTIR analysis, geopolymer, green cement
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 384978 Virtual Prototyping and Operational Monitoring of PLC-Based Control System
Authors: Kwan Hee Han, Jun Woo Park, Seock Kyu Yoo, Geon Lee
Abstract:
As business environments are rapidly changing, the manufacturing system must be reconfigured to adapt to various customer needs. In order to cope with this challenge, it is quintessential to test industrial control logic rapidly and easily in the design time, and monitor operational behavior in the run time of automated manufacturing system. Proposed integrated model for virtual prototyping and operational monitoring of industrial control logic is to improve limitations of current ladder programming practices and general discrete event simulation method. Each plant layout model using HMI package and object-oriented control logic model is designed independently and is executed simultaneously in integrated manner to reflect design practices of automation system in the design time. Control logic is designed and executed using UML activity diagram without considering complicated control behavior to deal with current trend of reconfigurable manufacturing. After the physical installation, layout model of virtual prototype constructed in the design time is reused for operational monitoring of system behavior during run time.Keywords: automated manufacturing system, HMI, monitoring, object-oriented, PLC, virtual prototyping
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260977 A Wireless Feedback Control System as a Base of Bio-Inspired Structure System to Mitigate Vibration in Structures
Authors: Gwanghee Heo, Geonhyeok Bang, Chunggil Kim, Chinok Lee
Abstract:
This paper attempts to develop a wireless feedback control system as a primary step eventually toward a bio-inspired structure system where inanimate structure behaves like a life form autonomously. It is a standalone wireless control system which is supposed to measure externally caused structural responses, analyze structural state from acquired data, and take its own action on the basis of the analysis with an embedded logic. For an experimental examination of its effectiveness, we applied it on a model of two-span bridge and performed a wireless control test. Experimental tests have been conducted for comparison on both the wireless and the wired system under the conditions of Un-control, Passive-off, Passive-on, and Lyapunov control algorithm. By proving the congruence of the test result of the wireless feedback control system with the wired control system, its control performance was proven to be effective. Besides, it was found to be economical in energy consumption and also autonomous by means of a command algorithm embedded into it, which proves its basic capacity as a bio-inspired system.
Keywords: Structural vibration control, wireless system, MR damper, feedback control, embedded system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 745976 Passenger Seat Vibration Comparison Using ANFIS Control in Active Quarter Car Model
Authors: Devdutt
Abstract:
In this paper, vibration control response of passenger seat in quarter car model having three degrees of freedom is studied. Three different control strategies are taken into account using Adaptive Neuro Fuzzy Inference System (ANFIS) controller. In first case, ANFIS controller is applied in main suspension of active quarter car model. In second case, passenger seat suspension is assembled with ANFIS controller. Finally, both main and passenger seat suspensions are integrated with ANFIS controller. Simulation work under random road excitations is performed using passive and controlled quarter car models for performance comparison of passenger ride comfort. Ride comfort analysis is also compared as per ISO 2631-1 criterion. The obtained simulation responses are compared taking passenger seat acceleration and displacement response in time and frequency domain for the selection of best control strategy in designed quarter car model.
Keywords: Active suspension system, ANFIS controller, passenger ride comfort, quarter car model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837975 Numerical Simulation of a Three-Dimensional Framework under the Action of Two-Dimensional Moving Loads
Authors: Jia-Jang Wu
Abstract:
The objective of this research is to develop a general technique so that one may predict the dynamic behaviour of a three-dimensional scale crane model subjected to time-dependent moving point forces by means of conventional finite element computer packages. To this end, the whole scale crane model is divided into two parts: the stationary framework and the moving substructure. In such a case, the dynamic responses of a scale crane model can be predicted from the forced vibration responses of the stationary framework due to actions of the four time-dependent moving point forces induced by the moving substructure. Since the magnitudes and positions of the moving point forces are dependent on the relative positions between the trolley, moving substructure and the stationary framework, it can be found from the numerical results that the time histories for the moving speeds of the moving substructure and the trolley are the key factors affecting the dynamic responses of the scale crane model.Keywords: Moving load, moving substructure, dynamic responses, forced vibration responses.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1407974 Development of Greenhouse Analysis Tools for Home Agriculture Project
Authors: M. Amir Abas, M. Dahlui
Abstract:
This paper presents the development of analysis tools for Home Agriculture project. The tools are required for monitoring the condition of greenhouse which involves two components: measurement hardware and data analysis engine. Measurement hardware is functioned to measure environment parameters such as temperature, humidity, air quality, dust and etc while analysis tool is used to analyse and interpret the integrated data against the condition of weather, quality of health, irradiance, quality of soil and etc. The current development of the tools is completed for off-line data recorded technique. The data is saved in MMC and transferred via ZigBee to Environment Data Manager (EDM) for data analysis. EDM converts the raw data and plot three combination graphs. It has been applied in monitoring three months data measurement for irradiance, temperature and humidity of the greenhouse..Keywords: Monitoring, Environment, Greenhouse, Analysis tools
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018973 Pulsation Suppression Device Design for Reciprocating Compressor
Authors: Amin Almasi
Abstract:
Design and evaluation of reciprocating compressors should include a pulsation study. The object is to ensure that predicted pulsation levels meet guidelines to limit vibration, shaking forces, noise, associated pressure drops, horsepower losses and fabrication cost and time to acceptable levels. This paper explains procedures and recommendations to select and size pulsation suppression devices to obtain optimum arrangement in terms of pulsation, vibration, shaking forces, performance, reliability, safety, operation, maintenance and commercial conditions. Model and advanced formulations for pulsation study are presented. The effect of the full fluid dynamic model on the prediction of pulsation waves and resulting frequency spectrum distributions are discussed. Advanced and optimum methods of controlling pulsations are highlighted. Useful recommendations and guidelines for pulsation control, piping pulsation analysis, pulsation vessel design, shaking forces, low pressure drop orifices, pulsation study report and devices to mitigate pulsation and shaking problems are discussed.Keywords: Pulsation, Reciprocating Compressor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8835972 Structural Health Monitoring of Offshore Structures Using Wireless Sensor Networking under Operational and Environmental Variability
Authors: Srinivasan Chandrasekaran, Thailammai Chithambaram, Shihas A. Khader
Abstract:
The early-stage damage detection in offshore structures requires continuous structural health monitoring and for the large area the position of sensors will also plays an important role in the efficient damage detection. Determining the dynamic behavior of offshore structures requires dense deployment of sensors. The wired Structural Health Monitoring (SHM) systems are highly expensive and always needs larger installation space to deploy. Wireless sensor networks can enhance the SHM system by deployment of scalable sensor network, which consumes lesser space. This paper presents the results of wireless sensor network based Structural Health Monitoring method applied to a scaled experimental model of offshore structure that underwent wave loading. This method determines the serviceability of the offshore structure which is subjected to various environment loads. Wired and wireless sensors were installed in the model and the response of the scaled BLSRP model under wave loading was recorded. The wireless system discussed in this study is the Raspberry pi board with Arm V6 processor which is programmed to transmit the data acquired by the sensor to the server using Wi-Fi adapter, the data is then hosted in the webpage. The data acquired from the wireless and wired SHM systems were compared and the design of the wireless system is verified.Keywords: Condition assessment, damage detection, structural health monitoring, structural response, wireless sensor network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2969971 Using Analytical Hierarchy Process and TOPSIS Approaches in Designing a Finite Element Analysis Automation Program
Authors: Ming Wen, Nasim Nezamoddini
Abstract:
Sophisticated numerical simulations like finite element analysis (FEA) involve a complicated process from model setup to post-processing tasks that require replication of time-consuming steps. Utilizing FEA automation program simplifies the complexity of the involved steps while minimizing human errors in analysis set up, calculations, and results processing. One of the main challenges in designing FEA automation programs is to identify user requirements and link them to possible design alternatives. This paper presents a decision-making framework to design a Python based FEA automation program for modal analysis, frequency response analysis, and random vibration fatigue (RVF) analysis procedures. Analytical hierarchy process (AHP) and technique for order preference by similarity to ideal solution (TOPSIS) are applied to evaluate design alternatives considering the feedback received from experts and program users.
Keywords: FEA, random vibration fatigue, process automation, AHP, TOPSIS, multiple-criteria decision-making, MCDM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 531970 Designing a Patient Monitoring System Using Cloud and Semantic Web Technologies
Authors: Chryssa Thermolia, Ekaterini S. Bei, Stelios Sotiriadis, Kostas Stravoskoufos, Euripides G.M. Petrakis
Abstract:
Moving into a new era of healthcare, new tools and devices are developed to extend and improve health services, such as remote patient monitoring and risk prevention. In this concept, Internet of Things (IoT) and Cloud Computing present great advantages by providing remote and efficient services, as well as cooperation between patients, clinicians, researchers and other health professionals. This paper focuses on patients suffering from bipolar disorder, a brain disorder that belongs to a group of conditions called affective disorders, which is characterized by great mood swings. We exploit the advantages of Semantic Web and Cloud Technologies to develop a patient monitoring system to support clinicians. Based on intelligently filtering of evidence-knowledge and individual-specific information we aim to provide treatment notifications and recommended function tests at appropriate times or concluding into alerts for serious mood changes and patient’s nonresponse to treatment. We propose an architecture as the back-end part of a cloud platform for IoT, intertwining intelligence devices with patients’ daily routine and clinicians’ support.
Keywords: Bipolar disorder, intelligent systems patient monitoring, semantic web technologies, IoT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2441969 A Nobel Approach for Campus Monitoring
Authors: Rashmi Priyadarshini, S. R. N. Reddy, R. M. Mehra
Abstract:
This paper presents one of the best applications of wireless sensor network for campus Monitoring. With the help of PIR sensor, temperature sensor and humidity sensor, effective utilization of energy resources has been implemented in one of rooms of Sharda University, Greater Noida, India. The RISC microcontroller is used here for analysis of output of sensors and providing proper control using ZigBee protocol. This wireless sensor module presents a tremendous power saving method for any campus
Keywords: PIC microcontroller, wireless sensor network, ZigBee.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1789968 Condition Monitoring in the Management of Maintenance in a Large Scale Precision CNC Machining Manufacturing Facility
Authors: N. Ahmed, A.J. Day, J.L. Victory L. Zeall, B. Young
Abstract:
The manufacture of large-scale precision aerospace components using CNC requires a highly effective maintenance strategy to ensure that the required accuracy can be achieved over many hours of production. This paper reviews a strategy for a maintenance management system based on Failure Mode Avoidance, which uses advanced techniques and technologies to underpin a predictive maintenance strategy. It is shown how condition monitoring (CM) is important to predict potential failures in high precision machining facilities and achieve intelligent and integrated maintenance management. There are two distinct ways in which CM can be applied. One is to monitor key process parameters and observe trends which may indicate a gradual deterioration of accuracy in the product. The other is the use of CM techniques to monitor high status machine parameters enables trends to be observed which can be corrected before machine failure and downtime occurs. It is concluded that the key to developing a flexible and intelligent maintenance framework in any precision manufacturing operation is the ability to evaluate reliably and routinely machine tool condition using condition monitoring techniques within a framework of Failure Mode Avoidance.Keywords: Maintenance, Condition Monitoring, CNC, Machining, Accuracy, Capability, Key Process Parameters, Critical Parameters
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2231967 Coupled Lateral-Torsional Free Vibrations Analysis of Laminated Composite Beam using Differential Quadrature Method
Authors: S.H. Mirtalaie, M. Mohammadi, M.A. Hajabasi, F.Hejripour
Abstract:
In this paper the Differential Quadrature Method (DQM) is employed to study the coupled lateral-torsional free vibration behavior of the laminated composite beams. In such structures due to the fiber orientations in various layers, the lateral displacement leads to a twisting moment. The coupling of lateral and torsional vibrations is modeled by the bending-twisting material coupling rigidity. In the present study, in addition to the material coupling, the effects of shear deformation and rotary inertia are taken into account in the definition of the potential and kinetic energies of the beam. The governing differential equations of motion which form a system of three coupled PDEs are solved numerically using DQ procedure under different boundary conditions consist of the combinations of simply, clamped, free and other end conditions. The resulting natural frequencies and mode shapes for cantilever beam are compared with similar results in the literature and good agreement is achieved.
Keywords: Differential Quadrature Method, Free vibration, Laminated composite beam, Material coupling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2129966 Optimum Parameter of a Viscous Damper for Seismic and Wind Vibration
Authors: Soltani Amir, Hu Jiaxin
Abstract:
Determination of optimal parameters of a passive control system device is the primary objective of this study. Expanding upon the use of control devices in wind and earthquake hazard reduction has led to development of various control systems. The advantage of non-linearity characteristics in a passive control device and the optimal control method using LQR algorithm are explained in this study. Finally, this paper introduces a simple approach to determine optimum parameters of a nonlinear viscous damper for vibration control of structures. A MATLAB program is used to produce the dynamic motion of the structure considering the stiffness matrix of the SDOF frame and the non-linear damping effect. This study concluded that the proposed system (variable damping system) has better performance in system response control than a linear damping system. Also, according to the energy dissipation graph, the total energy loss is greater in non-linear damping system than other systems.
Keywords: Passive Control System, Damping Devices, Viscous Dampers, Control Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3595965 Self-Tuning Fuzzy Control of Seat Vibrations of Active Quarter Car Model
Authors: Devdutt
Abstract:
An active quarter car model with three degrees of freedom is presented for vibration reduction of passenger seat. The designed Fuzzy Logic Controller (FLC) and Self-Tuning Fuzzy Logic Controller (STFLC) are applied in seat suspension. Vibration control performance of active and passive quarter car systems are determined using simulation work. Simulation results in terms of passenger seat acceleration and displacement responses are compared for controlled and uncontrolled cases. Simulation results showed the improved results of both FLC and STFLC controllers in improving passenger ride comfort compared to uncontrolled case. Furthermore, the best performance in simulation studies is achieved by STFLC controlled suspension system compared to FLC controlled and uncontrolled cases.
Keywords: Active suspension system, quarter car model, passenger ride comfort, self-tuning fuzzy logic controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 886964 LabVIEW with Fuzzy Logic Controller Simulation Panel for Condition Monitoring of Oil and Dry Type Transformer
Authors: N. A. Muhamad, S.A.M. Ali
Abstract:
Condition monitoring of electrical power equipment has attracted considerable attention for many years. The aim of this paper is to use Labview with Fuzzy Logic controller to build a simulation system to diagnose transformer faults and monitor its condition. The front panel of the system was designed using LabVIEW to enable computer to act as customer-designed instrument. The dissolved gas-in-oil analysis (DGA) method was used as technique for oil type transformer diagnosis; meanwhile terminal voltages and currents analysis method was used for dry type transformer. Fuzzy Logic was used as expert system that assesses all information keyed in at the front panel to diagnose and predict the condition of the transformer. The outcome of the Fuzzy Logic interpretation will be displayed at front panel of LabVIEW to show the user the conditions of the transformer at any time.Keywords: LabVIEW, Fuzzy Logic, condition monitoring, oiltransformer, dry transformer, DGA, terminal values.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3232963 PM Electrical Machines Diagnostic - Methods Selected
Authors: M. Barański
Abstract:
This paper presents a several diagnostic methods designed to electrical machinesespecially for permanent magnets (PM) machines. Those machines are commonly used in small wind and water systems and vehicles drives.Thosemethodsare preferred by the author in periodic diagnostic of electrical machines. The special attentionshould be paid to diagnostic method of turn-to-turn insulation and vibrations. Both of those methodswere createdinInstitute of Electrical Drives and MachinesKomel. The vibration diagnostic method is the main thesis of author’s doctoral dissertation. This is method of determination the technical condition of PM electrical machine basing on its own signals is the subject of patent application No P.405669. Specific structural properties of machines excited by permanent magnets are used in this method - electromotive force (EMF) generated due to vibrations. There was analysed number of publications which describe vibration diagnostic methods and tests of electrical machines with permanent magnets and there was no method found to determine the technical condition of such machine basing on their own signals.
Keywords: Electrical vehicle, generator, main insulation, permanent magnet, thermography, turn-to- traction drive, turn insulation, vibrations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2632962 Carbon-Based Composites Enable Monitoring of Internal States in Concrete Structures
Authors: René Čechmánek, Jiří Junek, Bohdan Nešpor, Pavel Šteffan
Abstract:
Regarding previous research studies it was concluded that thin-walled fiber-cement composites are able to conduct electric current under specific conditions. This property is ensured by using of various kinds of carbon materials. Though carbon fibers are less conductive than metal fibers, composites with carbon fibers were evaluated as better current conductors than the composites with metal fibers. The level of electric conductivity is monitored by the means of impedance measurement of designed samples. These composites could be used for a range of applications such as heating of trafficable surfaces or shielding of electro-magnetic fields. The aim of the present research was to design an element with the ability to monitor internal processes in building structures and prevent them from collapsing. As a typical element for laboratory testing there was chosen a concrete column, which was repeatedly subjected to load by simple pressure with continual monitoring of changes in electrical properties.
Keywords: Carbon, conductivity, loading, monitoring.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1835961 Malicious Vehicle Detection Using Monitoring Algorithm in Vehicular Adhoc Networks
Authors: S. Padmapriya
Abstract:
Vehicular Adhoc Networks (VANETs), a subset of Mobile Adhoc Networks (MANETs), refers to a set of smart vehicles used for road safety. This vehicle provides communication services among one another or with the Road Side Unit (RSU). Security is one of the most critical issues related to VANET as the information transmitted is distributed in an open access environment. As each vehicle is not a source of all messages, most of the communication depends on the information received from other vehicles. To protect VANET from malicious action, each vehicle must be able to evaluate, decide and react locally on the information received from other vehicles. Therefore, message verification is more challenging in VANET because of the security and privacy concerns of the participating vehicles. To overcome security threats, we propose Monitoring Algorithm that detects malicious nodes based on the pre-selected threshold value. The threshold value is compared with the distrust value which is inherently tagged with each vehicle. The proposed Monitoring Algorithm not only detects malicious vehicles, but also isolates the malicious vehicles from the network. The proposed technique is simulated using Network Simulator2 (NS2) tool. The simulation result illustrated that the proposed Monitoring Algorithm outperforms the existing algorithms in terms of malicious node detection, network delay, packet delivery ratio and throughput, thereby uplifting the overall performance of the network.
Keywords: VANET, security, malicious vehicle detection, threshold value, distrust value.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1313960 Comparison of Developed Statokinesigram and Marker Data Signals by Model Approach
Authors: Boris Barbolyas, Kristina Buckova, Tomas Volensky, Cyril Belavy, Ladislav Dedik
Abstract:
Background: Based on statokinezigram, the human balance control is often studied. Approach to human postural reaction analysis is based on a combination of stabilometry output signal with retroreflective marker data signal processing, analysis, and understanding, in this study. The study shows another original application of Method of Developed Statokinesigram Trajectory (MDST), too. Methods: In this study, the participants maintained quiet bipedal standing for 10 s on stabilometry platform. Consequently, bilateral vibration stimuli to Achilles tendons in 20 s interval was applied. Vibration stimuli caused that human postural system took the new pseudo-steady state. Vibration frequencies were 20, 60 and 80 Hz. Participant's body segments - head, shoulders, hips, knees, ankles and little fingers were marked by 12 retroreflective markers. Markers positions were scanned by six cameras system BTS SMART DX. Registration of their postural reaction lasted 60 s. Sampling frequency was 100 Hz. For measured data processing were used Method of Developed Statokinesigram Trajectory. Regression analysis of developed statokinesigram trajectory (DST) data and retroreflective marker developed trajectory (DMT) data were used to find out which marker trajectories most correlate with stabilometry platform output signals. Scaling coefficients (λ) between DST and DMT by linear regression analysis were evaluated, too. Results: Scaling coefficients for marker trajectories were identified for all body segments. Head markers trajectories reached maximal value and ankle markers trajectories had a minimal value of scaling coefficient. Hips, knees and ankles markers were approximately symmetrical in the meaning of scaling coefficient. Notable differences of scaling coefficient were detected in head and shoulders markers trajectories which were not symmetrical. The model of postural system behavior was identified by MDST. Conclusion: Value of scaling factor identifies which body segment is predisposed to postural instability. Hypothetically, if statokinesigram represents overall human postural system response to vibration stimuli, then markers data represented particular postural responses. It can be assumed that cumulative sum of particular marker postural responses is equal to statokinesigram.Keywords: Center of pressure (CoP), a method of developed statokinesigram trajectory (MDST), a model of postural system behavior, retroreflective marker data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 762959 Numerical Method Based On Initial Value-Finite Differences for Free Vibration of Stepped Thickness Plates
Authors: Ahmed M. Farag, Wael F. Mohamed, Atef A. Ata, Burhamy M. Burhamy
Abstract:
The main objective of the present paper is to derive an easy numerical technique for the analysis of the free vibration through the stepped regions of plates. Based on the utilities of the step by step integration initial values IV and Finite differences FD methods, the present improved Initial Value Finite Differences (IVFD) technique is achieved. The first initial conditions are formulated in convenient forms for the step by step integrations while the upper and lower edge conditions are expressed in finite difference modes. Also compatibility conditions are created due to the sudden variation of plate thickness. The present method (IVFD) is applied to solve the fourth order partial differential equation of motion for stepped plate across two different panels under the sudden step compatibility in addition to different types of end conditions. The obtained results are examined and the validity of the present method is proved showing excellent efficiency and rapid convergence.
Keywords: Vibrations, Step by Step Integration, Stepped plate, Boundary.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1842958 Remote Vital Signs Monitoring in Neonatal Intensive Care Unit Using a Digital Camera
Authors: Fatema-Tuz-Zohra Khanam, Ali Al-Naji, Asanka G. Perera, Kim Gibson, Javaan Chahl
Abstract:
Conventional contact-based vital signs monitoring sensors such as pulse oximeters or electrocardiogram (ECG) may cause discomfort, skin damage, and infections, particularly in neonates with fragile, sensitive skin. Therefore, remote monitoring of the vital sign is desired in both clinical and non-clinical settings to overcome these issues. Camera-based vital signs monitoring is a recent technology for these applications with many positive attributes. However, there are still limited camera-based studies on neonates in a clinical setting. In this study, the heart rate (HR) and respiratory rate (RR) of eight infants at the Neonatal Intensive Care Unit (NICU) in Flinders Medical Centre were remotely monitored using a digital camera applying color and motion-based computational methods. The region-of-interest (ROI) was efficiently selected by incorporating an image decomposition method. Furthermore, spatial averaging, spectral analysis, band-pass filtering, and peak detection were also used to extract both HR and RR. The experimental results were validated with the ground truth data obtained from an ECG monitor and showed a strong correlation using the Pearson correlation coefficient (PCC) 0.9794 and 0.9412 for HR and RR, respectively. The root mean square errors (RMSE) between camera-based data and ECG data for HR and RR were 2.84 beats/min and 2.91 breaths/min, respectively. A Bland Altman analysis of the data also showed a close correlation between both data sets with a mean bias of 0.60 beats/min and 1 breath/min, and the lower and upper limit of agreement -4.9 to + 6.1 beats/min and -4.4 to +6.4 breaths/min for both HR and RR, respectively. Therefore, video camera imaging may replace conventional contact-based monitoring in NICU and has potential applications in other contexts such as home health monitoring.
Keywords: Neonates, NICU, digital camera, heart rate, respiratory rate, image decomposition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 576