Search results for: uncertainty estimation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1369

Search results for: uncertainty estimation

1039 Deep Reinforcement Learning for Optimal Decision-making in Supply Chains

Authors: Nitin Singh, Meng Ling, Talha Ahmed, Tianxia Zhao, Reinier van de Pol

Abstract:

We propose the use of Reinforcement Learning (RL) as a viable alternative for optimizing supply chain management, particularly in scenarios with stochasticity in product demands. RL’s adaptability to changing conditions and its demonstrated success in diverse fields of sequential decision-making make it a promising candidate for addressing supply chain problems. We investigate the impact of demand fluctuations in a multi-product supply chain system and develop RL agents with learned generalizable policies. We provide experimentation details for training RL agents and a statistical analysis of the results. We study generalization ability of RL agents for different demand uncertainty scenarios and observe superior performance compared to the agents trained with fixed demand curves. The proposed methodology has the potential to lead to cost reduction and increased profit for companies dealing with frequent inventory movement between supply and demand nodes.

Keywords: Inventory Management, Reinforcement Learning, Supply Chain Optimization, Uncertainty.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 383
1038 A Simulation for Estimation of the Blood Pressure using Arterial Pressure-volume Model

Authors: Gye-rok Jeon, Jae-hee Jung, In-cheol Kim, Ah-young Jeon, Sang-hwa Yoon, Jung-man Son, Jae-hyung Kim, Soo-young Ye, Jung-hoon Ro, Dong-hyun Kim, Chul-han Kim

Abstract:

A analysis on the conventional the blood pressure estimation method using an oscillometric sphygmomanometer was performed through a computer simulation using an arterial pressure-volume (APV) model. Traditionally, the maximum amplitude algorithm (MAP) was applied on the oscillation waveforms of the APV model to obtain the mean arterial pressure and the characteristic ratio. The estimation of mean arterial pressure and characteristic ratio was significantly affected with the shape of the blood pressure waveforms and the cutoff frequency of high-pass filter (HPL) circuitry. Experimental errors are due to these effects when estimating blood pressure. To find out an algorithm independent from the influence of waveform shapes and parameters of HPL, the volume oscillation of the APV model and the phase shift of the oscillation with fast fourier transform (FFT) were testified while increasing the cuff pressure from 1 mmHg to 200 mmHg (1 mmHg per second). The phase shift between the ranges of volume oscillation was then only observed between the systolic and the diastolic blood pressures. The same results were also obtained from the simulations performed on two different the arterial blood pressure waveforms and one hyperthermia waveform.

Keywords: Arterial blood pressure, oscillometric method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3337
1037 Human Action Recognition System Based on Silhouette

Authors: S. Maheswari, P. Arockia Jansi Rani

Abstract:

Human action is recognized directly from the video sequences. The objective of this work is to recognize various human actions like run, jump, walk etc. Human action recognition requires some prior knowledge about actions namely, the motion estimation, foreground and background estimation. Region of interest (ROI) is extracted to identify the human in the frame. Then, optical flow technique is used to extract the motion vectors. Using the extracted features similarity measure based classification is done to recognize the action. From experimentations upon the Weizmann database, it is found that the proposed method offers a high accuracy.

Keywords: Background subtraction, human silhouette, optical flow, classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 999
1036 Coherence Analysis between Respiration and PPG Signal by Bivariate AR Model

Authors: Yue-Der Lin, Wei-Ting Liu, Ching-Che Tsai, Wen-Hsiu Chen

Abstract:

PPG is a potential tool in clinical applications. Among such, the relationship between respiration and PPG signal has attracted attention in past decades. In this research, a bivariate AR spectral estimation method was utilized for the coherence analysis between these two signals. Ten healthy subjects participated in this research with signals measured at different respiratory rates. The results demonstrate that high coherence exists between respiration and PPG signal, whereas the coherence disappears in breath-holding experiments. These results imply that PPG signal reveals the respiratory information. The utilized method may provide an attractive alternative approach for the related researches.

Keywords: Coherence analysis, photoplethysmography (PPG), bivariate AR spectral estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2598
1035 Monte Carlo Analysis and Fuzzy Sets for Uncertainty Propagation in SIS Performance Assessment

Authors: Fares Innal, Yves Dutuit, Mourad Chebila

Abstract:

The object of this work is the probabilistic performance evaluation of safety instrumented systems (SIS), i.e. the average probability of dangerous failure on demand (PFDavg) and the average frequency of failure (PFH), taking into account the uncertainties related to the different parameters that come into play: failure rate (λ), common cause failure proportion (β), diagnostic coverage (DC)... This leads to an accurate and safe assessment of the safety integrity level (SIL) inherent to the safety function performed by such systems. This aim is in keeping with the requirement of the IEC 61508 standard with respect to handling uncertainty. To do this, we propose an approach that combines (1) Monte Carlo simulation and (2) fuzzy sets. Indeed, the first method is appropriate where representative statistical data are available (using pdf of the relating parameters), while the latter applies in the case characterized by vague and subjective information (using membership function). The proposed approach is fully supported with a suitable computer code.

Keywords: Fuzzy sets, Monte Carlo simulation, Safety instrumented system, Safety integrity level.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2779
1034 Unscented Grid Filtering and Smoothing for Nonlinear Time Series Analysis

Authors: Nikolay Nikolaev, Evgueni Smirnov

Abstract:

This paper develops an unscented grid-based filter and a smoother for accurate nonlinear modeling and analysis of time series. The filter uses unscented deterministic sampling during both the time and measurement updating phases, to approximate directly the distributions of the latent state variable. A complementary grid smoother is also made to enable computing of the likelihood. This helps us to formulate an expectation maximisation algorithm for maximum likelihood estimation of the state noise and the observation noise. Empirical investigations show that the proposed unscented grid filter/smoother compares favourably to other similar filters on nonlinear estimation tasks.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1331
1033 Application of Seismic Wave Method in Early Estimation of Wencheng Earthquake

Authors: Wenlong Liu, Yucheng Liu

Abstract:

This paper introduces the application of seismic wave method in earthquake prediction and early estimation. The advantages of the seismic wave method over the traditional earthquake prediction method are demonstrated. An example is presented in this study to show the accuracy and efficiency of using the seismic wave method in predicting a medium-sized earthquake swarm occurred in Wencheng, Zhejiang, China. By applying this method, correct predictions were made on the day after this earthquake swarm started and the day the maximum earthquake occurred, which provided scientific bases for governmental decision-making.

Keywords: earthquake prediction, earthquake swarm, seismicactivity method, seismic wave method, Wencheng earthquake

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
1032 Time-Delay Estimation Using Cross-ΨB-Energy Operator

Authors: Z. Saidi, A.O. Boudraa, J.C. Cexus, S. Bourennane

Abstract:

In this paper, a new time-delay estimation technique based on the cross IB-energy operator [5] is introduced. This quadratic energy detector measures how much a signal is present in another one. The location of the peak of the energy operator, corresponding to the maximum of interaction between the two signals, is the estimate of the delay. The method is a fully data-driven approach. The discrete version of the continuous-time form of the cross IBenergy operator, for its implementation, is presented. The effectiveness of the proposed method is demonstrated on real underwater acoustic signals arriving from targets and the results compared to the cross-correlation method.

Keywords: Teager-Kaiser energy operator, Cross-energyoperator, Time-Delay, Underwater acoustic signals.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5648
1031 Orthogonal Polynomial Density Estimates: Alternative Representation and Degree Selection

Authors: Serge B. Provost, Min Jiang

Abstract:

The density estimates considered in this paper comprise a base density and an adjustment component consisting of a linear combination of orthogonal polynomials. It is shown that, in the context of density approximation, the coefficients of the linear combination can be determined either from a moment-matching technique or a weighted least-squares approach. A kernel representation of the corresponding density estimates is obtained. Additionally, two refinements of the Kronmal-Tarter stopping criterion are proposed for determining the degree of the polynomial adjustment. By way of illustration, the density estimation methodology advocated herein is applied to two data sets.

Keywords: kernel density estimation, orthogonal polynomials, moment-based methodologies, density approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2369
1030 Code-Aided Turbo Channel Estimation for OFDM Systems with NB-LDPC Codes

Authors: Ł. Januszkiewicz, G. Bacci, H. Gierszal, M. Luise

Abstract:

In this paper channel estimation techniques are considered as the support methods for OFDM transmission systems based on Non Binary LDPC (Low Density Parity Check) codes. Standard frequency domain pilot aided LS (Least Squares) and LMMSE (Linear Minimum Mean Square Error) estimators are investigated. Furthermore, an iterative algorithm is proposed as a solution exploiting the NB-LDPC channel decoder to improve the performance of the LMMSE estimator. Simulation results of signals transmitted through fading mobile channels are presented to compare the performance of the proposed channel estimators.

Keywords: LDPC codes, LMMSE, OFDM, turbo channelestimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1659
1029 Temporal Signal Processing by Inference Bayesian Approach for Detection of Abrupt Variation of Statistical Characteristics of Noisy Signals

Authors: Farhad Asadi, Hossein Sadati

Abstract:

In fields such as neuroscience and especially in cognition modeling of mental processes, uncertainty processing in temporal zone of signal is vital. In this paper, Bayesian online inferences in estimation of change-points location in signal are constructed. This method separated the observed signal into independent series and studies the change and variation of the regime of data locally with related statistical characteristics. We give conditions on simulations of the method when the data characteristics of signals vary, and provide empirical evidence to show the performance of method. It is verified that correlation between series around the change point location and its characteristics such as Signal to Noise Ratios and mean value of signal has important factor on fluctuating in finding proper location of change point. And one of the main contributions of this study is related to representing of these influences of signal statistical characteristics for finding abrupt variation in signal. There are two different structures for simulations which in first case one abrupt change in temporal section of signal is considered with variable position and secondly multiple variations are considered. Finally, influence of statistical characteristic for changing the location of change point is explained in details in simulation results with different artificial signals.

Keywords: Time series, fluctuation in statistical characteristics, optimal learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 564
1028 Enhancing the Performance of H.264/AVC in Adaptive Group of Pictures Mode Using Octagon and Square Search Pattern

Authors: S. Sowmyayani, P. Arockia Jansi Rani

Abstract:

This paper integrates Octagon and Square Search pattern (OCTSS) motion estimation algorithm into H.264/AVC (Advanced Video Coding) video codec in Adaptive Group of Pictures (AGOP) mode. AGOP structure is computed based on scene change in the video sequence. Octagon and square search pattern block-based motion estimation method is implemented in inter-prediction process of H.264/AVC. Both these methods reduce bit rate and computational complexity while maintaining the quality of the video sequence respectively. Experiments are conducted for different types of video sequence. The results substantially proved that the bit rate, computation time and PSNR gain achieved by the proposed method is better than the existing H.264/AVC with fixed GOP and AGOP. With a marginal gain in quality of 0.28dB and average gain in bitrate of 132.87kbps, the proposed method reduces the average computation time by 27.31 minutes when compared to the existing state-of-art H.264/AVC video codec.

Keywords: Block Distortion Measure, Block Matching Algorithms, H.264/AVC, Motion estimation, Search patterns, Shot cut detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
1027 Modeling the Symptom-Disease Relationship by Using Rough Set Theory and Formal Concept Analysis

Authors: Mert Bal, Hayri Sever, Oya Kalıpsız

Abstract:

Medical Decision Support Systems (MDSSs) are sophisticated, intelligent systems that can provide inference due to lack of information and uncertainty. In such systems, to model the uncertainty various soft computing methods such as Bayesian networks, rough sets, artificial neural networks, fuzzy logic, inductive logic programming and genetic algorithms and hybrid methods that formed from the combination of the few mentioned methods are used. In this study, symptom-disease relationships are presented by a framework which is modeled with a formal concept analysis and theory, as diseases, objects and attributes of symptoms. After a concept lattice is formed, Bayes theorem can be used to determine the relationships between attributes and objects. A discernibility relation that forms the base of the rough sets can be applied to attribute data sets in order to reduce attributes and decrease the complexity of computation.

Keywords: Formal Concept Analysis, Rough Set Theory, Granular Computing, Medical Decision Support System.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1814
1026 Evaluation of New Product Development Projects using Artificial Intelligence and Fuzzy Logic

Authors: Orhan Feyzioğlu, Gülçin Büyüközkan

Abstract:

As a vital activity for companies, new product development (NPD) is also a very risky process due to the high uncertainty degree encountered at every development stage and the inevitable dependence on how previous steps are successfully accomplished. Hence, there is an apparent need to evaluate new product initiatives systematically and make accurate decisions under uncertainty. Another major concern is the time pressure to launch a significant number of new products to preserve and increase the competitive power of the company. In this work, we propose an integrated decision-making framework based on neural networks and fuzzy logic to make appropriate decisions and accelerate the evaluation process. We are especially interested in the two initial stages where new product ideas are selected (go/no go decision) and the implementation order of the corresponding projects are determined. We show that this two-staged intelligent approach allows practitioners to roughly and quickly separate good and bad product ideas by making use of previous experiences, and then, analyze a more shortened list rigorously.

Keywords: Decision Making, Neural Networks, Fuzzy Theory and Systems, Choquet Integral, New Product Development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2833
1025 Development of a Speed Sensorless IM Drives

Authors: Dj. Cherifi, Y. Miloud, A. Tahri

Abstract:

The primary objective of this paper is to elimination of the problem of sensitivity to parameter variation of induction motor drive. The proposed sensorless strategy is based on an algorithm permitting a better simultaneous estimation of the rotor speed and the stator resistance including an adaptive mechanism based on the lyaponov theory. To study the reliability and the robustness of the sensorless technique to abnormal operations, some simulation tests have been performed under several cases.

The proposed sensorless vector control scheme showed a good performance behavior in the transient and steady states, with an excellent disturbance rejection of the load torque.

Keywords: Induction Motor Drive, field-oriented control, adaptive speed observer, stator resistance estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
1024 Maximum Likelihood Estimation of Burr Type V Distribution under Left Censored Samples

Authors: N. Feroze, M. Aslam

Abstract:

The paper deals with the maximum likelihood estimation of the parameters of the Burr type V distribution based on left censored samples. The maximum likelihood estimators (MLE) of the parameters have been derived and the Fisher information matrix for the parameters of the said distribution has been obtained explicitly. The confidence intervals for the parameters have also been discussed. A simulation study has been conducted to investigate the performance of the point and interval estimates.

Keywords: Fisher information matrix, confidence intervals, censoring.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1709
1023 Building Information Modeling-Based Approach for Automatic Quantity Take-off and Cost Estimation

Authors: Lo Kar Yin, Law Ka Mei

Abstract:

Architectural, engineering, construction and operations (AECO) industry practitioners have been well adapting to the dynamic construction market from the fundamental training of its disciplines. As further triggered by the pandemic since 2019, great steps are taken in virtual environment and the best collaboration is strived with project teams without boundaries. With adoption of Building Information Modeling-based approach and qualitative analysis, this paper is to review quantity take-off (QTO) and cost estimation process through modeling techniques in liaison with suppliers, fabricators, subcontractors, contractors, designers, consultants and services providers in the construction industry value chain for automatic project cost budgeting, project cost control and cost evaluation on design options of in-situ reinforced-concrete construction and Modular Integrated Construction (MiC) at design stage, variation of works and cash flow/spending analysis at construction stage as far as practicable, with a view to sharing the findings for enhancing mutual trust and co-operation among AECO industry practitioners. It is to foster development through a common prototype of design and build project delivery method in NEC4 Engineering and Construction Contract (ECC) Options A and C.

Keywords: Building Information Modeling, cost estimation, quantity take-off, modeling techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 710
1022 Fast Algorithm of Infrared Point Target Detection in Fluctuant Background

Authors: Yang Weiping, Zhang Zhilong, Li Jicheng, Chen Zengping, He Jun

Abstract:

The background estimation approach using a small window median filter is presented on the bases of analyzing IR point target, noise and clutter model. After simplifying the two-dimensional filter, a simple method of adopting one-dimensional median filter is illustrated to make estimations of background according to the characteristics of IR scanning system. The adaptive threshold is used to segment canceled image in the background. Experimental results show that the algorithm achieved good performance and satisfy the requirement of big size image-s real-time processing.

Keywords: Point target, background estimation, median filter, adaptive threshold, target detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1843
1021 A Self Configuring System for Object Recognition in Color Images

Authors: Michela Lecca

Abstract:

System MEMORI automatically detects and recognizes rotated and/or rescaled versions of the objects of a database within digital color images with cluttered background. This task is accomplished by means of a region grouping algorithm guided by heuristic rules, whose parameters concern some geometrical properties and the recognition score of the database objects. This paper focuses on the strategies implemented in MEMORI for the estimation of the heuristic rule parameters. This estimation, being automatic, makes the system a highly user-friendly tool.

Keywords: Automatic object recognition, clustering, content based image retrieval system, image segmentation, region adjacency graph, region grouping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1408
1020 Distributed Frequency Synchronization for Global Synchronization in Wireless Mesh Networks

Authors: Jung-Hyun Kim, Jihyung Kim, Kwangjae Lim, Dong Seung Kwon

Abstract:

In this paper, our focus is to assure a global frequency synchronization in OFDMA-based wireless mesh networks with local information. To acquire the global synchronization in distributed manner, we propose a novel distributed frequency synchronization (DFS) method. DFS is a method that carrier frequencies of distributed nodes converge to a common value by repetitive estimation and averaging step and sharing step. Experimental results show that DFS achieves noteworthy better synchronization success probability than existing schemes in OFDMA-based mesh networks where the estimation error is presented.

Keywords: OFDMA systems, Frequency synchronization, Distributed networks, Multiple groups.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1718
1019 Reliability of Digital FSO Links in Europe

Authors: Zdenek Kolka, Otakar Wilfert, Viera Biolkova

Abstract:

The paper deals with an analysis of visibility records collected from 210 European airports to obtain a realistic estimation of the availability of Free Space Optical (FSO) data links. Commercially available optical links usually operate in the 850nm waveband. Thus the influence of the atmosphere on the optical beam and on the visible light is similar. Long-term visibility records represent an invaluable source of data for the estimation of the quality of service of FSO links. The model used characterizes both the statistical properties of fade depths and the statistical properties of individual fade durations. Results are presented for Italy, France, and Germany.

Keywords: Computer networks, free-space optical links, meteorology, quality of service.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148
1018 Color Constancy using Superpixel

Authors: Xingsheng Yuan, Zhengzhi Wang

Abstract:

Color constancy algorithms are generally based on the simplified assumption about the spectral distribution or the reflection attributes of the scene surface. However, in reality, these assumptions are too restrictive. The methodology is proposed to extend existing algorithm to applying color constancy locally to image patches rather than globally to the entire images. In this paper, a method based on low-level image features using superpixels is proposed. Superpixel segmentation partition an image into regions that are approximately uniform in size and shape. Instead of using entire pixel set for estimating the illuminant, only superpixels with the most valuable information are used. Based on large scale experiments on real-world scenes, it can be derived that the estimation is more accurate using superpixels than when using the entire image.

Keywords: color constancy, illuminant estimation, superpixel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
1017 Estimating Development Time of Software Projects Using a Neuro Fuzzy Approach

Authors: Venus Marza, Amin Seyyedi, Luiz Fernando Capretz

Abstract:

Software estimation accuracy is among the greatest challenges for software developers. This study aimed at building and evaluating a neuro-fuzzy model to estimate software projects development time. The forty-one modules developed from ten programs were used as dataset. Our proposed approach is compared with fuzzy logic and neural network model and Results show that the value of MMRE (Mean of Magnitude of Relative Error) applying neuro-fuzzy was substantially lower than MMRE applying fuzzy logic and neural network.

Keywords: Artificial Neural Network, Fuzzy Logic, Neuro-Fuzzy, Software Estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1661
1016 Estimation of Train Operation Using an Exponential Smoothing Method

Authors: Taiyo Matsumura, Kuninori Takahashi, Takashi Ono

Abstract:

The purpose of this research is to improve the convenience of waiting for trains at level crossings and stations and to prevent accidents resulting from forcible entry into level crossings, by providing level crossing users and passengers with information that tells them when the next train will pass through or arrive. For this paper, we proposed methods for estimating operation by means of an average value method, variable response smoothing method, and exponential smoothing method, on the basis of open data, which has low accuracy, but for which performance schedules are distributed in real time. We then examined the accuracy of the estimations. The results showed that the application of an exponential smoothing method is valid.

Keywords: Exponential smoothing method, open data, operation estimation, train schedule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 714
1015 Robust Adaptive Observer Design for Lipschitz Class of Nonlinear Systems

Authors: M. Pourgholi, V.J.Majd

Abstract:

This paper addresses parameter and state estimation problem in the presence of the perturbation of observer gain bounded input disturbances for the Lipschitz systems that are linear in unknown parameters and nonlinear in states. A new nonlinear adaptive resilient observer is designed, and its stability conditions based on Lyapunov technique are derived. The gain for this observer is derived systematically using linear matrix inequality approach. A numerical example is provided in which the nonlinear terms depend on unmeasured states. The simulation results are presented to show the effectiveness of the proposed method.

Keywords: Adaptive observer, linear matrix inequality, nonlinear systems, nonlinear observer, resilient observer, robust estimation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2614
1014 Zero Truncated Strict Arcsine Model

Authors: Y. N. Phang, E. F. Loh

Abstract:

The zero truncated model is usually used in modeling count data without zero. It is the opposite of zero inflated model. Zero truncated Poisson and zero truncated negative binomial models are discussed and used by some researchers in analyzing the abundance of rare species and hospital stay. Zero truncated models are used as the base in developing hurdle models. In this study, we developed a new model, the zero truncated strict arcsine model, which can be used as an alternative model in modeling count data without zero and with extra variation. Two simulated and one real life data sets are used and fitted into this developed model. The results show that the model provides a good fit to the data. Maximum likelihood estimation method is used in estimating the parameters.

Keywords: Hurdle models, maximum likelihood estimation method, positive count data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1857
1013 Deep Learning Based 6D Pose Estimation for Bin-Picking Using 3D Point Clouds

Authors: Hesheng Wang, Haoyu Wang, Chungang Zhuang

Abstract:

Estimating the 6D pose of objects is a core step for robot bin-picking tasks. The problem is that various objects are usually randomly stacked with heavy occlusion in real applications. In this work, we propose a method to regress 6D poses by predicting three points for each object in the 3D point cloud through deep learning. To solve the ambiguity of symmetric pose, we propose a labeling method to help the network converge better. Based on the predicted pose, an iterative method is employed for pose optimization. In real-world experiments, our method outperforms the classical approach in both precision and recall.

Keywords: Pose estimation, deep learning, point cloud, bin-picking, 3D computer vision.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823
1012 Discrete Polyphase Matched Filtering-based Soft Timing Estimation for Mobile Wireless Systems

Authors: Thomas O. Olwal, Michael A. van Wyk, Barend J. van Wyk

Abstract:

In this paper we present a soft timing phase estimation (STPE) method for wireless mobile receivers operating in low signal to noise ratios (SNRs). Discrete Polyphase Matched (DPM) filters, a Log-maximum a posterior probability (MAP) and/or a Soft-output Viterbi algorithm (SOVA) are combined to derive a new timing recovery (TR) scheme. We apply this scheme to wireless cellular communication system model that comprises of a raised cosine filter (RCF), a bit-interleaved turbo-coded multi-level modulation (BITMM) scheme and the channel is assumed to be memory-less. Furthermore, no clock signals are transmitted to the receiver contrary to the classical data aided (DA) models. This new model ensures that both the bandwidth and power of the communication system is conserved. However, the computational complexity of ideal turbo synchronization is increased by 50%. Several simulation tests on bit error rate (BER) and block error rate (BLER) versus low SNR reveal that the proposed iterative soft timing recovery (ISTR) scheme outperforms the conventional schemes.

Keywords: discrete polyphase matched filters, maximum likelihood estimators, soft timing phase estimation, wireless mobile systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1692
1011 Normalizing Flow to Augmented Posterior: Conditional Density Estimation with Interpretable Dimension Reduction for High Dimensional Data

Authors: Cheng Zeng, George Michailidis, Hitoshi Iyatomi, Leo L Duan

Abstract:

The conditional density characterizes the distribution of a response variable y given other predictor x, and plays a key role in many statistical tasks, including classification and outlier detection. Although there has been abundant work on the problem of Conditional Density Estimation (CDE) for a low-dimensional response in the presence of a high-dimensional predictor, little work has been done for a high-dimensional response such as images. The promising performance of normalizing flow (NF) neural networks in unconditional density estimation acts a motivating starting point. In this work, we extend NF neural networks when external x is present. Specifically, they use the NF to parameterize a one-to-one transform between a high-dimensional y and a latent z that comprises two components [zP , zN]. The zP component is a low-dimensional subvector obtained from the posterior distribution of an elementary predictive model for x, such as logistic/linear regression. The zN component is a high-dimensional independent Gaussian vector, which explains the variations in y not or less related to x. Unlike existing CDE methods, the proposed approach, coined Augmented Posterior CDE (AP-CDE), only requires a simple modification on the common normalizing flow framework, while significantly improving the interpretation of the latent component, since zP represents a supervised dimension reduction. In image analytics applications, AP-CDE shows good separation of x-related variations due to factors such as lighting condition and subject id, from the other random variations. Further, the experiments show that an unconditional NF neural network, based on an unsupervised model of z, such as Gaussian mixture, fails to generate interpretable results.

Keywords: Conditional density estimation, image generation, normalizing flow, supervised dimension reduction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 166
1010 Application of an Analytical Model to Obtain Daily Flow Duration Curves for Different Hydrological Regimes in Switzerland

Authors: Ana Clara Santos, Maria Manuela Portela, Bettina Schaefli

Abstract:

This work assesses the performance of an analytical model framework to generate daily flow duration curves, FDCs, based on climatic characteristics of the catchments and on their streamflow recession coefficients. According to the analytical model framework, precipitation is considered to be a stochastic process, modeled as a marked Poisson process, and recession is considered to be deterministic, with parameters that can be computed based on different models. The analytical model framework was tested for three case studies with different hydrological regimes located in Switzerland: pluvial, snow-dominated and glacier. For that purpose, five time intervals were analyzed (the four meteorological seasons and the civil year) and two developments of the model were tested: one considering a linear recession model and the other adopting a nonlinear recession model. Those developments were combined with recession coefficients obtained from two different approaches: forward and inverse estimation. The performance of the analytical framework when considering forward parameter estimation is poor in comparison with the inverse estimation for both, linear and nonlinear models. For the pluvial catchment, the inverse estimation shows exceptional good results, especially for the nonlinear model, clearing suggesting that the model has the ability to describe FDCs. For the snow-dominated and glacier catchments the seasonal results are better than the annual ones suggesting that the model can describe streamflows in those conditions and that future efforts should focus on improving and combining seasonal curves instead of considering single annual ones.

Keywords: Analytical streamflow distribution, stochastic process, linear and non-linear recession, hydrological modelling, daily discharges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 646