Search results for: network design
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 7198

Search results for: network design

6868 Addressing Scheme for IOT Network Using IPV6

Authors: H. Zormati, J. Chebil, J. Bel Hadj Taher

Abstract:

The goal of this paper is to present an addressing scheme that allows for assigning a unique IPv6 address to each node in the Internet of Things (IoT) network. This scheme guarantees uniqueness by extracting the clock skew of each communication device and converting it into an IPv6 address. Simulation analysis confirms that the presented scheme provides reductions in terms of energy consumption, communication overhead and response time as compared to four studied addressing schemes Strong DAD, LEADS, SIPA and CLOSA.

Keywords: Addressing, IoT, IPv6, network, nodes.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 966
6867 A New Pattern for Handwritten Persian/Arabic Digit Recognition

Authors: A. Harifi, A. Aghagolzadeh

Abstract:

The main problem for recognition of handwritten Persian digits using Neural Network is to extract an appropriate feature vector from image matrix. In this research an asymmetrical segmentation pattern is proposed to obtain the feature vector. This pattern can be adjusted as an optimum model thanks to its one degree of freedom as a control point. Since any chosen algorithm depends on digit identity, a Neural Network is used to prevail over this dependence. Inputs of this Network are the moment of inertia and the center of gravity which do not depend on digit identity. Recognizing the digit is carried out using another Neural Network. Simulation results indicate the high recognition rate of 97.6% for new introduced pattern in comparison to the previous models for recognition of digits.

Keywords: Pattern recognition, Persian digits, NeuralNetwork.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1677
6866 Learning Block Memories with Metric Networks

Authors: Mario Gonzalez, David Dominguez, Francisco B. Rodriguez

Abstract:

An attractor neural network on the small-world topology is studied. A learning pattern is presented to the network, then a stimulus carrying local information is applied to the neurons and the retrieval of block-like structure is investigated. A synaptic noise decreases the memory capability. The change of stability from local to global attractors is shown to depend on the long-range character of the network connectivity.

Keywords: Hebbian learning, image recognition, small world, spatial information.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1865
6865 Development of Neural Network Prediction Model of Energy Consumption

Authors: Maryam Jamela Ismail, Rosdiazli Ibrahim, Idris Ismail

Abstract:

In the oil and gas industry, energy prediction can help the distributor and customer to forecast the outgoing and incoming gas through the pipeline. It will also help to eliminate any uncertainties in gas metering for billing purposes. The objective of this paper is to develop Neural Network Model for energy consumption and analyze the performance model. This paper provides a comprehensive review on published research on the energy consumption prediction which focuses on structures and the parameters used in developing Neural Network models. This paper is then focused on the parameter selection of the neural network prediction model development for energy consumption and analysis on the result. The most reliable model that gives the most accurate result is proposed for the prediction. The result shows that the proposed neural network energy prediction model is able to demonstrate an adequate performance with least Root Mean Square Error.

Keywords: Energy Prediction, Multilayer Feedforward, Levenberg-Marquardt, Root Mean Square Error (RMSE)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2643
6864 Computational Model for Predicting Effective siRNA Sequences Using Whole Stacking Energy (% G) for Gene Silencing

Authors: Reena Murali, David Peter S.

Abstract:

The small interfering RNA (siRNA) alters the regulatory role of mRNA during gene expression by translational inhibition. Recent studies show that upregulation of mRNA because serious diseases like cancer. So designing effective siRNA with good knockdown effects plays an important role in gene silencing. Various siRNA design tools had been developed earlier. In this work, we are trying to analyze the existing good scoring second generation siRNA predicting tools and to optimize the efficiency of siRNA prediction by designing a computational model using Artificial Neural Network and whole stacking energy (%G), which may help in gene silencing and drug design in cancer therapy. Our model is trained and tested against a large data set of siRNA sequences. Validation of our results is done by finding correlation coefficient of experimental versus observed inhibition efficacy of siRNA. We achieved a correlation coefficient of 0.727 in our previous computational model and we could improve the correlation coefficient up to 0.753 when the threshold of whole tacking energy is greater than or equal to -32.5 kcal/mol.

Keywords: Artificial Neural Network, Double Stranded RNA, RNA Interference, Short Interfering RNA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2666
6863 Ensuring Uniform Energy Consumption in Non-Deterministic Wireless Sensor Network to Protract Networks Lifetime

Authors: Vrince Vimal, Madhav J. Nigam

Abstract:

Wireless sensor networks have enticed much of the spotlight from researchers all around the world, owing to its extensive applicability in agricultural, industrial and military fields. Energy conservation node deployment stratagems play a notable role for active implementation of Wireless Sensor Networks. Clustering is the approach in wireless sensor networks which improves energy efficiency in the network. The clustering algorithm needs to have an optimum size and number of clusters, as clustering, if not implemented properly, cannot effectively increase the life of the network. In this paper, an algorithm has been proposed to address connectivity issues with the aim of ensuring the uniform energy consumption of nodes in every part of the network. The results obtained after simulation showed that the proposed algorithm has an edge over existing algorithms in terms of throughput and networks lifetime.

Keywords: WSN, random deployment, clustering, isolated nodes, network lifetime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 975
6862 Possibilistic Clustering Technique-Based Traffic Light Control for Handling Emergency Vehicle

Authors: F. Titouna, S. Benferhat, K. Aksa, C. Titouna

Abstract:

A traffic light gives security from traffic congestion,reducing the traffic jam, and organizing the traffic flow. Furthermore,increasing congestion level in public road networks is a growingproblem in many countries. Using Intelligent Transportation Systemsto provide emergency vehicles a green light at intersections canreduce driver confusion, reduce conflicts, and improve emergencyresponse times. Nowadays, the technology of wireless sensornetworks can solve many problems and can offer a good managementof the crossroad. In this paper, we develop a new approach based onthe technique of clustering and the graphical possibilistic fusionmodeling. So, the proposed model is elaborated in three phases. Thefirst one consists to decompose the environment into clusters,following by the fusion intra and inter clusters processes. Finally, wewill show some experimental results by simulation that proves theefficiency of our proposed approach.KeywordsTraffic light, Wireless sensor network, Controller,Possibilistic network/Bayesain network.

Keywords: Traffic light, Wireless sensor network, Controller, Possibilistic network/Bayesain network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
6861 Wireless Sensor Networks for Swiftlet Farms Monitoring

Authors: Al-Khalid Othman, Wan A. Wan Zainal Abidin, Kee M. Lee, Hushairi Zen, Tengku. M. A. Zulcaffle, Kuryati Kipli

Abstract:

This paper provides an in-depth study of Wireless Sensor Network (WSN) application to monitor and control the swiftlet habitat. A set of system design is designed and developed that includes the hardware design of the nodes, Graphical User Interface (GUI) software, sensor network, and interconnectivity for remote data access and management. System architecture is proposed to address the requirements for habitat monitoring. Such applicationdriven design provides and identify important areas of further work in data sampling, communications and networking. For this monitoring system, a sensor node (MTS400), IRIS and Micaz radio transceivers, and a USB interfaced gateway base station of Crossbow (Xbow) Technology WSN are employed. The GUI of this monitoring system is written using a Laboratory Virtual Instrumentation Engineering Workbench (LabVIEW) along with Xbow Technology drivers provided by National Instrument. As a result, this monitoring system is capable of collecting data and presents it in both tables and waveform charts for further analysis. This system is also able to send notification message by email provided Internet connectivity is available whenever changes on habitat at remote sites (swiftlet farms) occur. Other functions that have been implemented in this system are the database system for record and management purposes; remote access through the internet using LogMeIn software. Finally, this research draws a conclusion that a WSN for monitoring swiftlet habitat can be effectively used to monitor and manage swiftlet farming industry in Sarawak.

Keywords: Swiftlet, WSN, Habitat Monitoring, Networking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2756
6860 Sampling Effects on Secondary Voltage Control of Microgrids Based on Network of Multiagent

Authors: M. J. Park, S. H. Lee, C. H. Lee, O. M. Kwon

Abstract:

This paper studies a secondary voltage control framework of the microgrids based on the consensus for a communication network of multiagent. The proposed control is designed by the communication network with one-way links. The communication network is modeled by a directed graph. At this time, the concept of sampling is considered as the communication constraint among each distributed generator in the microgrids. To analyze the sampling effects on the secondary voltage control of the microgrids, by using Lyapunov theory and some mathematical techniques, the sufficient condition for such problem will be established regarding linear matrix inequality (LMI). Finally, some simulation results are given to illustrate the necessity of the consideration of the sampling effects on the secondary voltage control of the microgrids.

Keywords: Microgrids, secondary control, multiagent, sampling, LMI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1450
6859 General Regression Neural Network and Back Propagation Neural Network Modeling for Predicting Radial Overcut in EDM: A Comparative Study

Authors: Raja Das, M. K. Pradhan

Abstract:

This paper presents a comparative study between two neural network models namely General Regression Neural Network (GRNN) and Back Propagation Neural Network (BPNN) are used to estimate radial overcut produced during Electrical Discharge Machining (EDM). Four input parameters have been employed: discharge current (Ip), pulse on time (Ton), Duty fraction (Tau) and discharge voltage (V). Recently, artificial intelligence techniques, as it is emerged as an effective tool that could be used to replace time consuming procedures in various scientific or engineering applications, explicitly in prediction and estimation of the complex and nonlinear process. The both networks are trained, and the prediction results are tested with the unseen validation set of the experiment and analysed. It is found that the performance of both the networks are found to be in good agreement with average percentage error less than 11% and the correlation coefficient obtained for the validation data set for GRNN and BPNN is more than 91%. However, it is much faster to train GRNN network than a BPNN and GRNN is often more accurate than BPNN. GRNN requires more memory space to store the model, GRNN features fast learning that does not require an iterative procedure, and highly parallel structure. GRNN networks are slower than multilayer perceptron networks at classifying new cases.

Keywords: Electrical-discharge machining, General Regression Neural Network, Back-propagation Neural Network, Radial Overcut.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3115
6858 Security Engine Management of Router based on Security Policy

Authors: Su Hyung Jo, Ki Young Kim, Sang Ho Lee

Abstract:

Security management has changed from the management of security equipments and useful interface to manager. It analyzes the whole security conditions of network and preserves the network services from attacks. Secure router technology has security functions, such as intrusion detection, IPsec(IP Security) and access control, are applied to legacy router for secure networking. It controls an unauthorized router access and detects an illegal network intrusion. This paper relates to a security engine management of router based on a security policy, which is the definition of security function against a network intrusion. This paper explains the security policy and designs the structure of security engine management framework.

Keywords: Policy server, security engine, security management, security policy

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1921
6857 Process Modeling of Electric Discharge Machining of Inconel 825 Using Artificial Neural Network

Authors: Himanshu Payal, Sachin Maheshwari, Pushpendra S. Bharti

Abstract:

Electrical discharge machining (EDM), a non-conventional machining process, finds wide applications for shaping difficult-to-cut alloys. Process modeling of EDM is required to exploit the process to the fullest. Process modeling of EDM is a challenging task owing to involvement of so many electrical and non-electrical parameters. This work is an attempt to model the EDM process using artificial neural network (ANN). Experiments were carried out on die-sinking EDM taking Inconel 825 as work material. ANN modeling has been performed using experimental data. The prediction ability of trained network has been verified experimentally. Results indicate that ANN can predict the values of performance measures of EDM satisfactorily.

Keywords: Artificial neural network, EDM, metal removal rate, modeling, surface roughness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1169
6856 Improvising Intrusion Detection for Malware Activities on Dual-Stack Network Environment

Authors: Zulkiflee M., Robiah Y., Nur Azman Abu, Shahrin S.

Abstract:

Malware is software which was invented and meant for doing harms on computers. Malware is becoming a significant threat in computer network nowadays. Malware attack is not just only involving financial lost but it can also cause fatal errors which may cost lives in some cases. As new Internet Protocol version 6 (IPv6) emerged, many people believe this protocol could solve most malware propagation issues due to its broader addressing scheme. As IPv6 is still new compares to native IPv4, some transition mechanisms have been introduced to promote smoother migration. Unfortunately, these transition mechanisms allow some malwares to propagate its attack from IPv4 to IPv6 network environment. In this paper, a proof of concept shall be presented in order to show that some existing IPv4 malware detection technique need to be improvised in order to detect malware attack in dual-stack network more efficiently. A testbed of dual-stack network environment has been deployed and some genuine malware have been released to observe their behaviors. The results between these different scenarios will be analyzed and discussed further in term of their behaviors and propagation methods. The results show that malware behave differently on IPv6 from the IPv4 network protocol on the dual-stack network environment. A new detection technique is called for in order to cater this problem in the near future.

Keywords: Dual-Stack, Malware, Worm, IPv6;IDS

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2004
6855 Performance Comparison and Analysis of Table-Driven and On-Demand Routing Protocols for Mobile Ad-hoc Networks

Authors: Narendra Singh Yadav, R.P.Yadav

Abstract:

Mobile ad hoc network is a collection of mobile nodes communicating through wireless channels without any existing network infrastructure or centralized administration. Because of the limited transmission range of wireless network interfaces, multiple "hops" may be needed to exchange data across the network. In order to facilitate communication within the network, a routing protocol is used to discover routes between nodes. The primary goal of such an ad hoc network routing protocol is correct and efficient route establishment between a pair of nodes so that messages may be delivered in a timely manner. Route construction should be done with a minimum of overhead and bandwidth consumption. This paper examines two routing protocols for mobile ad hoc networks– the Destination Sequenced Distance Vector (DSDV), the table- driven protocol and the Ad hoc On- Demand Distance Vector routing (AODV), an On –Demand protocol and evaluates both protocols based on packet delivery fraction, normalized routing load, average delay and throughput while varying number of nodes, speed and pause time.

Keywords: AODV, DSDV, MANET, relative performance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3761
6854 Two Points Crossover Genetic Algorithm for Loop Layout Design Problem

Authors: Xu LiYun, Briand Florent, Fan GuoLiang

Abstract:

The loop-layout design problem (LLDP) aims at optimizing the sequence of positioning of the machines around the cyclic production line. Traffic congestion is the usual criteria to minimize in this type of problem, i.e. the number of additional cycles spent by each part in the network until the completion of its required routing sequence of machines. This paper aims at applying several improvements mechanisms such as a positioned-based crossover operator for the Genetic Algorithm (GA) called a Two Points Crossover (TPC) and an offspring selection process. The performance of the improved GA is measured using well-known examples from literature and compared to other evolutionary algorithms. Good results show that GA can still be competitive for this type of problem against more recent evolutionary algorithms.

Keywords: Crossover, genetic algorithm, layout design problem, loop-layout, manufacturing optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 846
6853 A Location Routing Model for the Logistic System in the Mining Collection Centers of the Northern Region of Boyacá-Colombia

Authors: Erika Ruíz, Luis Amaya, Diego Carreño

Abstract:

The main objective of this study is to design a mathematical model for the logistics of mining collection centers in the northern region of the department of Boyacá (Colombia), determining the structure that facilitates the flow of products along the supply chain. In order to achieve this, it is necessary to define a suitable design of the distribution network, taking into account the products, customer’s characteristics and the availability of information. Likewise, some other aspects must be defined, such as number and capacity of collection centers to establish, routes that must be taken to deliver products to the customers, among others. This research will use one of the operation research problems, which is used in the design of distribution networks known as Location Routing Problem (LRP).

Keywords: Location routing problem, logistic, mining collection, model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 789
6852 An Innovative Wireless Sensor Network Protocol Implementation using a Hybrid FPGA Technology

Authors: Danielle Reichel, Antoine Druilhe, Tuan Dang

Abstract:

Traditional development of wireless sensor network mote is generally based on SoC1 platform. Such method of development faces three main drawbacks: lack of flexibility in terms of development due to low resource and rigid architecture of SoC; low capability of evolution and portability versus performance if specific micro-controller architecture features are used; and the rapid obsolescence of micro-controller comparing to the long lifetime of power plants or any industrial installations. To overcome these drawbacks, we have explored a new approach of development of wireless sensor network mote using a hybrid FPGA technology. The application of such approach is illustrated through the implementation of an innovative wireless sensor network protocol called OCARI.

Keywords: Hybrid FPGA, Embedded system, Mote, flexibility, durability, OCARI protocol, SoC, Wireless Sensor Network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1897
6851 Pipelined Control-Path Effects on Area and Performance of a Wormhole-Switched Network-on-Chip

Authors: Faizal A. Samman, Thomas Hollstein, Manfred Glesner

Abstract:

This paper presents design trade-off and performance impacts of the amount of pipeline phase of control path signals in a wormhole-switched network-on-chip (NoC). The numbers of the pipeline phase of the control path vary between two- and one-cycle pipeline phase. The control paths consist of the routing request paths for output selection and the arbitration paths for input selection. Data communications between on-chip routers are implemented synchronously and for quality of service, the inter-router data transports are controlled by using a link-level congestion control to avoid lose of data because of an overflow. The trade-off between the area (logic cell area) and the performance (bandwidth gain) of two proposed NoC router microarchitectures are presented in this paper. The performance evaluation is made by using a traffic scenario with different number of workloads under 2D mesh NoC topology using a static routing algorithm. By using a 130-nm CMOS standard-cell technology, our NoC routers can be clocked at 1 GHz, resulting in a high speed network link and high router bandwidth capacity of about 320 Gbit/s. Based on our experiments, the amount of control path pipeline stages gives more significant impact on the NoC performance than the impact on the logic area of the NoC router.

Keywords: Network-on-Chip, Synchronous Parallel Pipeline, Router Architecture, Wormhole Switching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1483
6850 Performance of Hybrid-MIMO Receiver Scheme in Cognitive Radio Network

Authors: Tanapong Khomyat, Peerapong Uthansakul, Monthippa Uthansakul

Abstract:

In this paper, we evaluate the performance of the Hybrid-MIMO Receiver Scheme (HMRS) in Cognitive Radio network (CR-network). We investigate the efficiency of the proposed scheme which the energy level and user number of primary user are varied according to the characteristic of CR-network. HMRS can allow users to transmit either Space-Time Block Code (STBC) or Spatial-Multiplexing (SM) streams simultaneously by using Successive Interference Cancellation (SIC) and Maximum Likelihood Detection (MLD). From simulation, the results indicate that the interference level effects to the performance of HMRS. Moreover, the exact closed-form capacity of the proposed scheme is derived and compared with STBC scheme.

Keywords: Hybrid-MIMO, Cognitive radio network (CRnetwork), Symbol Error Rate (SER), Successive interference cancellation (SIC), Maximum likelihood detection (MLD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
6849 A Study of the Planning and Designing of the Built Environment under the Green Transit-Oriented Development

Authors: Wann-Ming Wey

Abstract:

In recent years, the problems of global climate change and natural disasters have induced the concerns and attentions of environmental sustainability issues for the public. Aside from the environmental planning efforts done for human environment, Transit-Oriented Development (TOD) has been widely used as one of the future solutions for the sustainable city development. In order to be more consistent with the urban sustainable development, the development of the built environment planning based on the concept of Green TOD which combines both TOD and Green Urbanism is adapted here. The connotation of the urban development under the green TOD including the design toward environment protect, the maximum enhancement resources and the efficiency of energy use, use technology to construct green buildings and protected areas, natural ecosystems and communities linked, etc. Green TOD is not only to provide the solution to urban traffic problems, but to direct more sustainable and greener consideration for future urban development planning and design. In this study, we use both the TOD and Green Urbanism concepts to proceed to the study of the built environment planning and design. Fuzzy Delphi Technique (FDT) is utilized to screen suitable criteria of the green TOD. Furthermore, Fuzzy Analytic Network Process (FANP) and Quality Function Deployment (QFD) were then developed to evaluate the criteria and prioritize the alternatives. The study results can be regarded as the future guidelines of the built environment planning and designing under green TOD development in Taiwan.

Keywords: Green transit-oriented development, built environment, fuzzy Delphi technique, quality function deployment, fuzzy analytic network process.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1519
6848 System Identification with General Dynamic Neural Networks and Network Pruning

Authors: Christian Endisch, Christoph Hackl, Dierk Schröder

Abstract:

This paper presents an exact pruning algorithm with adaptive pruning interval for general dynamic neural networks (GDNN). GDNNs are artificial neural networks with internal dynamics. All layers have feedback connections with time delays to the same and to all other layers. The structure of the plant is unknown, so the identification process is started with a larger network architecture than necessary. During parameter optimization with the Levenberg- Marquardt (LM) algorithm irrelevant weights of the dynamic neural network are deleted in order to find a model for the plant as simple as possible. The weights to be pruned are found by direct evaluation of the training data within a sliding time window. The influence of pruning on the identification system depends on the network architecture at pruning time and the selected weight to be deleted. As the architecture of the model is changed drastically during the identification and pruning process, it is suggested to adapt the pruning interval online. Two system identification examples show the architecture selection ability of the proposed pruning approach.

Keywords: System identification, dynamic neural network, recurrentneural network, GDNN, optimization, Levenberg Marquardt, realtime recurrent learning, network pruning, quasi-online learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1937
6847 Exploring Structure of Mobile Ecosystem: Inter-Industry Network Analysis Approach

Authors: Yongyoon Suh, Chulhyun Kim, Moon-soo Kim

Abstract:

As increasing importance of symbiosis and cooperation among mobile communication industries, the mobile ecosystem has been especially highlighted in academia and practice. The structure of mobile ecosystem is quite complex and the ecological role of actors is important to understand that structure. In this respect, this study aims to explore structure of mobile ecosystem in the case of Korea using inter-industry network analysis. Then, the ecological roles in mobile ecosystem are identified using centrality measures as a result of network analysis: degree of centrality, closeness, and betweenness. The result shows that the manufacturing and service industries are separate. Also, the ecological roles of some actors are identified based on the characteristics of ecological terms: keystone, niche, and dominator. Based on the result of this paper, we expect that the policy makers can formulate the future of mobile industry and healthier mobile ecosystem can be constructed.

Keywords: Mobile ecosystem, structure, ecological roles, network analysis, network index.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
6846 Diesel Fault Prediction Based on Optimized Gray Neural Network

Authors: Han Bing, Yin Zhenjie

Abstract:

In order to analyze the status of a diesel engine, as well as conduct fault prediction, a new prediction model based on a gray system is proposed in this paper, which takes advantage of the neural network and the genetic algorithm. The proposed GBPGA prediction model builds on the GM (1.5) model and uses a neural network, which is optimized by a genetic algorithm to construct the error compensator. We verify our proposed model on the diesel faulty simulation data and the experimental results show that GBPGA has the potential to employ fault prediction on diesel.

Keywords: Fault prediction, Neural network, GM (1.5), Genetic algorithm, GBPGA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1302
6845 Morphometric Analysis of Tor tambroides by Stepwise Discriminant and Neural Network Analysis

Authors: M. Pollar, M. Jaroensutasinee, K. Jaroensutasinee

Abstract:

The population structure of the Tor tambroides was investigated with morphometric data (i.e. morphormetric measurement and truss measurement). A morphometric analysis was conducted to compare specimens from three waterfalls: Sunanta, Nan Chong Fa and Wang Muang waterfalls at Khao Nan National Park, Nakhon Si Thammarat, Southern Thailand. The results of stepwise discriminant analysis on seven morphometric variables and 21 truss variables per individual were the same as from a neural network. Fish from three waterfalls were separated into three groups based on their morphometric measurements. The morphometric data shows that the nerual network model performed better than the stepwise discriminant analysis.

Keywords: Morphometric, Tor tambroides, Stepwise Discriminant Analysis , Neural Network Analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2150
6844 A Genetic-Neural-Network Modeling Approach for Self-Heating in GaN High Electron Mobility Transistors

Authors: Anwar Jarndal

Abstract:

In this paper, a genetic-neural-network (GNN) based large-signal model for GaN HEMTs is presented along with its parameters extraction procedure. The model is easy to construct and implement in CAD software and requires only DC and S-parameter measurements. An improved decomposition technique is used to model self-heating effect. Two GNN models are constructed to simulate isothermal drain current and power dissipation, respectively. The two model are then composed to simulate the drain current. The modeling procedure was applied to a packaged GaN-on-Si HEMT and the developed model is validated by comparing its large-signal simulation with measured data. A very good agreement between the simulation and measurement is obtained.

Keywords: GaN HEMT, computer-aided design & modeling, neural networks, genetic optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1658
6843 Misleading Node Detection and Response Mechanism in Mobile Ad-Hoc Network

Authors: Earleen Jane Fuentes, Regeene Melarese Lim, Franklin Benjamin Tapia, Alexis Pantola

Abstract:

Mobile Ad-hoc Network (MANET) is an infrastructure-less network of mobile devices, also known as nodes. These nodes heavily rely on each other’s resources such as memory, computing power, and energy. Thus, some nodes may become selective in forwarding packets so as to conserve their resources. These nodes are called misleading nodes. Several reputation-based techniques (e.g. CORE, CONFIDANT, LARS, SORI, OCEAN) and acknowledgment-based techniques (e.g. TWOACK, S-TWOACK, EAACK) have been proposed to detect such nodes. These techniques do not appropriately punish misleading nodes. Hence, this paper addresses the limitations of these techniques using a system called MINDRA.

Keywords: Mobile ad-hoc network, selfish nodes, reputation-based techniques, acknowledgment-based techniques.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1376
6842 ANN Based Model Development for Material Removal Rate in Dry Turning in Indian Context

Authors: Mangesh R. Phate, V. H. Tatwawadi

Abstract:

This paper is intended to develop an artificial neural network (ANN) based model of material removal rate (MRR) in the turning of ferrous and nonferrous material in a Indian small-scale industry. MRR of the formulated model was proved with the testing data and artificial neural network (ANN) model was developed for the analysis and prediction of the relationship between inputs and output parameters during the turning of ferrous and nonferrous materials. The input parameters of this model are operator, work-piece, cutting process, cutting tool, machine and the environment.

The ANN model consists of a three layered feedforward back propagation neural network. The network is trained with pairs of independent/dependent datasets generated when machining ferrous and nonferrous material. A very good performance of the neural network, in terms of contract with experimental data, was achieved. The model may be used for the testing and forecast of the complex relationship between dependent and the independent parameters in turning operations.

Keywords: Field data based model, Artificial neural network, Simulation, Convectional Turning, Material removal rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1970
6841 Device Discover: A Component for Network Management System using Simple Network Management Protocol

Authors: Garima Gupta, Daya Gupta

Abstract:

Virtually all existing networked system management tools use a Manager/Agent paradigm. That is, distributed agents are deployed on managed devices to collect local information and report it back to some management unit. Even those that use standard protocols such as SNMP fall into this model. Using standard protocol has the advantage of interoperability among devices from different vendors. However, it may not be able to provide customized information that is of interest to satisfy specific management needs. In this dissertation work, different approaches are used to collect information regarding the devices attached to a Local Area Network. An SNMP aware application is being developed that will manage the discovery procedure and will be used as data collector.

Keywords: ICMP Scanner, Network Discovery, NetworkManagement, SNMP Scanner.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1666
6840 Challenges to Enable Quick Start of an Environmental Monitoring with Wireless Sensor Network Technology

Authors: Masaki Ito, Hideyuki Tokuda, Takao Kawamura, Kazunori Sugahara

Abstract:

With the advancement of wireless sensor network technology, its practical utilization is becoming an important challange. This paper overviews my past environmental monitoring project, and discusses the process of starting the monitoring by classifying it into four steps. The steps to start environmental monitoring can be complicated, but not well discussed by researchers of wireless sensor network technology. This paper demonstrates our activity and challenges in each of the four steps to ease the process, and argues future challenges to enable quick start of environmental monitoring.

Keywords: Environmental Monitoring, Wireless Sensor Network, Field Experiment and Research Challenges.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1963
6839 Trust Enhanced Dynamic Source Routing Protocol for Adhoc Networks

Authors: N. Bhalaji, A. R. Sivaramkrishnan, Sinchan Banerjee, V. Sundar, A. Shanmugam

Abstract:

Nodes in mobile Ad Hoc Network (MANET) do not rely on a central infrastructure but relay packets originated by other nodes. Mobile ad hoc networks can work properly only if the participating nodes collaborate in routing and forwarding. For individual nodes it might be advantageous not to collaborate, though. In this conceptual paper we propose a new approach based on relationship among the nodes which makes them to cooperate in an Adhoc environment. The trust unit is used to calculate the trust values of each node in the network. The calculated trust values are being used by the relationship estimator to determine the relationship status of nodes. The proposed enhanced protocol was compared with the standard DSR protocol and the results are analyzed using the network simulator-2.

Keywords: Reliable Routing, DSR, Grudger, Adhoc network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2503