Search results for: Home Energy Controller
3507 Ocean Wave Kinetic Energy Harvesting System for Automated Sub Sea Sensors
Authors: Amir Anvar, Dong Yang Li
Abstract:
This paper presents an overview of the Ocean wave kinetic energy harvesting system. Energy harvesting is a concept by which energy is captured, stored, and utilized using various sources by employing interfaces, storage devices, and other units. Ocean wave energy harvesting in which the kinetic and potential energy contained in the natural oscillations of Ocean waves are converted into electric power. The kinetic energy harvesting system could be used for a number of areas. The main applications that we have discussed in this paper are to how generate the energy from Ocean wave energy (kinetic energy) to electric energy that is to eliminate the requirement for continual battery replacement.
Keywords: Energy harvesting, power system, oceanic, sensors, autonomous.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 43573506 Path-Tracking Controller for Tracked Mobile Robot on Rough Terrain
Authors: Toshifumi Hiramatsu, Satoshi Morita, Manuel Pencelli, Marta Niccolini, Matteo Ragaglia, Alfredo Argiolas
Abstract:
Automation technologies for agriculture field are needed to promote labor-saving. One of the most relevant problems in automated agriculture is represented by controlling the robot along a predetermined path in presence of rough terrain or incline ground. Unfortunately, disturbances originating from interaction with the ground, such as slipping, make it quite difficult to achieve the required accuracy. In general, it is required to move within 5-10 cm accuracy with respect to the predetermined path. Moreover, lateral velocity caused by gravity on the incline field also affects slipping. In this paper, a path-tracking controller for tracked mobile robots moving on rough terrains of incline field such as vineyard is presented. The controller is composed of a disturbance observer and an adaptive controller based on the kinematic model of the robot. The disturbance observer measures the difference between the measured and the reference yaw rate and linear velocity in order to estimate slip. Then, the adaptive controller adapts “virtual” parameter of the kinematics model: Instantaneous Centers of Rotation (ICRs). Finally, target angular velocity reference is computed according to the adapted parameter. This solution allows estimating the effects of slip without making the model too complex. Finally, the effectiveness of the proposed solution is tested in a simulation environment.
Keywords: Agricultural robot, autonomous control, path-tracking control, tracked mobile robot.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11363505 Portfolio Management: A Fuzzy Set Based Approach to Monitoring Size to Maximize Return and Minimize Risk
Authors: Margaret F. Shipley
Abstract:
Fuzzy logic can be used when knowledge is incomplete or when ambiguity of data exists. The purpose of this paper is to propose a proactive fuzzy set- based model for reacting to the risk inherent in investment activities relative to a complete view of portfolio management. Fuzzy rules are given where, depending on the antecedents, the portfolio size may be slightly or significantly decreased or increased. The decision maker considers acceptable bounds on the proportion of acceptable risk and return. The Fuzzy Controller model allows learning to be achieved as 1) the firing strength of each rule is measured, 2) fuzzy output allows rules to be updated, and 3) new actions are recommended as the system continues to loop. An extension is given to the fuzzy controller that evaluates potential financial loss before adjusting the portfolio. An application is presented that illustrates the algorithm and extension developed in the paper.Keywords: Portfolio Management, Financial Market Monitoring, Fuzzy Controller, Fuzzy Logic,
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18533504 A Location-Allocation-Routing Model for a Home Health Care Supply Chain Problem
Authors: Amir Mohammad Fathollahi Fard, Mostafa Hajiaghaei-Keshteli, Mohammad Mahdi Paydar
Abstract:
With increasing life expectancy in developed countries, the role of home care services is highlighted by both academia and industrial contributors in Home Health Care Supply Chain (HHCSC) companies. The main decisions in such supply chain systems are the location of pharmacies, the allocation of patients to these pharmacies and also the routing and scheduling decisions of nurses to visit their patients. In this study, for the first time, an integrated model is proposed to consist of all preliminary and necessary decisions in these companies, namely, location-allocation-routing model. This model is a type of NP-hard one. Therefore, an Imperialist Competitive Algorithm (ICA) is utilized to solve the model, especially in large sizes. Results confirm the efficiency of the developed model for HHCSC companies as well as the performance of employed ICA.
Keywords: Home health care supply chain, location-allocation-routing problem, imperialist competitive algorithm, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10553503 The Decentralized Nonlinear Controller of Robot Manipulator with External Load Compensation
Authors: Sun Lim, Il-Kyun Jung
Abstract:
This paper describes a newly designed decentralized nonlinear control strategy to control a robot manipulator. Based on the concept of the nonlinear state feedback theory and decentralized concept is developed to improve the drawbacks in previous works concerned with complicate intelligent control and low cost effective sensor. The control methodology is derived in the sense of Lyapunov theorem so that the stability of the control system is guaranteed. The decentralized algorithm does not require other joint angle and velocity information. Individual Joint controller is implemented using a digital processor with nearly actuator to make it possible to achieve good dynamics and modular. Computer simulation result has been conducted to validate the effectiveness of the proposed control scheme under the occurrence of possible uncertainties and different reference trajectories. The merit of the proposed control system is indicated in comparison with a classical control system.Keywords: Robot manipulator control, nonlinear controller, Lyapunov based stability, Interconnection compensation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16273502 Intelligent Temperature Controller for Water-Bath System
Authors: Om Prakash Verma, Rajesh Singla, Rajesh Kumar
Abstract:
Conventional controller’s usually required a prior knowledge of mathematical modelling of the process. The inaccuracy of mathematical modelling degrades the performance of the process, especially for non-linear and complex control problem. The process used is Water-Bath system, which is most widely used and nonlinear to some extent. For Water-Bath system, it is necessary to attain desired temperature within a specified period of time to avoid the overshoot and absolute error, with better temperature tracking capability, else the process is disturbed.
To overcome above difficulties intelligent controllers, Fuzzy Logic (FL) and Adaptive Neuro-Fuzzy Inference System (ANFIS), are proposed in this paper. The Fuzzy controller is designed to work with knowledge in the form of linguistic control rules. But the translation of these linguistic rules into the framework of fuzzy set theory depends on the choice of certain parameters, for which no formal method is known. To design ANFIS, Fuzzy-Inference-System is combined with learning capability of Neural-Network.
It is analyzed that ANFIS is best suitable for adaptive temperature control of above system. As compared to PID and FLC, ANFIS produces a stable control signal. It has much better temperature tracking capability with almost zero overshoot and minimum absolute error.
Keywords: PID Controller, FLC, ANFIS, Non-Linear Control System, Water-Bath System, MATLAB-7.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 55493501 Nonlinear Model Predictive Control of Water Quality in Drinking Water Distribution Systems with DBPs Objectives
Authors: Mingyu Xie, Mietek Brdys
Abstract:
The paper develops a Non-Linear Model Predictive Control (NMPC) of water quality in Drinking Water Distribution Systems (DWDS) based on the advanced non-linear quality dynamics model including disinfections by-products (DBPs). A special attention is paid to the analysis of an impact of the flow trajectories prescribed by an upper control level of the recently developed two-time scale architecture of an integrated quality and quantity control in DWDS. The new quality controller is to operate within this architecture in the fast time scale as the lower level quality controller. The controller performance is validated by a comprehensive simulation study based on an example case study DWDS.Keywords: Model predictive control, hierarchical control structure, genetic algorithm, water quality with DBPs objectives.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24813500 Comparison between PI and PR Current Controllers in Grid Connected PV Inverters
Authors: D. Zammit, C. Spiteri Staines, M. Apap
Abstract:
This paper presents a comparison between Proportional Integral (PI) and Proportional Resonant (PR) current controllers used in Grid Connected Photovoltaic (PV) Inverters. Both simulation and experimental results will be presented. A 3kW Grid-Connected PV Inverter was designed and constructed for this research.
Keywords: Inverters, Proportional-Integral Controller, Proportional-Resonant Controller, Photovoltaic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159113499 A Proposed Framework for Improving IT Utilization in the Energy Industry
Authors: Jin Kyung Park, Ji Yeon Cho, Yong Ho Shim, Su Jin Kim, Bong Gyou Lee
Abstract:
The purpose of this study is to suggest direction for future study of the energy-IT industry that will be used for framework to increase IT utilization in the energy industry. Recently, Green IT is a becoming global issue because of global environmental pollution. Also, IT roles in energy industry are becoming more important. However, the related studies were IT industry oriented that is not sufficient to make plan for Green energy. Therefore, after analyzing existing studies related to Green energy and Green IT, re-categorization for Green energy-IT industry was suggested. Direction of framework is based on energy industry that enable to link between energy and IT. The results of this study suggest comprehensive insight to Green energy-IT industry. Thus it is able to provide useful implications and guidelines to increase IT utilization in the energy industry.Keywords: Energy-IT Industry, Green Energy, Green IT, IT Utilization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13503498 Integration of Fixed and Variable Speed Wind Generator Dynamics with Multimachine AC Systems
Authors: A.H.M.A.Rahim
Abstract:
The impact of fixed speed squirrel cage type as well as variable speed doubly fed induction generators (DFIG) on dynamic performance of a multimachine power system has been investigated. Detailed models of the various components have been presented and the integration of asynchronous and synchronous generators has been carried out through a rotor angle based transform. Simulation studies carried out considering the conventional dynamic model of squirrel cage asynchronous generators show that integration, as such, could degrade to the AC system performance transiently. This article proposes a frequency or power controller which can effectively control the transients and restore normal operation of fixed speed induction generator quickly. Comparison of simulation results between classical cage and doubly-fed induction generators indicate that the doubly fed induction machine is more adaptable to multimachine AC system. Frequency controller installed in the DFIG system can also improve its transient profile.Keywords: Doubly-fed generator, Induction generator, Multimachine system modeling, Wind energy systems
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23563497 DFIG-Based Wind Turbine with Shunt Active Power Filter Controlled by Double Nonlinear Predictive Controller
Authors: Abderrahmane El Kachani, El Mahjoub Chakir, Anass Ait Laachir, Abdelhamid Niaaniaa, Jamal Zerouaoui, Tarik Jarou
Abstract:
This paper presents a wind turbine based on the doubly fed induction generator (DFIG) connected to the utility grid through a shunt active power filter (SAPF). The whole system is controlled by a double nonlinear predictive controller (DNPC). A Taylor series expansion is used to predict the outputs of the system. The control law is calculated by optimization of the cost function. The first nonlinear predictive controller (NPC) is designed to ensure the high performance tracking of the rotor speed and regulate the rotor current of the DFIG, while the second one is designed to control the SAPF in order to compensate the harmonic produces by the three-phase diode bridge supplied by a passive circuit (rd, Ld). As a result, we obtain sinusoidal waveforms of the stator voltage and stator current. The proposed nonlinear predictive controllers (NPCs) are validated via simulation on a 1.5 MW DFIG-based wind turbine connected to an SAPF. The results obtained appear to be satisfactory and promising.
Keywords: Wind power, doubly fed induction generator, shunt active power filter, double nonlinear predictive controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9193496 Coordinated Design of TCSC Controller and PSS Employing Particle Swarm Optimization Technique
Authors: Sidhartha Panda, N. P. Padhy
Abstract:
This paper investigates the application of Particle Swarm Optimization (PSO) technique for coordinated design of a Power System Stabilizer (PSS) and a Thyristor Controlled Series Compensator (TCSC)-based controller to enhance the power system stability. The design problem of PSS and TCSC-based controllers is formulated as a time domain based optimization problem. PSO algorithm is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. To compare the capability of PSS and TCSC-based controller, both are designed independently first and then in a coordinated manner for individual and coordinated application. The proposed controllers are tested on a weakly connected power system. The eigenvalue analysis and non-linear simulation results are presented to show the effectiveness of the coordinated design approach over individual design. The simulation results show that the proposed controllers are effective in damping low frequency oscillations resulting from various small disturbances like change in mechanical power input and reference voltage setting.Keywords: Particle swarm optimization, Phillips-Heffron model, power system stability, PSS, TCSC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21603495 A Power-Controlled Scheduling Scheme Using a Directional Antenna in Smart Home
Authors: Yongsun Kim, Hoyong Kang
Abstract:
This paper proposes a power-controlled scheduling scheme for devices using a directional antenna in smart home. In the case of the home network using directional antenna, devices can concurrently transmit data in the same frequency band. Accordingly, the throughput increases compared to that of devices using omni-directional antenna in proportional to the number of concurrent transmissions. Also, the number of concurrent transmissions depends on the beamwidth of antenna, the number of devices operating in the network , transmission power, interference and so on. In particular, the less transmission power is used, the more concurrent transmissions occur due to small transmission range. In this paper, we considered sub-optimal scheduling scheme for throughput maximization and power consumption minimization. In the scheme, each device is equipped with a directional antenna. Various beamwidths, path loss components, and antenna radiation efficiencies are considered. Numerical results show that the proposed schemes outperform the scheduling scheme using directional antennas without power control.
Keywords: Mmwave WPANs, directional scheduling, power-controlled scheduling scheme, smart home.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14343494 Backstepping Sliding Mode Controller Coupled to Adaptive Sliding Mode Observer for Interconnected Fractional Nonlinear System
Authors: D. Elleuch, T. Damak
Abstract:
Performance control law is studied for an interconnected fractional nonlinear system. Applying a backstepping algorithm, a backstepping sliding mode controller (BSMC) is developed for fractional nonlinear system. To improve control law performance, BSMC is coupled to an adaptive sliding mode observer have a filtered error as a sliding surface. The both architecture performance is studied throughout the inverted pendulum mounted on a cart. Simulation result show that the BSMC coupled to an adaptive sliding mode observer have stable control law and eligible control amplitude than the BSMC.Keywords: Backstepping sliding mode controller, interconnected fractional nonlinear system, adaptive sliding mode observer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22933493 Model-Based Control for Piezoelectric-Actuated Systems Using Inverse Prandtl-Ishlinskii Model and Particle Swarm Optimization
Authors: Jin-Wei Liang, Hung-Yi Chen, Lung Lin
Abstract:
In this paper feedforward controller is designed to eliminate nonlinear hysteresis behaviors of a piezoelectric stack actuator (PSA) driven system. The control design is based on inverse Prandtl-Ishlinskii (P-I) hysteresis model identified using particle swarm optimization (PSO) technique. Based on the identified P-I model, both the inverse P-I hysteresis model and feedforward controller can be determined. Experimental results obtained using the inverse P-I feedforward control are compared with their counterparts using hysteresis estimates obtained from the identified Bouc-Wen model. Effectiveness of the proposed feedforward control scheme is demonstrated. To improve control performance feedback compensation using traditional PID scheme is adopted to integrate with the feedforward controller.
Keywords: The Bouc-Wen hysteresis model, Particle swarm optimization, Prandtl-Ishlinskii model.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24083492 Design and Implementation of a Hybrid Fuzzy Controller for a High-Performance Induction
Authors: M. Zerikat, S. Chekroun
Abstract:
This paper proposes an effective algorithm approach to hybrid control systems combining fuzzy logic and conventional control techniques of controlling the speed of induction motor assumed to operate in high-performance drives environment. The introducing of fuzzy logic in the control systems helps to achieve good dynamical response, disturbance rejection and low sensibility to parameter variations and external influences. Some fundamentals of the fuzzy logic control are preliminary illustrated. The developed control algorithm is robust, efficient and simple. It also assures precise trajectory tracking with the prescribed dynamics. Experimental results have shown excellent tracking performance of the proposed control system, and have convincingly demonstrated the validity and the usefulness of the hybrid fuzzy controller in high-performance drives with parameter and load uncertainties. Satisfactory performance was observed for most reference tracks.
Keywords: Fuzzy controller, high-performance, inductionmotor, intelligent control, robustness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21743491 Heuristic Search Algorithms for Tuning PUMA 560 Fuzzy PID Controller
Authors: Sufian Ashraf Mazhari, Surendra Kumar
Abstract:
This paper compares the heuristic Global Search Techniques; Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Generalized Pattern Search, genetic algorithm hybridized with Nelder–Mead and Generalized pattern search technique for tuning of fuzzy PID controller for Puma 560. Since the actual control is in joint space ,inverse kinematics is used to generate various joint angles correspoding to desired cartesian space trajectory. Efficient dynamics and kinematics are modeled on Matlab which takes very less simulation time. Performances of all the tuning methods with and without disturbance are compared in terms of ITSE in joint space and ISE in cartesian space for spiral trajectory tracking. Genetic Algorithm hybridized with Generalized Pattern Search is showing best performance.Keywords: Controller tuning, Fuzzy Control, Genetic Algorithm, Heuristic search, Robot control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22193490 Evaluating Machine Learning Techniques for Activity Classification in Smart Home Environments
Authors: Talal Alshammari, Nasser Alshammari, Mohamed Sedky, Chris Howard
Abstract:
With the widespread adoption of the Internet-connected devices, and with the prevalence of the Internet of Things (IoT) applications, there is an increased interest in machine learning techniques that can provide useful and interesting services in the smart home domain. The areas that machine learning techniques can help advance are varied and ever-evolving. Classifying smart home inhabitants’ Activities of Daily Living (ADLs), is one prominent example. The ability of machine learning technique to find meaningful spatio-temporal relations of high-dimensional data is an important requirement as well. This paper presents a comparative evaluation of state-of-the-art machine learning techniques to classify ADLs in the smart home domain. Forty-two synthetic datasets and two real-world datasets with multiple inhabitants are used to evaluate and compare the performance of the identified machine learning techniques. Our results show significant performance differences between the evaluated techniques. Such as AdaBoost, Cortical Learning Algorithm (CLA), Decision Trees, Hidden Markov Model (HMM), Multi-layer Perceptron (MLP), Structured Perceptron and Support Vector Machines (SVM). Overall, neural network based techniques have shown superiority over the other tested techniques.Keywords: Activities of daily living, classification, internet of things, machine learning, smart home.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17743489 Maximum Power Point Tracking Based on Estimated Power for PV Energy Conversion System
Authors: Zainab Almukhtar, Adel Merabet
Abstract:
In this paper, a method for maximum power point tracking of a photovoltaic energy conversion system is presented. This method is based on using the difference between the power from the solar panel and an estimated power value to control the DC-DC converter of the photovoltaic system. The difference is continuously compared with a preset error permitted value. If the power difference is more than the error, the estimated power is multiplied by a factor and the operation is repeated until the difference is less or equal to the threshold error. The difference in power will be used to trigger a DC-DC boost converter in order to raise the voltage to where the maximum power point is achieved. The proposed method was experimentally verified through a PV energy conversion system driven by the OPAL-RT real time controller. The method was tested on varying radiation conditions and load requirements, and the Photovoltaic Panel was operated at its maximum power in different conditions of irradiation.Keywords: Control system, power error, solar panel, MPPT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13223488 Feasibility and Penetration of Electric Vehicles in Indian Power Grid
Authors: Kashyap L. Mokariya, Varsha A. Shah, Makarand M. Lokhande
Abstract:
As the current status and growth of Indian automobile industry is remarkable, transportation sectors are the main concern in terms of energy security and climate change. Due to rising demand of fuel and its dependency on foreign countries that affects the GDP of nation, suggests that penetration of electrical vehicle will increase in near future. So in this context analysis is done if the 10 percent of conventional vehicles including cars, three wheelers and two wheelers becomes electrical vehicles in near future which is also a part of Nations Electric Mobility Mission Plan then the saving which improves the nation’s economy is analyzed in detail. Whether the Indian electricity grid is capable of taking this load with current generation and demand all over the country is also analyzed in detail. Current situation of Indian grid is analyzed and how the gap between generation and demand can be reduced is discussed in terms of increasing generation capacity and energy conservation measures. Electrical energy conservation measures in Industry and especially in rural areas have been analyzed to improve performance of Indian electricity grid in context of electrical vehicle penetration in near future. Author was a part of Vishvakarma yojna in which energy losses were measured in 255 villages of Gujarat and solutions were suggested to mitigate them and corresponding reports was submitted to the authorities of Gujarat government.
Keywords: Vehicle penetration, feasibility, Energy conservation, future grid, Energy security, Automatic pf controller.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41093487 One-DOF Precision Position Control using the Combined Piezo-VCM Actuator
Authors: Yung-Tien Liu, Chun-Chao Wang
Abstract:
This paper presents the control performance of a high-precision positioning device using the hybrid actuator composed of a piezoelectric (PZT) actuator and a voice-coil motor (VCM). The combined piezo-VCM actuator features two main characteristics: a large operation range due to long stroke of the VCM, and high precision and heavy load positioning ability due to PZT impact force. A one-degree-of-freedom (DOF) experimental setup was configured to examine the fundamental characteristics, and the control performance was effectively demonstrated by using a switching controller. In rough positioning state, an integral variable structure controller (IVSC) was used for the VCM to conduct long range of operation; in precision positioning state, an impact force controller (IFC) for the PZT actuator coupled with presliding states of the sliding table was used to obtain high-precision position control and achieve both forward and backward actuations. The experimental results showed that the sliding table having a mass of 881g and with a preload of 10 N was successfully positioned within the positioning accuracy of 10 nm in both forward and backward position controls.
Keywords: Integral variable structure controller (IVSC), impact force, precision positioning, presliding, PZT actuator, voice-coil motor (VCM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19373486 Neural Adaptive Switching Control of Robotic Systems
Authors: A. Denker, U. Akıncıoğlu
Abstract:
In this paper a neural adaptive control method has been developed and applied to robot control. Simulation results are presented to verify the effectiveness of the controller. These results show that the performance by using this controller is better than those which just use either direct inverse control or predictive control. In addition, they show that the resulting is a useful method which combines the advantages of both direct inverse control and predictive control.Keywords: Neural networks, robotics, direct inverse control, predictive control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21843485 Systematic Approach for Energy-Supply-Orientated Production Planning
Authors: F. Keller, G. Reinhart
Abstract:
The efficient and economic allocation of resources is one main goal in the field of production planning and control. Nowadays, a new variable gains in importance throughout the planning process: Energy. Energy-efficiency has already been widely discussed in literature, but with a strong focus on reducing the overall amount of energy used in production. This paper provides a brief systematic approach, how energy-supply-orientation can be used for an energy-cost-efficient production planning and thus combining the idea of energy-efficiency and energy-flexibility.Keywords: Production planning and control, energy, efficiency, flexibility.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16263484 Output Regulation of Perturbed Nonlinear Systems by Nested Sliding Mode Control
Authors: Aras Adhami Mirhoseini, Mohammad J. Yazdanpanah
Abstract:
In this paper, we consider nested sliding mode control of SISO nonlinear systems, perturbed by bounded matched and unmatched uncertainties. The systems are assumed to be in strict-feedback form. A step wise procedure is introduced to obtain the controller. In each step, a continuous sliding mode controller is designed as virtual control law. Then the next step sliding surface is defined by using this virtual controller. These sliding surfaces are selected as nonlinear static functions of the system states. Finally in the last step, smooth static state feedback control law is determined such that the output reaches the desired set-point while the system is forced arbitrary close to the intersection of sliding surfaces and the states remain bounded.
Keywords: Sliding mode control, Strict-feedback form, Unmatched uncertainty, output regulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21523483 Synchronization of a Perturbed Satellite Attitude Motion
Authors: Sadaoui Djaouida
Abstract:
In the paper, the predictive control method is proposed to control the synchronization of two perturbed satellites attitude motion. Based on delayed feedback control of continuous-time systems combines with the prediction-based method of discrete-time systems, this approach only needs a single controller to realize synchronization, which has considerable significance in reducing the cost and complexity for controller implementation.
Keywords: Predictive control, Synchronization, Satellite attitude.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19513482 An Inverse Optimal Control Approach for the Nonlinear System Design Using ANN
Authors: M. P. Nanda Kumar, K. Dheeraj
Abstract:
The design of a feedback controller, so as to minimize a given performance criterion, for a general non-linear dynamical system is difficult; if not impossible. But for a large class of non-linear dynamical systems, the open loop control that minimizes a performance criterion can be obtained using calculus of variations and Pontryagin’s minimum principle. In this paper, the open loop optimal trajectories, that minimizes a given performance measure, is used to train the neural network whose inputs are state variables of non-linear dynamical systems and the open loop optimal control as the desired output. This trained neural network is used as the feedback controller. In other words, attempts are made here to solve the “inverse optimal control problem” by using the state and control trajectories that are optimal in an open loop sense.
Keywords: Inverse Optimal Control, Radial basis function neural network, Controller Design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22883481 An Energy Efficient Digital Baseband for Batteryless Remote Control
Authors: Wei-Da Toh, Yuan Gao, Minkyu Je
Abstract:
In this paper, an energy efficient digital baseband circuit for piezoelectric (PE) harvester powered batteryless remote control system is presented. Pulse mode PE harvester, which provides short duration of energy, is adopted to replace conventional chemical battery in wireless remote controller. The transmitter digital baseband repeats the control command transmission once the digital circuit is initiated by the power-on-reset. A power efficient data frame format is proposed to maximize the transmission repetition time. By using the proposed frame format and receiver clock and data recovery method, the receiver baseband is able to decode the command even when the received data has 20% error. The proposed transmitter and receiver baseband are implemented using FPGA and simulation results are presented.
Keywords: Clock and Data Recovery (CDR), Correlator, Digital Baseband, Gold Code, Power-On-Reset.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20233480 How to Connect User Research and not so Forthcoming Technology Scenarios – The Extended Home Environment Case Study
Authors: E. Guercio, A. Marcengo, A. Rapp
Abstract:
This paper draws a methodological framework adopted within an internal Telecomitalia project aimed to identify, on a user centred base, the potential interest towards a technological scenario aimed to extend on a personal bubble the typical communication and media fruition home environment. The problem is that involving user in the early stage of the development of such disruptive technology scenario asking users opinions on something that users actually do not manage even in a rough manner could lead to wrong or distorted results. For that reason we chose an approach that indirectly aim to understand users hidden needs in order to obtain a meaningful picture of the possible interest for a technological proposition non yet easily understandable.
Keywords: Personas, focus groups, scenarios, extended home environment, telecommunication, media.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15913479 An Intelligent Cascaded Fuzzy Logic Based Controller for Controlling the Room Temperature in Hydronic Heating System
Authors: Vikram Jeganathan, A. V. Sai Balasubramanian, N. Ravi Shankar, S. Subbaraman, R. Rengaraj
Abstract:
Heating systems are a necessity for regions which brace extreme cold weather throughout the year. To maintain a comfortable temperature inside a given place, heating systems making use of- Hydronic boilers- are used. The principle of a single pipe system serves as a base for their working. It is mandatory for these heating systems to control the room temperature, thus maintaining a warm environment. In this paper, the concept of regulation of the room temperature over a wide range is established by using an Adaptive Fuzzy Controller (AFC). This fuzzy controller automatically detects the changes in the outside temperatures and correspondingly maintains the inside temperature to a palatial value. Two separate AFC's are put to use to carry out this function: one to determine the quantity of heat needed to reach the prospective temperature required and to set the desired temperature; the other to control the position of the valve, which is directly proportional to the error between the present room temperature and the user desired temperature. The fuzzy logic controls the position of the valve as per the requirement of the heat. The amount by which the valve opens or closes is controlled by 5 knob positions, which vary from minimum to maximum, thereby regulating the amount of heat flowing through the valve. For the given test system data, different de-fuzzifier methods have been implemented and the results are compared. In order to validate the effectiveness of the proposed approach, a fuzzy controller has been designed by obtaining a test data from a real time system. The simulations are performed in MATLAB and are verified with standard system data. The proposed approach can be implemented for real time applications.Keywords: Adaptive fuzzy controller, Hydronic heating system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19773478 Application of Neural Network in User Authentication for Smart Home System
Authors: A. Joseph, D.B.L. Bong, D.A.A. Mat
Abstract:
Security has been an important issue and concern in the smart home systems. Smart home networks consist of a wide range of wired or wireless devices, there is possibility that illegal access to some restricted data or devices may happen. Password-based authentication is widely used to identify authorize users, because this method is cheap, easy and quite accurate. In this paper, a neural network is trained to store the passwords instead of using verification table. This method is useful in solving security problems that happened in some authentication system. The conventional way to train the network using Backpropagation (BPN) requires a long training time. Hence, a faster training algorithm, Resilient Backpropagation (RPROP) is embedded to the MLPs Neural Network to accelerate the training process. For the Data Part, 200 sets of UserID and Passwords were created and encoded into binary as the input. The simulation had been carried out to evaluate the performance for different number of hidden neurons and combination of transfer functions. Mean Square Error (MSE), training time and number of epochs are used to determine the network performance. From the results obtained, using Tansig and Purelin in hidden and output layer and 250 hidden neurons gave the better performance. As a result, a password-based user authentication system for smart home by using neural network had been developed successfully.Keywords: Neural Network, User Authentication, Smart Home, Security
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2040