Search results for: Detecting Abnormal ECG Signals Utilising Wavelet Transform and Standard Deviation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 3610

Search results for: Detecting Abnormal ECG Signals Utilising Wavelet Transform and Standard Deviation

3280 Experiment Study on the Plasma Parameters Measurement in Backflow Region of Ion Thruster

Authors: Tian Kai, Yang Sheng-sheng, Li De-tian, Miao Yu-jun, Xue Yu-xiong Wang Yi, Yan Ze-dong, Ma Ya-li, ZHuang Jian-hong

Abstract:

The charge-exchange xenon (CEX) ion generated by ion thruster can backflow to the surface of spacecraft and threaten to the safety of spacecraft operation. In order to evaluate the effects of the induced plasma environment in backflow regions on the spacecraft, we designed a spherical single Langmuir probe of 5.8cm in diameter for measuring low-density plasma parameters in backflow region of ion thruster. In practice, the tests are performed in a two-dimensional array (40cm×60cm) composed of 20 sites. The experiment results illustrate that the electron temperature ranges from 3.71eV to 3.96eV, with the mean value of 3.82eV and the standard deviation of 0.064eV. The electron density ranges from 8.30×1012/m3 to 1.66×1013/m3, with the mean value of 1.30×1013/m3 and the standard deviation of 2.15×1012/m3. All data is analyzed according to the “ideal" plasma conditions of Maxwellian distributions.

Keywords: Langmuir Probe, Plasma parameters, Ion thruster, Backflow region.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1955
3279 A Novel VLSI Architecture for Image Compression Model Using Low power Discrete Cosine Transform

Authors: Vijaya Prakash.A.M, K.S.Gurumurthy

Abstract:

In Image processing the Image compression can improve the performance of the digital systems by reducing the cost and time in image storage and transmission without significant reduction of the Image quality. This paper describes hardware architecture of low complexity Discrete Cosine Transform (DCT) architecture for image compression[6]. In this DCT architecture, common computations are identified and shared to remove redundant computations in DCT matrix operation. Vector processing is a method used for implementation of DCT. This reduction in computational complexity of 2D DCT reduces power consumption. The 2D DCT is performed on 8x8 matrix using two 1-Dimensional Discrete cosine transform blocks and a transposition memory [7]. Inverse discrete cosine transform (IDCT) is performed to obtain the image matrix and reconstruct the original image. The proposed image compression algorithm is comprehended using MATLAB code. The VLSI design of the architecture is implemented Using Verilog HDL. The proposed hardware architecture for image compression employing DCT was synthesized using RTL complier and it was mapped using 180nm standard cells. . The Simulation is done using Modelsim. The simulation results from MATLAB and Verilog HDL are compared. Detailed analysis for power and area was done using RTL compiler from CADENCE. Power consumption of DCT core is reduced to 1.027mW with minimum area[1].

Keywords: Discrete Cosine Transform (DCT), Inverse DiscreteCosine Transform (IDCT), Joint Photographic Expert Group (JPEG), Low Power Design, Very Large Scale Integration (VLSI) .

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3145
3278 Poincaré Plot for Heart Rate Variability

Authors: Mazhar B. Tayel, Eslam I. AlSaba

Abstract:

Heart is the most important part in the body of living organisms. It affects and is affected by any factor in the body. Therefore, it is a good detector for all conditions in the body. Heart signal is a non-stationary signal; thus, it is utmost important to study the variability of heart signal. The Heart Rate Variability (HRV) has attracted considerable attention in psychology, medicine and has become important dependent measure in psychophysiology and behavioral medicine. The standards of measurements, physiological interpretation and clinical use for HRV that are most often used were described in many researcher papers, however, remain complex issues are fraught with pitfalls. This paper presents one of the nonlinear techniques to analyze HRV. It discusses many points like, what Poincaré plot is and how Poincaré plot works; also, Poincaré plot's merits especially in HRV. Besides, it discusses the limitation of Poincaré cause of standard deviation SD1, SD2 and how to overcome this limitation by using complex correlation measure (CCM). The CCM is most sensitive to changes in temporal structure of the Poincaré plot as compared toSD1 and SD2.

Keywords: Heart rate variability, chaotic system, Poincaré, variance, standard deviation, complex correlation measure.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7463
3277 Detecting HCC Tumor in Three Phasic CT Liver Images with Optimization of Neural Network

Authors: Mahdieh Khalilinezhad, Silvana Dellepiane, Gianni Vernazza

Abstract:

The aim of this work is to build a model based on tissue characterization that is able to discriminate pathological and non-pathological regions from three-phasic CT images. With our research and based on a feature selection in different phases, we are trying to design a neural network system with an optimal neuron number in a hidden layer. Our approach consists of three steps: feature selection, feature reduction, and classification. For each region of interest (ROI), 6 distinct sets of texture features are extracted such as: first order histogram parameters, absolute gradient, run-length matrix, co-occurrence matrix, autoregressive model, and wavelet, for a total of 270 texture features. When analyzing more phases, we show that the injection of liquid cause changes to the high relevant features in each region. Our results demonstrate that for detecting HCC tumor phase 3 is the best one in most of the features that we apply to the classification algorithm. The percentage of detection between pathology and healthy classes, according to our method, relates to first order histogram parameters with accuracy of 85% in phase 1, 95% in phase 2, and 95% in phase 3.

Keywords: Feature selection, Multi-phasic liver images, Neural network, Texture analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544
3276 Multidimensional Compromise Programming Evaluation of Digital Commerce Websites

Authors: C. Ardil

Abstract:

Multidimensional compromise programming evaluation of digital commerce websites is essential not only to have recommendations for improvement, but also to make comparisons with global business competitors. This research provides a multidimensional decision making model that prioritizes the objective criteria weights of various commerce websites using multidimensional compromise solution. Evaluation of digital commerce website quality can be considered as a complex information system structure including qualitative and quantitative factors for a multicriteria decision making problem. The proposed multicriteria decision making approach mainly consists of three sequential steps for the selection problem. In the first step, three major different evaluation criteria are characterized for website ranking problem. In the second step, identified critical criteria are weighted using the standard deviation procedure. In the third step, the multidimensional compromise programming is applied to rank the digital commerce websites.

Keywords: Standard deviation, commerce website, website evaluation, multicriteria decision making, multicriteria compromise programming, website quality, multidimensional decision analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 823
3275 Circuit Breaker and Transformer Monitoring

Authors: M.Nafar, A.H.Gheisari, A.Alesaadi

Abstract:

Since large power transformers are the most expensive and strategically important components of any power generator and transmission system, their reliability is crucially important for the energy system operation. Also, Circuit breakers are very important elements in the power transmission line so monitoring the events gives a knowledgebase to determine time to the next maintenance. This paper deals with the introduction of the comparative method of the state estimation of transformers and Circuit breakers using continuous monitoring of voltage, current. This paper gives details a new method based on wavelet to apparatus insulation monitoring. In this paper to insulation monitoring of transformer, a new method based on wavelet transformation and neutral point analysis is proposed. Using the EMTP tools, fault in transformer winding and the detailed transformer winding model were simulated. The current of neutral point of winding was analyzed by wavelet transformation. It is shown that the neutral current of the transformer winding has useful information about fault in insulation of the transformer.

Keywords: Wavelet, Power Transformer, EMTP, CircuitBreaker, Monitoring

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
3274 A Novel Framework for Abnormal Behaviour Identification and Detection for Wireless Sensor Networks

Authors: Muhammad R. Ahmed, Xu Huang, Dharmendra Sharma

Abstract:

Despite extensive study on wireless sensor network security, defending internal attacks and finding abnormal behaviour of the sensor are still difficult and unsolved task. The conventional cryptographic technique does not give the robust security or detection process to save the network from internal attacker that cause by abnormal behavior. The insider attacker or abnormally behaved sensor identificationand location detection framework using false massage detection and Time difference of Arrival (TDoA) is presented in this paper. It has been shown that the new framework can efficiently identify and detect the insider attacker location so that the attacker can be reprogrammed or subside from the network to save from internal attack.

Keywords: Insider Attaker identification, Abnormal Behaviour, Location detection, Time difference of Arrival (TDoA), Wireless sensor network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1783
3273 Object Recognition Approach Based on Generalized Hough Transform and Color Distribution Serving in Generating Arabic Sentences

Authors: Nada Farhani, Naim Terbeh, Mounir Zrigui

Abstract:

The recognition of the objects contained in images has always presented a challenge in the field of research because of several difficulties that the researcher can envisage because of the variability of shape, position, contrast of objects, etc. In this paper, we will be interested in the recognition of objects. The classical Hough Transform (HT) presented a tool for detecting straight line segments in images. The technique of HT has been generalized (GHT) for the detection of arbitrary forms. With GHT, the forms sought are not necessarily defined analytically but rather by a particular silhouette. For more precision, we proposed to combine the results from the GHT with the results from a calculation of similarity between the histograms and the spatiograms of the images. The main purpose of our work is to use the concepts from recognition to generate sentences in Arabic that summarize the content of the image.

Keywords: Recognition of shape, generalized hough transformation, histogram, Spatiogram, learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 626
3272 Gaussian Density and HOG with Content Based Image Retrieval System – A New Approach

Authors: N. Shanmugapriya, R. Nallusamy

Abstract:

Content-based image retrieval (CBIR) uses the contents of images to characterize and contact the images. This paper focus on retrieving the image by separating images into its three color mechanism R, G and B and for that Discrete Wavelet Transformation is applied. Then Wavelet based Generalized Gaussian Density (GGD) is practical which is used for modeling the coefficients from the wavelet transforms. After that it is agreed to Histogram of Oriented Gradient (HOG) for extracting its characteristic vectors with Relevant Feedback technique is used. The performance of this approach is calculated by exactness and it confirms that this method is wellorganized for image retrieval.

Keywords: Content-Based Image Retrieval (CBIR), Relevant Feedback, Histogram of Oriented Gradient (HOG), Generalized Gaussian Density (GGD).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2051
3271 Texture Feature Extraction using Slant-Hadamard Transform

Authors: M. J. Nassiri, A. Vafaei, A. Monadjemi

Abstract:

Random and natural textures classification is still one of the biggest challenges in the field of image processing and pattern recognition. In this paper, texture feature extraction using Slant Hadamard Transform was studied and compared to other signal processing-based texture classification schemes. A parametric SHT was also introduced and employed for natural textures feature extraction. We showed that a subtly modified parametric SHT can outperform ordinary Walsh-Hadamard transform and discrete cosine transform. Experiments were carried out on a subset of Vistex random natural texture images using a kNN classifier.

Keywords: Texture Analysis, Slant Transform, Hadamard, DCT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2683
3270 Low Cost Real Time Robust Identification of Impulsive Signals

Authors: R. Biondi, G. Dys, G. Ferone, T. Renard, M. Zysman

Abstract:

This paper describes an automated implementable system for impulsive signals detection and recognition. The system uses a Digital Signal Processing device for the detection and identification process. Here the system analyses the signals in real time in order to produce a particular response if needed. The system analyses the signals in real time in order to produce a specific output if needed. Detection is achieved through normalizing the inputs and comparing the read signals to a dynamic threshold and thus avoiding detections linked to loud or fluctuating environing noise. Identification is done through neuronal network algorithms. As a setup our system can receive signals to “learn” certain patterns. Through “learning” the system can recognize signals faster, inducing flexibility to new patterns similar to those known. Sound is captured through a simple jack input, and could be changed for an enhanced recording surface such as a wide-area recorder. Furthermore a communication module can be added to the apparatus to send alerts to another interface if needed.

Keywords: Sound Detection, Impulsive Signal, Background Noise, Neural Network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2343
3269 Simulation and Design of the Geometric Characteristics of the Oscillatory Thermal Cycler

Authors: Tse-Yu Hsieh, Jyh-Jian Chen

Abstract:

Since polymerase chain reaction (PCR) has been invented, it has emerged as a powerful tool in genetic analysis. The PCR products are closely linked with thermal cycles. Therefore, to reduce the reaction time and make temperature distribution uniform in the reaction chamber, a novel oscillatory thermal cycler is designed. The sample is placed in a fixed chamber, and three constant isothermal zones are established and lined in the system. The sample is oscillated and contacted with three different isothermal zones to complete thermal cycles. This study presents the design of the geometric characteristics of the chamber. The commercial software CFD-ACE+TM is utilized to investigate the influences of various materials, heating times, chamber volumes, and moving speed of the chamber on the temperature distributions inside the chamber. The chamber moves at a specific velocity and the boundary conditions with time variations are related to the moving speed. Whereas the chamber moves, the boundary is specified at the conditions of the convection or the uniform temperature. The user subroutines compiled by the FORTRAN language are used to make the numerical results realistically. Results show that the reaction chamber with a rectangular prism is heated on six faces; the effects of various moving speeds of the chamber on the temperature distributions are examined. Regarding to the temperature profiles and the standard deviation of the temperature at the Y-cut cross section, the non-uniform temperature inside chamber is found as the moving speed is larger than 0.01 m/s. By reducing the heating faces to four, the standard deviation of the temperature of the reaction chamber is under 1.4×10-3K with the range of velocities between 0.0001 m/s and 1 m/s. The nature convective boundary conditions are set at all boundaries while the chamber moves between two heaters, the effects of various moving velocities of the chamber on the temperature distributions are negligible at the assigned time duration.

Keywords: Polymerase chain reaction, oscillatory thermal cycler, standard deviation of temperature, nature convective.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1608
3268 Speech Enhancement by Marginal Statistical Characterization in the Log Gabor Wavelet Domain

Authors: Suman Senapati, Goutam Saha

Abstract:

This work presents a fusion of Log Gabor Wavelet (LGW) and Maximum a Posteriori (MAP) estimator as a speech enhancement tool for acoustical background noise reduction. The probability density function (pdf) of the speech spectral amplitude is approximated by a Generalized Laplacian Distribution (GLD). Compared to earlier estimators the proposed method estimates the underlying statistical model more accurately by appropriately choosing the model parameters of GLD. Experimental results show that the proposed estimator yields a higher improvement in Segmental Signal-to-Noise Ratio (S-SNR) and lower Log-Spectral Distortion (LSD) in two different noisy environments compared to other estimators.

Keywords: Speech Enhancement, Generalized Laplacian Distribution, Log Gabor Wavelet, Bayesian MAP Marginal Estimator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1637
3267 Change Detection and Non Stationary Signals Tracking by Adaptive Filtering

Authors: Mounira RouaÐùnia, Noureddine Doghmane

Abstract:

In this paper we consider the problem of change detection and non stationary signals tracking. Using parametric estimation of signals based on least square lattice adaptive filters we consider for change detection statistical parametric methods using likelihood ratio and hypothesis tests. In order to track signals dynamics, we introduce a compensation procedure in the adaptive estimation. This will improve the adaptive estimation performances and fasten it-s convergence after changes detection.

Keywords: Change detection, Hypothesis test, likelihood ratioleast square lattice adaptive filters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1640
3266 Multiscale Structures and Their Evolution in a Screen Cylinder Wake

Authors: Azlin M. Azmi, T. Zhou, A. Rinoshika, L. Cheng

Abstract:

The turbulent structures in the wake (x/d =10 to 60) of a screen cylinder have been educed to understand the roles of the various structures as evolving downstream by comparing with those obtained in a solid circular cylinder wake at Reynolds number, Re of 7000. Using a wavelet multiresolution technique, the flow structures are decomposed into a number of wavelet components based on their central frequencies. It is observed that in the solid cylinder wake, large-scale structures (of frequencyf0 and 1.2 f0) make the largest contribution to the Reynolds stresses although they start to lose their roles significantly at x/d> 20. In the screen cylinder wake, the intermediate-scale structures (2f0 and 4f0) contribute the most to the Reynolds stresses atx/d =10 before being taken over by the large-scale structures (f0) further downstream.

Keywords: Turbulent structure, screen cylinder, vortex, wavelet multiresolution analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1555
3265 Microcontroller Based EOG Guided Wheelchair

Authors: Jobby K. Chacko, Deepu Oommen, Kevin K. Mathew, Noble Sunny, N. Babu

Abstract:

A new cost effective, eye controlled method was introduced to guide and control a wheel chair for disable people, based on Electrooculography (EOG). The guidance and control is effected by eye ball movements within the socket. The system consists of a standard electric wheelchair with an on-board microcontroller system attached. EOG is a new technology to sense the eye signals for eye movements and these signals are captured using electrodes, signal processed such as amplification, noise filtering, and then given to microcontroller which drives the motors attached with wheel chair for propulsion. This technique could be very useful in applications such as mobility for handicapped and paralyzed persons.

Keywords: Electrooculography, Microcontroller, Signal processing, Wheelchair.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5614
3264 Recognition of Isolated Speech Signals using Simplified Statistical Parameters

Authors: Abhijit Mitra, Bhargav Kumar Mitra, Biswajoy Chatterjee

Abstract:

We present a novel scheme to recognize isolated speech signals using certain statistical parameters derived from those signals. The determination of the statistical estimates is based on extracted signal information rather than the original signal information in order to reduce the computational complexity. Subtle details of these estimates, after extracting the speech signal from ambience noise, are first exploited to segregate the polysyllabic words from the monosyllabic ones. Precise recognition of each distinct word is then carried out by analyzing the histogram, obtained from these information.

Keywords: Isolated speech signals, Block overlapping technique, Positive peaks, Histogram analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1442
3263 Adaptive PID Control of Wind Energy Conversion Systems Using RASP1 Mother Wavelet Basis Function Networks

Authors: M. Sedighizadeh, A. Rezazadeh

Abstract:

In this paper a PID control strategy using neural network adaptive RASP1 wavelet for WECS-s control is proposed. It is based on single layer feedforward neural networks with hidden nodes of adaptive RASP1 wavelet functions controller and an infinite impulse response (IIR) recurrent structure. The IIR is combined by cascading to the network to provide double local structure resulting in improving speed of learning. This particular neuro PID controller assumes a certain model structure to approximately identify the system dynamics of the unknown plant (WECS-s) and generate the control signal. The results are applied to a typical turbine/generator pair, showing the feasibility of the proposed solution.

Keywords: Adaptive PID Control, RASP1 Wavelets, WindEnergy Conversion Systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2009
3262 Comparison between Beta Wavelets Neural Networks, RBF Neural Networks and Polynomial Approximation for 1D, 2DFunctions Approximation

Authors: Wajdi Bellil, Chokri Ben Amar, Adel M. Alimi

Abstract:

This paper proposes a comparison between wavelet neural networks (WNN), RBF neural network and polynomial approximation in term of 1-D and 2-D functions approximation. We present a novel wavelet neural network, based on Beta wavelets, for 1-D and 2-D functions approximation. Our purpose is to approximate an unknown function f: Rn - R from scattered samples (xi; y = f(xi)) i=1....n, where first, we have little a priori knowledge on the unknown function f: it lives in some infinite dimensional smooth function space and second the function approximation process is performed iteratively: each new measure on the function (xi; f(xi)) is used to compute a new estimate f as an approximation of the function f. Simulation results are demonstrated to validate the generalization ability and efficiency of the proposed Beta wavelet network.

Keywords: Beta wavelets networks, RBF neural network, training algorithms, MSE, 1-D, 2D function approximation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1932
3261 A New Performance Characterization of Transient Analysis Method

Authors: José Peralta, Gabriela Peretti, Eduardo Romero, Carlos Marqués

Abstract:

This paper proposes a new performance characterization for the test strategy intended for second order filters denominated Transient Analysis Method (TRAM). We evaluate the ability of the addressed test strategy for detecting deviation faults under simultaneous statistical fluctuation of the non-faulty parameters. For this purpose, we use Monte Carlo simulations and a fault model that considers as faulty only one component of the filter under test while the others components adopt random values (within their tolerance band) obtained from their statistical distributions. The new data reported here show (for the filters under study) the presence of hard-to-test components and relatively low fault coverage values for small deviation faults. These results suggest that the fault coverage value obtained using only nominal values for the non-faulty components (the traditional evaluation of TRAM) seem to be a poor predictor of the test performance.

Keywords: testing, fault analysis, analog filter test, parametric faults detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1470
3260 Audio Watermarking Using Spectral Modifications

Authors: Jyotsna Singh, Parul Garg, Alok Nath De

Abstract:

In this paper, we present a non-blind technique of adding the watermark to the Fourier spectral components of audio signal in a way such that the modified amplitude does not exceed the maximum amplitude spread (MAS). This MAS is due to individual Discrete fourier transform (DFT) coefficients in that particular frame, which is derived from the Energy Spreading function given by Schroeder. Using this technique one can store double the information within a given frame length i.e. overriding the watermark on the host of equal length with least perceptual distortion. The watermark is uniformly floating on the DFT components of original signal. This helps in detecting any intentional manipulations done on the watermarked audio. Also, the scheme is found robust to various signal processing attacks like presence of multiple watermarks, Additive white gaussian noise (AWGN) and mp3 compression.

Keywords: Discrete Fourier Transform, Spreading Function, Watermark, Pseudo Noise Sequence, Spectral Masking Effect

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1712
3259 Blind Source Separation based on the Estimation for the Number of the Blind Sources under a Dynamic Acoustic Environment

Authors: Takaaki Ishibashi

Abstract:

Independent component analysis can estimate unknown source signals from their mixtures under the assumption that the source signals are statistically independent. However, in a real environment, the separation performance is often deteriorated because the number of the source signals is different from that of the sensors. In this paper, we propose an estimation method for the number of the sources based on the joint distribution of the observed signals under two-sensor configuration. From several simulation results, it is found that the number of the sources is coincident to that of peaks in the histogram of the distribution. The proposed method can estimate the number of the sources even if it is larger than that of the observed signals. The proposed methods have been verified by several experiments.

Keywords: blind source separation, independent component analysys, estimation for the number of the blind sources, voice activity detection, target extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1310
3258 Recognition by Online Modeling – a New Approach of Recognizing Voice Signals in Linear Time

Authors: Jyh-Da Wei, Hsin-Chen Tsai

Abstract:

This work presents a novel means of extracting fixedlength parameters from voice signals, such that words can be recognized in linear time. The power and the zero crossing rate are first calculated segment by segment from a voice signal; by doing so, two feature sequences are generated. We then construct an FIR system across these two sequences. The parameters of this FIR system, used as the input of a multilayer proceptron recognizer, can be derived by recursive LSE (least-square estimation), implying that the complexity of overall process is linear to the signal size. In the second part of this work, we introduce a weighting factor λ to emphasize recent input; therefore, we can further recognize continuous speech signals. Experiments employ the voice signals of numbers, from zero to nine, spoken in Mandarin Chinese. The proposed method is verified to recognize voice signals efficiently and accurately.

Keywords: Speech Recognition, FIR system, Recursive LSE, Multilayer Perceptron

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
3257 A New Time-Frequency Speech Analysis Approach Based On Adaptive Fourier Decomposition

Authors: Liming Zhang

Abstract:

In this paper, a new adaptive Fourier decomposition (AFD) based time-frequency speech analysis approach is proposed. Given the fact that the fundamental frequency of speech signals often undergo fluctuation, the classical short-time Fourier transform (STFT) based spectrogram analysis suffers from the difficulty of window size selection. AFD is a newly developed signal decomposition theory. It is designed to deal with time-varying non-stationary signals. Its outstanding characteristic is to provide instantaneous frequency for each decomposed component, so the time-frequency analysis becomes easier. Experiments are conducted based on the sample sentence in TIMIT Acoustic-Phonetic Continuous Speech Corpus. The results show that the AFD based time-frequency distribution outperforms the STFT based one.

Keywords: Adaptive fourier decomposition, instantaneous frequency, speech analysis, time-frequency distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1731
3256 Multiple Crack Identification Using Frequency Measurement

Authors: J.W. Xiang, M. Liang

Abstract:

This paper presents a method to detect multiple cracks based on frequency information. When a structure is subjected to dynamic or static loads, cracks may develop and the modal frequencies of the cracked structure may change. To detect cracks in a structure, we construct a high precision wavelet finite element (EF) model of a certain structure using the B-spline wavelet on the interval (BSWI). Cracks can be modeled by rotational springs and added to the FE model. The crack detection database will be obtained by solving that model. Then the crack locations and depths can be determined based on the frequency information from the database. The performance of the proposed method has been numerically verified by a rotor example.

Keywords: Rotor, frequency measurement, multiple cracks, wavelet finite element method, identification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1638
3255 Evaluating Spectral Relationships between Signals by Removing the Contribution of a Common, Periodic Source A Partial Coherence-based Approach

Authors: Antonio Mauricio F. L. Miranda de Sá

Abstract:

Partial coherence between two signals removing the contribution of a periodic, deterministic signal is proposed for evaluating the interrelationship in multivariate systems. The estimator expression was derived and shown to be independent of such periodic signal. Simulations were used for obtaining its critical value, which were found to be the same as those for Gaussian signals, as well as for evaluating the technique. An Illustration with eletroencephalografic (EEG) signals during photic stimulation is also provided. The application of the proposed technique in both simulation and real EEG data indicate that it seems to be very specific in removing the contribution of periodic sources. The estimate independence of the periodic signal may widen partial coherence application to signal analysis, since it could be used together with simple coherence to test for contamination in signals by a common, periodic noise source.

Keywords: Partial coherence, periodic input, spectral analysis, statistical signal processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1473
3254 Globally Convergent Edge-preserving Reconstruction with Contour-line Smoothing

Authors: Marc C. Robini, Pierre-Jean Viverge, Yuemin Zhu, Jianhua Luo

Abstract:

The standard approach to image reconstruction is to stabilize the problem by including an edge-preserving roughness penalty in addition to faithfulness to the data. However, this methodology produces noisy object boundaries and creates a staircase effect. The existing attempts to favor the formation of smooth contour lines take the edge field explicitly into account; they either are computationally expensive or produce disappointing results. In this paper, we propose to incorporate the smoothness of the edge field in an implicit way by means of an additional penalty term defined in the wavelet domain. We also derive an efficient half-quadratic algorithm to solve the resulting optimization problem, including the case when the data fidelity term is non-quadratic and the cost function is nonconvex. Numerical experiments show that our technique preserves edge sharpness while smoothing contour lines; it produces visually pleasing reconstructions which are quantitatively better than those obtained without wavelet-domain constraints.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1353
3253 Radio over Fiber as a Cost Effective Technology for Transmission of WiMAX Signals

Authors: Mohammad Shaifur Rahman, Jung Hyun Lee, Youngil Park, Ki-Doo Kim

Abstract:

In this paper, an overview of the radio over fiber (RoF) technology is provided. Obstacles for reducing the capital and operational expenses in the existing systems are discussed in various perspectives. Some possible RoF deployment scenarios for WiMAX data transmission are proposed as a means for capital and operational expenses reduction. IEEE 802.16a standard based end-to-end physical layer model is simulated including intensity modulated direct detection RoF technology. Finally the feasibility of RoF technology to carry WiMAX signals between the base station and the remote antenna units is demonstrated using the simulation results.

Keywords: IMDD, Radio over Fiber, Remote Antenna Unit, WiMAX.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2526
3252 Fast Cosine Transform to Increase Speed-up and Efficiency of Karhunen-Loève Transform for Lossy Image Compression

Authors: Mario Mastriani, Juliana Gambini

Abstract:

In this work, we present a comparison between two techniques of image compression. In the first case, the image is divided in blocks which are collected according to zig-zag scan. In the second one, we apply the Fast Cosine Transform to the image, and then the transformed image is divided in blocks which are collected according to zig-zag scan too. Later, in both cases, the Karhunen-Loève transform is applied to mentioned blocks. On the other hand, we present three new metrics based on eigenvalues for a better comparative evaluation of the techniques. Simulations show that the combined version is the best, with minor Mean Absolute Error (MAE) and Mean Squared Error (MSE), higher Peak Signal to Noise Ratio (PSNR) and better image quality. Finally, new technique was far superior to JPEG and JPEG2000.

Keywords: Fast Cosine Transform, image compression, JPEG, JPEG2000, Karhunen-Loève Transform, zig-zag scan.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4922
3251 Statistical Distributions of the Lapped Transform Coefficients for Images

Authors: Vijay Kumar Nath, Deepika Hazarika, Anil Mahanta,

Abstract:

Discrete Cosine Transform (DCT) based transform coding is very popular in image, video and speech compression due to its good energy compaction and decorrelating properties. However, at low bit rates, the reconstructed images generally suffer from visually annoying blocking artifacts as a result of coarse quantization. Lapped transform was proposed as an alternative to the DCT with reduced blocking artifacts and increased coding gain. Lapped transforms are popular for their good performance, robustness against oversmoothing and availability of fast implementation algorithms. However, there is no proper study reported in the literature regarding the statistical distributions of block Lapped Orthogonal Transform (LOT) and Lapped Biorthogonal Transform (LBT) coefficients. This study performs two goodness-of-fit tests, the Kolmogorov-Smirnov (KS) test and the 2- test, to determine the distribution that best fits the LOT and LBT coefficients. The experimental results show that the distribution of a majority of the significant AC coefficients can be modeled by the Generalized Gaussian distribution. The knowledge of the statistical distribution of transform coefficients greatly helps in the design of optimal quantizers that may lead to minimum distortion and hence achieve optimal coding efficiency.

Keywords: Lapped orthogonal transform, Lapped biorthogonal transform, Image compression, KS test,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1614