Search results for: security network
128 Distributed System Computing Resource Scheduling Algorithm Based on Deep Reinforcement Learning
Authors: Yitao Lei, Xingxiang Zhai, Burra Venkata Durga Kumar
Abstract:
As the quantity and complexity of computing in large-scale software systems increase, distributed system computing becomes increasingly important. The distributed system realizes high-performance computing by collaboration between different computing resources. If there are no efficient resource scheduling resources, the abuse of distributed computing may cause resource waste and high costs. However, resource scheduling is usually an NP-hard problem, so we cannot find a general solution. However, some optimization algorithms exist like genetic algorithm, ant colony optimization, etc. The large scale of distributed systems makes this traditional optimization algorithm challenging to work with. Heuristic and machine learning algorithms are usually applied in this situation to ease the computing load. As a result, we do a review of traditional resource scheduling optimization algorithms and try to introduce a deep reinforcement learning method that utilizes the perceptual ability of neural networks and the decision-making ability of reinforcement learning. Using the machine learning method, we try to find important factors that influence the performance of distributed system computing and help the distributed system do an efficient computing resource scheduling. This paper surveys the application of deep reinforcement learning on distributed system computing resource scheduling. The research proposes a deep reinforcement learning method that uses a recurrent neural network to optimize the resource scheduling. The paper concludes the challenges and improvement directions for Deep Reinforcement Learning-based resource scheduling algorithms.
Keywords: Resource scheduling, deep reinforcement learning, distributed system, artificial intelligence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 495127 Time Series Simulation by Conditional Generative Adversarial Net
Authors: Rao Fu, Jie Chen, Shutian Zeng, Yiping Zhuang, Agus Sudjianto
Abstract:
Generative Adversarial Net (GAN) has proved to be a powerful machine learning tool in image data analysis and generation. In this paper, we propose to use Conditional Generative Adversarial Net (CGAN) to learn and simulate time series data. The conditions include both categorical and continuous variables with different auxiliary information. Our simulation studies show that CGAN has the capability to learn different types of normal and heavy-tailed distributions, as well as dependent structures of different time series. It also has the capability to generate conditional predictive distributions consistent with training data distributions. We also provide an in-depth discussion on the rationale behind GAN and the neural networks as hierarchical splines to establish a clear connection with existing statistical methods of distribution generation. In practice, CGAN has a wide range of applications in market risk and counterparty risk analysis: it can be applied to learn historical data and generate scenarios for the calculation of Value-at-Risk (VaR) and Expected Shortfall (ES), and it can also predict the movement of the market risk factors. We present a real data analysis including a backtesting to demonstrate that CGAN can outperform Historical Simulation (HS), a popular method in market risk analysis to calculate VaR. CGAN can also be applied in economic time series modeling and forecasting. In this regard, we have included an example of hypothetical shock analysis for economic models and the generation of potential CCAR scenarios by CGAN at the end of the paper.
Keywords: Conditional Generative Adversarial Net, market and credit risk management, neural network, time series.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1199126 A Low-Power Two-Stage Seismic Sensor Scheme for Earthquake Early Warning System
Authors: Arvind Srivastav, Tarun Kanti Bhattacharyya
Abstract:
The north-eastern, Himalayan, and Eastern Ghats Belt of India comprise of earthquake-prone, remote, and hilly terrains. Earthquakes have caused enormous damages in these regions in the past. A wireless sensor network based earthquake early warning system (EEWS) is being developed to mitigate the damages caused by earthquakes. It consists of sensor nodes, distributed over the region, that perform majority voting of the output of the seismic sensors in the vicinity, and relay a message to a base station to alert the residents when an earthquake is detected. At the heart of the EEWS is a low-power two-stage seismic sensor that continuously tracks seismic events from incoming three-axis accelerometer signal at the first-stage, and, in the presence of a seismic event, triggers the second-stage P-wave detector that detects the onset of P-wave in an earthquake event. The parameters of the P-wave detector have been optimized for minimizing detection time and maximizing the accuracy of detection.Working of the sensor scheme has been verified with seven earthquakes data retrieved from IRIS. In all test cases, the scheme detected the onset of P-wave accurately. Also, it has been established that the P-wave onset detection time reduces linearly with the sampling rate. It has been verified with test data; the detection time for data sampled at 10Hz was around 2 seconds which reduced to 0.3 second for the data sampled at 100Hz.Keywords: Earthquake early warning system, EEWS, STA/LTA, polarization, wavelet, event detector, P-wave detector.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 781125 The Influence of Organic Waste on Vegetable Nutritional Components and Healthy Livelihood, Minna, Niger State, Nigeria
Authors: A. Abdulkadir, A. A. Okhimamhe, Y. M. Bello, H. Ibrahim, D. H. Makun, M. T. Usman
Abstract:
Household waste form a larger proportion of waste generated across the state, accumulation of organic waste is an apparent problem and the existing dump sites could be overstress. Niger state has abundant arable land and water resources thus should be one of the highest producers of agricultural crops in the country. However, the major challenge to agricultural sector today is loss of soil nutrient coupled with high cost of fertilizer. These have continued to increase the use of fertilizer and decomposed solid waste for enhance agricultural yield, which have varying effects on the soil as well a threat to human livelihood. Consequently, vegetable yield samples from poultry droppings, decomposed household waste manure, NPK treatments and control from each replication were subjected to proximate analysis to determine the nutritional and antinutritional component as well as heavy metal concentration. Data collected was analyzed using SPSS software and Randomized complete Block Design means were compared. The result shows that the treatments do not devoid the concentrations of any nutritional components while the anti-nutritional analysis proved that NPK had higher oxalate content than control and organic treats. The concentration of lead and cadmium are within safe permissible level while the mercury level exceeded the FAO/WHO maximum permissible limit for the entire treatments depicts the need for urgent intervention to minimize mercury levels in soil and manure in order to mitigate its toxic effect. Thus, eco-agriculture should be widely accepted and promoted by the stakeholders for soil amendment, higher yield, strategies for sustainable environmental protection, food security, poverty eradication, attainment of sustainable development and healthy livelihood.Keywords: Anti-nutritional, healthy livelihood, nutritional waste, organic waste.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1629124 User-Perceived Quality Factors for Certification Model of Web-Based System
Authors: Jamaiah H. Yahaya, Aziz Deraman, Abdul Razak Hamdan, Yusmadi Yah Jusoh
Abstract:
One of the most essential issues in software products is to maintain it relevancy to the dynamics of the user’s requirements and expectation. Many studies have been carried out in quality aspect of software products to overcome these problems. Previous software quality assessment models and metrics have been introduced with strengths and limitations. In order to enhance the assurance and buoyancy of the software products, certification models have been introduced and developed. From our previous experiences in certification exercises and case studies collaborating with several agencies in Malaysia, the requirements for user based software certification approach is identified and demanded. The emergence of social network applications, the new development approach such as agile method and other varieties of software in the market have led to the domination of users over the software. As software become more accessible to the public through internet applications, users are becoming more critical in the quality of the services provided by the software. There are several categories of users in web-based systems with different interests and perspectives. The classifications and metrics are identified through brain storming approach with includes researchers, users and experts in this area. The new paradigm in software quality assessment is the main focus in our research. This paper discusses the classifications of users in web-based software system assessment and their associated factors and metrics for quality measurement. The quality model is derived based on IEEE structure and FCM model. The developments are beneficial and valuable to overcome the constraints and improve the application of software certification model in future.
Keywords: Software certification model, user centric approach, software quality factors, metrics and measurements, web-based system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148123 Expanding Affordable Housing through Inclusionary Zoning in the City of Toronto
Authors: Sam Moshaver
Abstract:
Reasonably priced and well-constructed housing must be an integral and element supporting a healthy society. The absence of housing everyone in society can afford negatively affects the people's health, education, ability to get jobs, develop their community. Without access to decent housing, economic development, integration of immigrants and inclusiveness, the society is negatively impacted. Canada has a sterling record in creating housing compared to many other nations around the globe. Canadian housing gets support from a mature and responsive mortgage network and a top-quality construction industry as well as safe and excellent quality building materials that are readily available. Yet 1.7 million Canadian households occupy substandard abodes. During the past hundred years, Canada's government has made a wide variety of attempts to provide decent residential facilities every Canadian can afford. Despite these laudable efforts, today Canada is left with housing that is inadequate for many Canadians. People who own their housing are given all kinds of privileges and perks, while people with relatively low incomes who rent their apartments or houses are discriminated against. To help solve these problems, zoning that is based on an "inclusionary" philosophy is tool developed to help provide people the affordable residences that they need. No, thirty years after its introduction, this type of zoning has been shown effective in helping build and provide Canadians with a houses or apartments they can afford to pay for. Using this form of zoning can have different results +depending on where and how it is used. After examining Canadian affordable housing and four American cases where this type of zoning was enforced in the USA, this makes various recommendations for expanding Canadians' access to housing they can afford.Keywords: Affordable Housing, Inclusionary Zoning Low- Income Housing, Toronto Housing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2066122 Wind Energy Status in Turkey
Authors: Mustafa Engin Başoğlu, Bekir Çakir
Abstract:
Since large part of electricity is generated by using fossil based resources, energy is an important agenda for countries. In this context, renewable energy sources are alternative to conventional sources due to the depletion of fossil resources, increasing awareness of climate change and global warming concerns. Solar, wind and hydropower energy are the main renewable energy sources. Among of them, since installed capacity of wind power has increased approximately eight times between 2008 - November of 2014, wind energy is a promising source for Turkey. Furthermore, signing of Kyoto Protocol can be accepted as a milestone for Turkey's energy policy. Turkish Government has announced Vision 2023 (energy targets by 2023) in 2010-2014 Strategic Plan prepared by Ministry of Energy and Natural Resources (MENR). Energy targets in this plan can be summarized as follows: Share of renewable energy sources in electricity generation is 30% of total electricity generation by 2023. Installed capacity of wind energy will be 20 GW by 2023. Other renewable energy sources such as solar, hydropower and geothermal are encouraged with new incentive mechanisms. Dependence on foreign energy is reduced for sustainability and energy security. On the other hand, since Turkey is surrounded by three coastal areas, wind energy potential is convenient for wind power application. As of November of 2014, total installed capacity of wind power plants is 3.51 GW and a lot of wind power plants are under construction with capacity 1.16 GW. Turkish government also encourages the locally manufactured equipments. In this context, one of the projects funded by private sector, universities and TUBİTAK names as MILRES is an important project aimed to promote the use wind energy in electricity generation. Within this project, wind turbine with 500 kW power has been produced and will be installed at the beginning of the 2015. After that, by using the experience obtained from the first phase of the project, a wind turbine with 2.5 MW power will be manufactured in an industrial scale.
Keywords: Wind energy, wind speed, Vision 2023, MILRES (national wind energy system), wind energy potential, Turkey.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3272121 Time Series Forecasting Using Various Deep Learning Models
Authors: Jimeng Shi, Mahek Jain, Giri Narasimhan
Abstract:
Time Series Forecasting (TSF) is used to predict the target variables at a future time point based on the learning from previous time points. To keep the problem tractable, learning methods use data from a fixed length window in the past as an explicit input. In this paper, we study how the performance of predictive models change as a function of different look-back window sizes and different amounts of time to predict into the future. We also consider the performance of the recent attention-based transformer models, which had good success in the image processing and natural language processing domains. In all, we compare four different deep learning methods (Recurrent Neural Network (RNN), Long Short-term Memory (LSTM), Gated Recurrent Units (GRU), and Transformer) along with a baseline method. The dataset (hourly) we used is the Beijing Air Quality Dataset from the website of University of California, Irvine (UCI), which includes a multivariate time series of many factors measured on an hourly basis for a period of 5 years (2010-14). For each model, we also report on the relationship between the performance and the look-back window sizes and the number of predicted time points into the future. Our experiments suggest that Transformer models have the best performance with the lowest Mean Absolute Errors (MAE = 14.599, 23.273) and Root Mean Square Errors (RSME = 23.573, 38.131) for most of our single-step and multi-steps predictions. The best size for the look-back window to predict 1 hour into the future appears to be one day, while 2 or 4 days perform the best to predict 3 hours into the future.
Keywords: Air quality prediction, deep learning algorithms, time series forecasting, look-back window.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1167120 Interest of the Sequences Pseudo Noises Codes of Different Lengths for the Reduction from the Interference between Users of CDMA Network
Authors: Nerguè Kassahan Kone, Souleymane Oumtanaga
Abstract:
The third generation (3G) of cellular system adopted the spread spectrum as solution for the transmission of the data in the physical layer. Contrary to systems IS-95 or CDMAOne (systems with spread spectrum of the preceding generation), the new standard, called Universal Mobil Telecommunications System (UMTS), uses long codes in the down link. The system is conceived for the vocal communication and the transmission of the data. In particular, the down link is very important, because of the asymmetrical request of the data, i.e., more remote loading towards the mobiles than towards the basic station. Moreover, the UMTS uses for the down link an orthogonal spreading out with a variable factor of spreading out (OVSF for Orthogonal Variable Spreading Factor). This characteristic makes it possible to increase the flow of data of one or more users by reducing their factor of spreading out without changing the factor of spreading out of other users. In the current standard of the UMTS, two techniques to increase the performances of the down link were proposed, the diversity of sending antenna and the codes space-time. These two techniques fight only fainding. The receiver proposed for the mobil station is the RAKE, but one can imagine a receiver more sophisticated, able to reduce the interference between users and the impact of the coloured noise and interferences to narrow band. In this context, where the users have long codes synchronized with variable factor of spreading out and ignorance by the mobile of the other active codes/users, the use of the sequences of code pseudo-noises different lengths is presented in the form of one of the most appropriate solutions.Keywords: DS-CDMA, multiple access interference, ratio Signal / interference + Noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1351119 Modeling the Influence of Socioeconomic and Land-Use Factors on Mode Choice: A Comparison of Riyadh, Saudi Arabia, and Melbourne, Australia
Authors: M. Alqhatani, S. Bajwa, S. Setunge
Abstract:
Metropolitan areas have suffered from traffic problems, which have steadily increased in many monocentric cities. Urban expansion, population growth, and road network development have resulted in a structural shift toward urban sprawl, increasing commuters’ dependence on private modes of transport. This paper aims to model the influence of socioeconomic and land-use factors on mode choice using a multinomial and nested logit model. Land-use patterns—such as residential, commercial, retail, educational and employment related—affect the choice of mode and destination in the short and medium term. Socioeconomic factors—such as age, gender, income, household size, and house type—also affect choice, while residential location is affected in the long term. Riyadh in Saudi Arabia and Melbourne in Australia were chosen as case studies. Riyadh is a car-dependent city with limited public transport, whereas Melbourne has good public transport but an increase in car dependence. Aggregate level land-use data and disaggregate level individual, household, and journey-to-work data are used to determine the effects of land use and socioeconomic factors on mode choice. The model results determined that urban sprawl is the main factor that affects mode choice, income, and house type.
Keywords: Socioeconomic, land use, mode choice, multinomial logit and nested logit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2446118 Supplier Selection Using Sustainable Criteria in Sustainable Supply Chain Management
Authors: Richa Grover, Rahul Grover, V. Balaji Rao, Kavish Kejriwal
Abstract:
Selection of suppliers is a crucial problem in the supply chain management. On top of that, sustainable supplier selection is the biggest challenge for the organizations. Environment protection and social problems have been of concern to society in recent years, and the traditional supplier selection does not consider about this factor; therefore, this research work focuses on introducing sustainable criteria into the structure of supplier selection criteria. Sustainable Supply Chain Management (SSCM) is the management and administration of material, information, and money flows, as well as coordination among business along the supply chain. All three dimensions - economic, environmental, and social - of sustainable development needs to be taken care of. Purpose of this research is to maximize supply chain profitability, maximize social wellbeing of supply chain and minimize environmental impacts. Problem statement is selection of suppliers in a sustainable supply chain network by ranking the suppliers against sustainable criteria identified. The aim of this research is twofold: To find out what are the sustainable parameters that can be applied to the supply chain, and to determine how these parameters can effectively be used in supplier selection. Multicriteria decision making tools will be used to rank both criteria and suppliers. AHP Analysis will be used to find out ratings for the criteria identified. It is a technique used for efficient decision making. TOPSIS will be used to find out rating for suppliers and then ranking them. TOPSIS is a MCDM problem solving method which is based on the principle that the chosen option should have the maximum distance from the negative ideal solution (NIS) and the minimum distance from the ideal solution.Keywords: Sustainable supply chain management, supplier selection, MCDM tools, AHP analysis, TOPSIS method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3490117 A New Multi-Target, Multi-Agent Search-and-Rescue Path Planning Approach
Authors: Jean Berger, Nassirou Lo, Martin Noel
Abstract:
Perfectly suited for natural or man-made emergency and disaster management situations such as flood, earthquakes, tornadoes, or tsunami, multi-target search path planning for a team of rescue agents is known to be computationally hard, and most techniques developed so far come short to successfully estimate optimality gap. A novel mixed-integer linear programming (MIP) formulation is proposed to optimally solve the multi-target multi-agent discrete search and rescue (SAR) path planning problem. Aimed at maximizing cumulative probability of successful target detection, it captures anticipated feedback information associated with possible observation outcomes resulting from projected path execution, while modeling agent discrete actions over all possible moving directions. Problem modeling further takes advantage of network representation to encompass decision variables, expedite compact constraint specification, and lead to substantial problem-solving speed-up. The proposed MIP approach uses CPLEX optimization machinery, efficiently computing near-optimal solutions for practical size problems, while giving a robust upper bound obtained from Lagrangean integrality constraint relaxation. Should eventually a target be positively detected during plan execution, a new problem instance would simply be reformulated from the current state, and then solved over the next decision cycle. A computational experiment shows the feasibility and the value of the proposed approach.
Keywords: Search path planning, search and rescue, multi-agent, mixed-integer linear programming, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2480116 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection
Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada
Abstract:
With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.Keywords: Machine learning, Imbalanced data, Data mining, Big data.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1137115 An Intelligent Transportation System for Safety and Integrated Management of Railway Crossings
Authors: M. Magrini, D. Moroni, G. Palazzese, G. Pieri, D. Azzarelli, A. Spada, L. Fanucci, O. Salvetti
Abstract:
Railway crossings are complex entities whose optimal management cannot be addressed unless with the help of an intelligent transportation system integrating information both on train and vehicular flows. In this paper, we propose an integrated system named SIMPLE (Railway Safety and Infrastructure for Mobility applied at level crossings) that, while providing unparalleled safety in railway level crossings, collects data on rail and road traffic and provides value-added services to citizens and commuters. Such services include for example alerts, via variable message signs to drivers and suggestions for alternative routes, towards a more sustainable, eco-friendly and efficient urban mobility. To achieve these goals, SIMPLE is organized as a System of Systems (SoS), with a modular architecture whose components range from specially-designed radar sensors for obstacle detection to smart ETSI M2M-compliant camera networks for urban traffic monitoring. Computational unit for performing forecast according to adaptive models of train and vehicular traffic are also included. The proposed system has been tested and validated during an extensive trial held in the mid-sized Italian town of Montecatini, a paradigmatic case where the rail network is inextricably linked with the fabric of the city. Results of the tests are reported and discussed.
Keywords: Intelligent Transportation Systems (ITS), railway, railroad crossing, smart camera networks, radar obstacle detection, real-time traffic optimization, IoT, ETSI M2M, transport safety.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1419114 Reversible Binary Arithmetic for Integrated Circuit Design
Authors: D. Krishnaveni, M. Geetha Priya
Abstract:
Application of reversible logic in integrated circuits results in the improved optimization of power consumption. This technology can be put into use in a variety of low power applications such as quantum computing, optical computing, nano-technology, and Complementary Metal Oxide Semiconductor (CMOS) Very Large Scale Integrated (VLSI) design etc. Logic gates are the basic building blocks in the design of any logic network and thus integrated circuits. In this paper, reversible Dual Key Gate (DKG) and Dual key Gate Pair (DKGP) gates that work singly as full adder/full subtractor are used to realize the basic building blocks of logic circuits. Reversible full adder/subtractor and parallel adder/ subtractor are designed using other reversible gates available in the literature and compared with that of DKG & DKGP gates. Efficient performance of reversible logic circuits relies on the optimization of the key parameters viz number of constant inputs, garbage outputs and number of reversible gates. The full adder/subtractor and parallel adder/subtractor design with reversible DKGP and DKG gates results in least number of constant inputs, garbage outputs, and number of reversible gates compared to the other designs. Thus, this paper provides a threshold to build more complex arithmetic systems using these reversible logic gates, leading to the enhanced performance of computing systems.
Keywords: Low power CMOS, quantum computing, reversible logic gates, full adder, full subtractor, parallel adder/subtractor, basic gates, universal gates.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1437113 Enhanced Disk-Based Databases Towards Improved Hybrid In-Memory Systems
Authors: Samuel Kaspi, Sitalakshmi Venkatraman
Abstract:
In-memory database systems are becoming popular due to the availability and affordability of sufficiently large RAM and processors in modern high-end servers with the capacity to manage large in-memory database transactions. While fast and reliable inmemory systems are still being developed to overcome cache misses, CPU/IO bottlenecks and distributed transaction costs, disk-based data stores still serve as the primary persistence. In addition, with the recent growth in multi-tenancy cloud applications and associated security concerns, many organisations consider the trade-offs and continue to require fast and reliable transaction processing of diskbased database systems as an available choice. For these organizations, the only way of increasing throughput is by improving the performance of disk-based concurrency control. This warrants a hybrid database system with the ability to selectively apply an enhanced disk-based data management within the context of inmemory systems that would help improve overall throughput. The general view is that in-memory systems substantially outperform disk-based systems. We question this assumption and examine how a modified variation of access invariance that we call enhanced memory access, (EMA) can be used to allow very high levels of concurrency in the pre-fetching of data in disk-based systems. We demonstrate how this prefetching in disk-based systems can yield close to in-memory performance, which paves the way for improved hybrid database systems. This paper proposes a novel EMA technique and presents a comparative study between disk-based EMA systems and in-memory systems running on hardware configurations of equivalent power in terms of the number of processors and their speeds. The results of the experiments conducted clearly substantiate that when used in conjunction with all concurrency control mechanisms, EMA can increase the throughput of disk-based systems to levels quite close to those achieved by in-memory system. The promising results of this work show that enhanced disk-based systems facilitate in improving hybrid data management within the broader context of in-memory systems.
Keywords: Concurrency control, disk-based databases, inmemory systems, enhanced memory access (EMA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2038112 Accurate Control of a Pneumatic System using an Innovative Fuzzy Gain-Scheduling Pattern
Authors: M. G. Papoutsidakis, G. Chamilothoris, F. Dailami, N. Larsen, A Pipe
Abstract:
Due to their high power-to-weight ratio and low cost, pneumatic actuators are attractive for robotics and automation applications; however, achieving fast and accurate control of their position have been known as a complex control problem. A methodology for obtaining high position accuracy with a linear pneumatic actuator is presented. During experimentation with a number of PID classical control approaches over many operations of the pneumatic system, the need for frequent manual re-tuning of the controller could not be eliminated. The reason for this problem is thermal and energy losses inside the cylinder body due to the complex friction forces developed by the piston displacements. Although PD controllers performed very well over short periods, it was necessary in our research project to introduce some form of automatic gain-scheduling to achieve good long-term performance. We chose a fuzzy logic system to do this, which proved to be an easily designed and robust approach. Since the PD approach showed very good behaviour in terms of position accuracy and settling time, it was incorporated into a modified form of the 1st order Tagaki- Sugeno fuzzy method to build an overall controller. This fuzzy gainscheduler uses an input variable which automatically changes the PD gain values of the controller according to the frequency of repeated system operations. Performance of the new controller was significantly improved and the need for manual re-tuning was eliminated without a decrease in performance. The performance of the controller operating with the above method is going to be tested through a high-speed web network (GRID) for research purposes.Keywords: Fuzzy logic, gain scheduling, leaky integrator, pneumatic actuator.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1750111 Effect of Nanoparticles on Wheat Seed Germination and Seedling Growth
Authors: Pankaj Singh Rawat, Rajeew Kumar, Pradeep Ram, Priyanka Pandey
Abstract:
Wheat is an important cereal crop for food security. Boosting the wheat production and productivity is the major challenge across the nation. Good quality of seed is required for maintaining optimum plant stand which ultimately increases grain yield. Ensuring a good germination is one of the key steps to ensure proper plant stand and moisture assurance during seed germination may help to speed up the germination. The tiny size of nanoparticles may help in entry of water into seed without disturbing their internal structure. Considering above, a laboratory experiment was conducted during 2012-13 at G.B. Pant University of Agriculture and Technology, Pantnagar, India. The completely randomized design was used for statistical analysis. The experiment was conducted in two phases. In the first phase, the appropriate concentration of nanoparticles for seed treatment was screened. In second phase seed soaking hours of nanoparticles for better seed germination were standardized. Wheat variety UP2526 was taken as test crop. Four nanoparticles (TiO2, ZnO, nickel and chitosan) were taken for study. The crop germination studies were done in petri dishes and standard package and practices were used to raise the seedlings. The germination studies were done by following standard procedure. In first phase of the experiment, seeds were treated with 50 and 300 ppm of nanoparticles and control was also maintained for comparison. In the second phase of experiment, seeds were soaked for 4 hours, 6 hours and 8 hours with 50 ppm nanoparticles of TiO2, ZnO, nickel and chitosan along with control treatment to identify the soaking time for better seed germination. Experiment revealed that the application of nanoparticles help to enhance seed germination. The study revealed that seed treatment with nanoparticles at 50 ppm concentration increases root length, shoot length, seedling length, shoot dry weight, seedling dry weight, seedling vigour index I and seedling vigour index II as compared to seed soaking at 300 ppm concentration. This experiment showed that seed soaking up to 4 hr was better as compared to 6 and 8 hrs. Seed soaking with nanoparticles specially TiO2, ZnO, and chitosan proved to enhance germination and seedling growth indices of wheat crop.
Keywords: Nanoparticles, seed germination, seed soaking, wheat.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1880110 Markov Chain Based QoS Support for Wireless Body Area Network Communication in Health Monitoring Services
Authors: R. A. Isabel, E. Baburaj
Abstract:
Wireless Body Area Networks (WBANs) are essential for real-time health monitoring of patients and in diagnosing of many diseases. WBANs comprise many sensors to monitor a large range of ambient conditions. Quality of Service (QoS) is a key challenge in WBAN, because the different state information of the neighboring nodes has to be monitored in an accurate manner. However, energy consumption gets increased while predicting and maintaining the exact information in highly dynamic environments. In order to reduce energy consumption and end to end delay, Markov Chain Based Quality of Service Support (MC-QoSS) method is designed in the health monitoring services of WBAN communication. The energy consumption gets reduced by forming a Markov chain with high energy nodes in the sensor networks communication path. The low energy level sensor nodes are removed using transitional probability in order to reduce end to end delay. High energy nodes are formed in the chain structure of its corresponding path to enhance communication. After choosing the communication path through high energy nodes, the packets are sent to the sink node from the source node with a higher Packet Delivery Ratio. The simulation result shows that MC-QoSS method improves the packet delivery ratio and reduces energy consumption with minimum end to end delay, compared to existing methods.
Keywords: Wireless body area networks, quality of service, Markov chain, health monitoring services.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1439109 Statistical Analysis and Impact Forecasting of Connected and Autonomous Vehicles on the Environment: Case Study in the State of Maryland
Authors: Alireza Ansariyar, Safieh Laaly
Abstract:
Over the last decades, the vehicle industry has shown increased interest in integrating autonomous, connected, and electrical technologies in vehicle design with the primary hope of improving mobility and road safety while reducing transportation’s environmental impact. Using the State of Maryland (M.D.) in the United States as a pilot study, this research investigates Connected and Autonomous Vehicles (CAVs) fuel consumption and air pollutants including Carbon Monoxide (CO), Particulate Matter (PM), and Nitrogen Oxides (NOx) and utilizes meaningful linear regression models to predict CAV’s environmental effects. Maryland transportation network was simulated in VISUM software, and data on a set of variables were collected through a comprehensive survey. The number of pollutants and fuel consumption were obtained for the time interval 2010 to 2021 from the macro simulation. Eventually, four linear regression models were proposed to predict the amount of C.O., NOx, PM pollutants, and fuel consumption in the future. The results highlighted that CAVs’ pollutants and fuel consumption have a significant correlation with the income, age, and race of the CAV customers. Furthermore, the reliability of four statistical models was compared with the reliability of macro simulation model outputs in the year 2030. The error of three pollutants and fuel consumption was obtained at less than 9% by statistical models in SPSS. This study is expected to assist researchers and policymakers with planning decisions to reduce CAV environmental impacts in M.D.
Keywords: Connected and autonomous vehicles, statistical model, environmental effects, pollutants and fuel consumption, VISUM, linear regression models.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 461108 A Challenge to Acquire Serious Victims’ Locations during Acute Period of Giant Disasters
Authors: Keiko Shimazu, Yasuhiro Maida, Tetsuya Sugata, Daisuke Tamakoshi, Kenji Makabe, Haruki Suzuki
Abstract:
In this paper, we report how to acquire serious victims’ locations in the Acute Stage of Large-scale Disasters, in an Emergency Information Network System designed by us. The background of our concept is based on the Great East Japan Earthquake occurred on March 11th, 2011. Through many experiences of national crises caused by earthquakes and tsunamis, we have established advanced communication systems and advanced disaster medical response systems. However, Japan was devastated by huge tsunamis swept a vast area of Tohoku causing a complete breakdown of all the infrastructures including telecommunications. Therefore, we noticed that we need interdisciplinary collaboration between science of disaster medicine, regional administrative sociology, satellite communication technology and systems engineering experts. Communication of emergency information was limited causing a serious delay in the initial rescue and medical operation. For the emergency rescue and medical operations, the most important thing is to identify the number of casualties, their locations and status and to dispatch doctors and rescue workers from multiple organizations. In the case of the Tohoku earthquake, the dispatching mechanism and/or decision support system did not exist to allocate the appropriate number of doctors and locate disaster victims. Even though the doctors and rescue workers from multiple government organizations have their own dedicated communication system, the systems are not interoperable.
Keywords: Crisis management, disaster mitigation, messing, MGRS, Satellite communication system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 830107 Early Depression Detection for Young Adults with a Psychiatric and AI Interdisciplinary Multimodal Framework
Authors: Raymond Xu, Ashley Hua, Andrew Wang, Yuru Lin
Abstract:
During COVID-19, the depression rate has increased dramatically. Young adults are most vulnerable to the mental health effects of the pandemic. Lower-income families have a higher ratio to be diagnosed with depression than the general population, but less access to clinics. This research aims to achieve early depression detection at low cost, large scale, and high accuracy with an interdisciplinary approach by incorporating clinical practices defined by American Psychiatric Association (APA) as well as multimodal AI framework. The proposed approach detected the nine depression symptoms with Natural Language Processing sentiment analysis and a symptom-based Lexicon uniquely designed for young adults. The experiments were conducted on the multimedia survey results from adolescents and young adults and unbiased Twitter communications. The result was further aggregated with the facial emotional cues analyzed by the Convolutional Neural Network on the multimedia survey videos. Five experiments each conducted on 10k data entries reached consistent results with an average accuracy of 88.31%, higher than the existing natural language analysis models. This approach can reach 300+ million daily active Twitter users and is highly accessible by low-income populations to promote early depression detection to raise awareness in adolescents and young adults and reveal complementary cues to assist clinical depression diagnosis.
Keywords: Artificial intelligence, depression detection, facial emotion recognition, natural language processing, mental disorder.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1177106 Impact of Climate Change on Sea Level Rise along the Coastline of Mumbai City, India
Authors: Chakraborty Sudipta, A. R. Kambekar, Sarma Arnab
Abstract:
Sea-level rise being one of the most important impacts of anthropogenic induced climate change resulting from global warming and melting of icebergs at Arctic and Antarctic, the investigations done by various researchers both on Indian Coast and elsewhere during the last decade has been reviewed in this paper. The paper aims to ascertain the propensity of consistency of different suggested methods to predict the near-accurate future sea level rise along the coast of Mumbai. Case studies at East Coast, Southern Tip and West and South West coast of India have been reviewed. Coastal Vulnerability Index of several important international places has been compared, which matched with Intergovernmental Panel on Climate Change forecasts. The application of Geographic Information System mapping, use of remote sensing technology, both Multi Spectral Scanner and Thematic Mapping data from Landsat classified through Iterative Self-Organizing Data Analysis Technique for arriving at high, moderate and low Coastal Vulnerability Index at various important coastal cities have been observed. Instead of data driven, hindcast based forecast for Significant Wave Height, additional impact of sea level rise has been suggested. Efficacy and limitations of numerical methods vis-à-vis Artificial Neural Network has been assessed, importance of Root Mean Square error on numerical results is mentioned. Comparing between various computerized methods on forecast results obtained from MIKE 21 has been opined to be more reliable than Delft 3D model.
Keywords: Climate change, coastal vulnerability index, global warming, sea level rise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1565105 Efficient Compact Micro DBD Plasma Reactor for Ozone Generation for Industrial Application in Liquid and Gas Phase Systems
Authors: Kuvshinov, D., Siswanto, A., Lozano-Parada, J., Zimmerman, W. B.
Abstract:
Ozone is well known as a powerful, fast reacting oxidant. Ozone based processes produce no by-product residual as non-reacted ozone decomposes to molecular oxygen. Therefore an application of ozone is widely accepted as one of the main approaches for a Sustainable and Clean Technologies development.
There are number of technologies which require ozone to be delivered to specific points of a production network or reactors construction. Due to space constraints, high reactivity and short life time of ozone the use of ozone generators even of a bench top scale is practically limited. This requires development of mini/micro scale ozone generator which can be directly incorporated into production units.
Our report presents a feasibility study of a new micro scale rector for ozone generation (MROG). Data on MROG calibration and indigo decomposition at different operation conditions are presented.
At selected operation conditions with residence time of 0.25 s the process of ozone generation is not limited by reaction rate and the amount of ozone produced is a function of power applied. It was shown that the MROG is capable to produce ozone at voltage level starting from 3.5kV with ozone concentration of 5.28*10-6 (mol/L) at 5kV. This is in line with data presented on numerical investigation for a MROG. It was shown that in compare to a conventional ozone generator, MROG has lower power consumption at low voltages and atmospheric pressure.
The MROG construction makes it applicable for both submerged and dry systems. With a robust compact design MROG can be used as an integrated module for production lines of high complexity.
Keywords: DBD, micro reactor, ozone, plasma.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3004104 Scope, Relevance and Sustainability of Decentralized Renewable Energy Systems in Developing Economies: Imperatives from Indian Case Studies
Authors: Harshit Vallecha, Prabha Bhola
Abstract:
‘Energy for all’, is a global issue of concern for the past many years. Despite the number of technological advancements and innovations, significant numbers of people are living without access to electricity around the world. India, an emerging economy, tops the list of nations having the maximum number of residents living off the grid, thus raising global attention in past few years to provide clean and sustainable energy access solutions to all of its residents. It is evident from developed economies that centralized planning and electrification alone is not sufficient for meeting energy security. Implementation of off-grid and consumer-driven energy models like Decentralized Renewable Energy (DRE) systems have played a significant role in meeting the national energy demand in developed nations. Cases of DRE systems have been reported in developing countries like India for the past few years. This paper attempts to profile the status of DRE projects in the Indian context with their scope and relevance to ensure universal electrification. Diversified cases of DRE projects, particularly solar, biomass and micro hydro are identified in different Indian states. Critical factors affecting the sustainability of DRE projects are extracted with their interlinkages in the context of developers, beneficiaries and promoters involved in such projects. Socio-techno-economic indicators are identified through similar cases in the context of DRE projects. Exploratory factor analysis is performed to evaluate the critical sustainability factors followed by regression analysis to establish the relationship between the dependent and independent factors. The generated EFA-Regression model provides a basis to develop the sustainability and replicability framework for broader coverage of DRE projects in developing nations in order to attain the goal of universal electrification with least carbon emissions.
Keywords: Climate change, decentralized generation, electricity access, renewable energy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1004103 University Students’ Perception on Public Transit in Dhaka City
Authors: Md. Mosabbir Pasha, Ijaj Mahmud Chowdhury, M. A. Afrahim Bhuiyan
Abstract:
With the increasing population and intensive land use, huge traffic demand is generating worldwide both in developing and developed countries. As a developing country, Bangladesh is also facing the same problem in recent years by producing huge numbers of daily trips. As a matter of fact, extensive traffic demand is increasing day by day. Also, transport system in Dhaka is heterogeneous, reflecting the heterogeneity in the socio-economic and land use patterns. Trips produced here are for different purposes such as work, business, educational etc. Due to the significant concentration of educational institutions a large share of the trips are generated by educational purpose. And one of the major percentages of educational trips is produced by university going students and most of them are travelled by car, bus, train, taxi, rickshaw etc. The aim of the study was to find out the university students’ perception on public transit ridership. A survey was conducted among 330 students from eight different universities. It was found out that 26% of the trips produced by university going students are travelled by public bus service and only 5% are by train. Percentage of car share is 16% and 12% of the trips are travelled by private taxi. It has been observed from the study, students those who prefer bus instead of other options, 42 percent of their family resides outside Dhaka. And those who prefer walking, of them, over 40 percent students’ family reside outside of Dhaka and of them over 85 percent students have a tendency to live in a mess. On the contrary, students travelling by car represents, most of their family reside in Dhaka. The study also revealed that the most important reason that restricts students not to use public transit is poor service. Negative attitudes such as discomfort, uneasiness in using public transit also reduces the usage of public transit. The poor waiting area is another major cause of not using public transit. Insufficient security also plays a significant role in not using public transit. On the contrary, the fare is not a problem for students those who use public transit as a mode of transportation. Students also think stations are not far away from their home or institution and they do not need to wait long for the buses or trains. It was also found accessibility to public transit is moderate.Keywords: Traffic demand, fare, poor service, public transit ridership.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2443102 Creating Customer Value through SOA and Outsourcing: A NEBIC Approach
Authors: Benazeer Md. Shahzada, Verelst Jan, Van Grembergen Wim, Mannaert Herwig
Abstract:
This article is an extension and a practical application approach of Wheeler-s NEBIC theory (Net Enabled Business Innovation Cycle). NEBIC theory is a new approach in IS research and can be used for dynamic environment related to new technology. Firms can follow the market changes rapidly with support of the IT resources. Flexible firms adapt their market strategies, and respond more quickly to customers changing behaviors. When every leading firm in an industry has access to the same IT resources, the way that these IT resources are managed will determine the competitive advantages or disadvantages of firm. From Dynamic Capabilities Perspective and from newly introduced NEBIC theory by Wheeler, we know that only IT resources cannot deliver customer value but good configuration of those resources can guarantee customer value by choosing the right emerging technology, grasping the right economic opportunities through business innovation and growth. We found evidences in literature that SOA (Service Oriented Architecture) is a promising emerging technology which can deliver the desired economic opportunity through modularity, flexibility and loose-coupling. SOA can also help firms to connect in network which can open a new window of opportunity to collaborate in innovation and right kind of outsourcing. There are many articles and research reports indicates that failure rate in outsourcing is very high but at the same time research indicates that successful outsourcing projects adds tangible and intangible benefits to the service consumer. Business executives and policy makers in the west should not afraid of outsourcing but they should choose the right strategy through the use of emerging technology to significantly reduce the failure rate in outsourcing.Keywords: Absorptive capacity, Dynamic Capability, Netenabled business innovation cycle, Service oriented architecture.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410101 Nonlinear Estimation Model for Rail Track Deterioration
Authors: M. Karimpour, L. Hitihamillage, N. Elkhoury, S. Moridpour, R. Hesami
Abstract:
Rail transport authorities around the world have been facing a significant challenge when predicting rail infrastructure maintenance work for a long period of time. Generally, maintenance monitoring and prediction is conducted manually. With the restrictions in economy, the rail transport authorities are in pursuit of improved modern methods, which can provide precise prediction of rail maintenance time and location. The expectation from such a method is to develop models to minimize the human error that is strongly related to manual prediction. Such models will help them in understanding how the track degradation occurs overtime under the change in different conditions (e.g. rail load, rail type, rail profile). They need a well-structured technique to identify the precise time that rail tracks fail in order to minimize the maintenance cost/time and secure the vehicles. The rail track characteristics that have been collected over the years will be used in developing rail track degradation prediction models. Since these data have been collected in large volumes and the data collection is done both electronically and manually, it is possible to have some errors. Sometimes these errors make it impossible to use them in prediction model development. This is one of the major drawbacks in rail track degradation prediction. An accurate model can play a key role in the estimation of the long-term behavior of rail tracks. Accurate models increase the track safety and decrease the cost of maintenance in long term. In this research, a short review of rail track degradation prediction models has been discussed before estimating rail track degradation for the curve sections of Melbourne tram track system using Adaptive Network-based Fuzzy Inference System (ANFIS) model.
Keywords: ANFIS, MGT, Prediction modeling, rail track degradation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1594100 Experimental Investigation of the Impact of Biosurfactants on Residual-Oil Recovery
Authors: S. V. Ukwungwu, A. J. Abbas, G. G. Nasr
Abstract:
The increasing high price of natural gas and oil with attendant increase in energy demand on world markets in recent years has stimulated interest in recovering residual oil saturation across the globe. In order to meet the energy security, efforts have been made in developing new technologies of enhancing the recovery of oil and gas, utilizing techniques like CO2 flooding, water injection, hydraulic fracturing, surfactant flooding etc. Surfactant flooding however optimizes production but poses risk to the environment due to their toxic nature. Amongst proven records that have utilized other type of bacterial in producing biosurfactants for enhancing oil recovery, this research uses a technique to combine biosurfactants that will achieve a scale of EOR through lowering interfacial tension/contact angle. In this study, three biosurfactants were produced from three Bacillus species from freeze dried cultures using sucrose 3 % (w/v) as their carbon source. Two of these produced biosurfactants were screened with the TEMCO Pendant Drop Image Analysis for reduction in IFT and contact angle. Interfacial tension was greatly reduced from 56.95 mN.m-1 to 1.41 mN.m-1 when biosurfactants in cell-free culture (Bacillus licheniformis) were used compared to 4. 83mN.m-1 cell-free culture of Bacillus subtilis. As a result, cell-free culture of (Bacillus licheniformis) changes the wettability of the biosurfactant treatment for contact angle measurement to more water-wet as the angle decreased from 130.75o to 65.17o. The influence of microbial treatment on crushed rock samples was also observed by qualitative wettability experiments. Treated samples with biosurfactants remained in the aqueous phase, indicating a water-wet system. These results could prove that biosurfactants can effectively change the chemistry of the wetting conditions against diverse surfaces, providing a desirable condition for efficient oil transport in this way serving as a mechanism for EOR. The environmental friendly effect of biosurfactants applications for industrial purposes play important advantages over chemically synthesized surfactants, with various possible structures, low toxicity, eco-friendly and biodegradability.Keywords: Bacillus, biosurfactant, enhanced oil recovery, residual oil, wettability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 149899 Quality Classification and Monitoring Using Adaptive Metric Distance and Neural Networks: Application in Pickling Process
Authors: S. Bouhouche, M. Lahreche, S. Ziani, J. Bast
Abstract:
Modern manufacturing facilities are large scale, highly complex, and operate with large number of variables under closed loop control. Early and accurate fault detection and diagnosis for these plants can minimise down time, increase the safety of plant operations, and reduce manufacturing costs. Fault detection and isolation is more complex particularly in the case of the faulty analog control systems. Analog control systems are not equipped with monitoring function where the process parameters are continually visualised. In this situation, It is very difficult to find the relationship between the fault importance and its consequences on the product failure. We consider in this paper an approach to fault detection and analysis of its effect on the production quality using an adaptive centring and scaling in the pickling process in cold rolling. The fault appeared on one of the power unit driving a rotary machine, this machine can not track a reference speed given by another machine. The length of metal loop is then in continuous oscillation, this affects the product quality. Using a computerised data acquisition system, the main machine parameters have been monitored. The fault has been detected and isolated on basis of analysis of monitored data. Normal and faulty situation have been obtained by an artificial neural network (ANN) model which is implemented to simulate the normal and faulty status of rotary machine. Correlation between the product quality defined by an index and the residual is used to quality classification.Keywords: Modeling, fault detection and diagnosis, parameters estimation, neural networks, Fault Detection and Diagnosis (FDD), pickling process.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577