Search results for: Sinusoidal temperature distribution.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4278

Search results for: Sinusoidal temperature distribution.

948 Microstructure and Mechanical Behaviuor of Rotary Friction Welded Titanium Alloys

Authors: M. Avinash, G. V. K. Chaitanya, Dhananjay Kumar Giri, Sarala Upadhya, B. K. Muralidhara

Abstract:

Ti-6Al-4V alloy has demonstrated a high strength to weight ratio as well as good properties at high temperature. The successful application of the alloy in some important areas depends on suitable joining techniques. Friction welding has many advantageous features to be chosen for joining Titanium alloys. The present work investigates the feasibility of producing similar metal joints of this Titanium alloy by rotary friction welding method. The joints are produced at three different speeds and the performances of the welded joints are evaluated by conducting microstructure studies, Vickers Hardness and tensile tests at the joints. It is found that the weld joints produced are sound and the ductile fractures in the tensile weld specimens occur at locations away from the welded joints. It is also found that a rotational speed of 1500 RPM can produce a very good weld, with other parameters kept constant.

Keywords: Rotary friction weld, rotational speed, Ti-6Al-4V, weld structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2606
947 Evaluation of Corrosion in Steel Reinforced Concrete with Brick Waste

Authors: Julieta D. Chelaru, Maria Gorea

Abstract:

The massive demolition of old buildings in recent years has generated tons of waste, especially brick waste. Thus, a concern of recent research is the use of this waste for the production of environmentally friendly concrete. At the same time, corrosion of the reinforcement steel rebar in classical concrete is a current problem. In this context, in the present paper a study was carried out on the corrosion of metal reinforcement in cement mortars with added brick waste. The corrosion process was analyzed on four compositions of mortars without and with 15%, 25% and 35% brick waste replacing the sand. The brick waste has majority content in SiO2, Al2O3, FeO3 and CaO. The grain size distribution of brick waste was close to that of the sand (dmax = 2 mm). The preparation method of the samples was similar to ordinary mortars. The corrosion action on the rebar in concrete, at different brick waste concentrations, was investigated by electrochemical measurements (polarization curves and electrochemical impedance spectroscopy (EIS)) at 1 month and 26 months. The results obtained at 26 months revealed that the addition of the brick waste in mortar improved the anticorrosion properties in the case of all samples compared with the etalon mortar. The best results were obtained in the case of the sample with 15% brick waste (the efficiency was ≈ 90%). The corrosion intermediary layer formed on the rebar surface was evidenced by SEM-EDX.

Keywords: EIS, steel corrosion, steel reinforced concrete, waste materials.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 679
946 Preliminary Study of Antimicrobial Activity against Escherichia coli and Probiotic Properties of Lactic Acid Bacteria Isolated from Thailand Fermented Foods

Authors: Phanwipa Pangsri, Yawariyah Weahayee

Abstract:

The lactic acid bacteria (LAB) were isolated from 10 samples of fermented foods (Sa-tor-dong and Bodo) in South locality of Thailand. The 23 isolates of lactic acid bacteria were selected, which were exhibited a clear zone and growth on MRS agar supplemented with CaCO3. All of lactic acid bacteria were tested on morphological and biochemical. The result showed that all isolates were Gram’s positive, non-spore forming but only 10 isolates displayed catalase negative. The 10 isolates including BD1 .1, BD 1.2, BD 2.1, BD2.2, BD 2.3, BD 3.1, BD 4.1, BD 5.2, ST 4.1 and ST 5.2 were selected for inhibition activity determination. Only 2 strains (ST 4.1 and BD 2.3) showed inhibition zone on agar, when using Escherichia coli sp. as target strain. The ST 4.1 showed highest inhibition zone on agar, which was selected for probiotic property testing. The ST4.1 isolate could grow in MRS broth containing a high concentration of sodium chloride 6%, bile salts 7%, pH 4-10 and vary temperature at 15-45°C.

Keywords: Lactic acid bacteria, Probiotic, Antimicrobial.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2581
945 Progressive Strategy of Milling by means of Tool Axis Inclination Angle

Authors: Sadílek M., Čep R.

Abstract:

This work deals with problems of tool axis inclination angles in ball-end milling. Tool axis inclination angle contributes to improvement of functional surface properties (surface integrity - surface roughness, residual stress, micro hardness, etc.), decreasing cutting forces and improving production. By milling with ball-end milling tool, using standard way of cutting, when work piece and cutting tool contain right angle, we have zero cutting speed on edge. At this point cutting tool only pushes material into the work piece. Here we can observe the following undesirable effects - chip contraction, increasing of cutting temperature, increasing vibrations or creation of built-up edge. These effects have negative results – low quality of surface and decreasing of tool life (in the worse case even it is pinching out). These effects can be eliminated with the tilt of cutting tool or tilt of work piece.

Keywords: CAD/CAM system, tool axis inclination angle, ballend milling, surface roughness, cutting forces.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1853
944 Biodiesel Fuel Production by Methanolysis of Fish Oil Derived from the Discarded Parts of Fish Catalyzed by Carica papaya Lipase

Authors: P. Pinyaphong, P. Sriburi, S. Phutrakul

Abstract:

In this paper, naturally immobilized lipase, Carica papaya lipase, catalyzed biodiesel production from fish oil was studied. The refined fish oil, extracted from the discarded parts of fish, was used as a starting material for biodiesel production. The effects of molar ratio of oil: methanol, lipase dosage, initial water activity of lipase, temperature and solvent were investigated. It was found that Carica papaya lipase was suitable for methanolysis of fish oil to produce methyl ester. The maximum yield of methyl ester could reach up to 83% with the optimal reaction conditions: oil: methanol molar ratio of 1: 4, 20% (based on oil) of lipase, initial water activity of lipase at 0.23 and 20% (based on oil) of tert-butanol at 40oC after 18 h of reaction time. There was negligible loss in lipase activity even after repeated use for 30 cycles.

Keywords: biodiesel fuel production, methanolysis, fish oil, Carica papaya lipase.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3325
943 Ionanofluids as Novel Fluids for Advanced Heat Transfer Applications

Authors: S. M. Sohel Murshed, C. A. Nieto de Castro, M. J. V. Lourenço, J. França, A. P. C. Ribeiro, S. I. C.Vieira, C. S. Queirós

Abstract:

Ionanofluids are a new and innovative class of heat transfer fluids which exhibit fascinating thermophysical properties compared to their base ionic liquids. This paper deals with the findings of thermal conductivity and specific heat capacity of ionanofluids as a function of a temperature and concentration of nanotubes. Simulation results using ionanofluids as coolants in heat exchanger are also used to access their feasibility and performance in heat transfer devices. Results on thermal conductivity and heat capacity of ionanofluids as well as the estimation of heat transfer areas for ionanofluids and ionic liquids in a model shell and tube heat exchanger reveal that ionanofluids possess superior thermal conductivity and heat capacity and require considerably less heat transfer areas as compared to those of their base ionic liquids. This novel class of fluids shows great potential for advanced heat transfer applications.

Keywords: Heat transfer, Ionanofluids, Ionic liquids, Nanotubes, Thermal conductivity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2218
942 Intelligent Maximum Power Point Tracking Using Fuzzy Logic for Solar Photovoltaic Systems Under Non-Uniform Irradiation Conditions

Authors: P. Selvam, S. Senthil Kumar

Abstract:

Maximum Power Point Tracking (MPPT) has played a vital role to enhance the efficiency of solar photovoltaic (PV) power generation under varying atmospheric temperature and solar irradiation. However, it is hard to track the maximum power point using conventional linear controllers due to the natural inheritance of nonlinear I-V and P-V characteristics of solar PV systems. Fuzzy Logic Controller (FLC) is suitable for nonlinear system control applications and eliminating oscillations, circuit complexities present in the conventional perturb and observation and incremental conductance methods respectively. Hence, in this paper, FLC is proposed for tracking exact MPPT of solar PV power generation system under varying solar irradiation conditions. The effectiveness of the proposed FLC-based MPPT controller is validated through simulation and analysis using MATLAB/Simulink.

Keywords: Fuzzy logic controller, maximum power point tracking, photovoltaic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
941 Application of Neural Networks to Predict Changing the Diameters of Bubbles in Pool Boiling Distilled Water

Authors: V. Nikkhah Rashidabad, M. Manteghian, M. Masoumi, S. Mousavian, D. Ashouri

Abstract:

In this research, the capability of neural networks in  modeling and learning complicated and nonlinear relations has been  used to develop a model for the prediction of changes in the diameter  of bubbles in pool boiling distilled water. The input parameters used  in the development of this network include element temperature, heat  flux, and retention time of bubbles. The test data obtained from the  experiment of the pool boiling of distilled water, and the  measurement of the bubbles form on the cylindrical element. The  model was developed based on training algorithm, which is  typologically of back-propagation type. Considering the correlation  coefficient obtained from this model is 0.9633. This shows that this  model can be trusted for the simulation and modeling of the size of  bubble and thermal transfer of boiling.

Keywords: Bubble Diameter, Heat Flux, Neural Network, Training Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1456
940 Preparation and Some Mechanical Properties of Composite Materials Made from Sawdust, Cassava Starch and Natural Rubber Latex

Authors: Apusraporn Prompunjai, Waranyou Sridach

Abstract:

The composite materials were prepared by sawdust, cassava starch and natural rubber latex (NR). The mixtures of 15%w/v gelatinized cassava starch and 15%w/v PVOH were used as the binder of these composite materials. The concentrated rubber latex was added to the mixtures. They were mixed rigorously to the treated sawdust in the ratio of 70:30 until achive uniform dispersion. The batters were subjected to the hot compression moulding at the temperature of 160°C and 3,000 psi pressure for 5 min. The experimental results showed that the mechanical properties of composite materials, which contained the gelatinized cassava starch and PVOH in the ratio of 2:1, 20% NR latex by weight of the dry starch and treated sawdust with 5%NaOH or 1% BPO, were the best. It contributed the maximal compression strength (341.10 + 26.11 N), puncture resistance (8.79 + 0.98 N/mm2) and flexural strength (3.99 + 0.72N/mm2). It is also found that the physicochemical and mechanical properties of composites strongly depends on the interface quality of sawdust, cassava starch and NR latex.

Keywords: Composites, sawdust, cassava starch, natural rubber (NR) latex, surface chemical treatments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4100
939 Physiological Effects on Scientist Astronaut Candidates: Hypobaric Training Assessment

Authors: Pedro Llanos, Diego García

Abstract:

This paper is addressed to expanding our understanding of the effects of hypoxia training on our bodies to better model its dynamics and leverage some of its implications and effects on human health. Hypoxia training is a recommended practice for military and civilian pilots that allow them to recognize their early hypoxia signs and symptoms, and Scientist Astronaut Candidates (SACs) who underwent hypobaric hypoxia (HH) exposure as part of a training activity for prospective suborbital flight applications. This observational-analytical study describes physiologic responses and symptoms experienced by a SAC group before, during and after HH exposure and proposes a model for assessing predicted versus observed physiological responses. A group of individuals with diverse Science Technology Engineering Mathematics (STEM) backgrounds conducted a hypobaric training session to an altitude up to 22,000 ft (FL220) or 6,705 meters, where heart rate (HR), breathing rate (BR) and core temperature (Tc) were monitored with the use of a chest strap sensor pre and post HH exposure. A pulse oximeter registered levels of saturation of oxygen (SpO2), number and duration of desaturations during the HH chamber flight. Hypoxia symptoms as described by the SACs during the HH training session were also registered. This data allowed to generate a preliminary predictive model of the oxygen desaturation and O2 pressure curve for each subject, which consists of a sixth-order polynomial fit during exposure, and a fifth or fourth-order polynomial fit during recovery. Data analysis showed that HR and BR showed no significant differences between pre and post HH exposure in most of the SACs, while Tc measures showed slight but consistent decrement changes. All subjects registered SpO2 greater than 94% for the majority of their individual HH exposures, but all of them presented at least one clinically significant desaturation (SpO2 < 85% for more than 5 seconds) and half of the individuals showed SpO2 below 87% for at least 30% of their HH exposure time. Finally, real time collection of HH symptoms presented temperature somatosensory perceptions (SP) for 65% of individuals, and task-focus issues for 52.5% of individuals as the most common HH indications. 95% of the subjects experienced HH onset symptoms below FL180; all participants achieved full recovery of HH symptoms within 1 minute of donning their O2 mask. The current HH study performed on this group of individuals suggests a rapid and fully reversible physiologic response after HH exposure as expected and obtained in previous studies. Our data showed consistent results between predicted versus observed SpO2 curves during HH suggesting a mathematical function that may be used to model HH performance deficiencies. During the HH study, real-time HH symptoms were registered providing evidenced SP and task focusing as the earliest and most common indicators. Finally, an assessment of HH signs of symptoms in a group of heterogeneous, non-pilot individuals showed similar results to previous studies in homogeneous populations of pilots.

Keywords: Altitude sickness, cabin pressure, hypobaric chamber training, symptoms and altitude, slow onset hypoxia.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 416
938 Effects of Double Delta Doping on Millimeter and Sub-millimeter Wave Response of Two-Dimensional Hot Electrons in GaAs Nanostructures

Authors: N. Basanta Singh, Sanjoy Deb, G. P Mishra, Subir Kumar Sarkar

Abstract:

Carrier mobility has become the most important characteristic of high speed low dimensional devices. Due to development of very fast switching semiconductor devices, speed of computer and communication equipment has been increasing day by day and will continue to do so in future. As the response of any device depends on the carrier motion within the devices, extensive studies of carrier mobility in the devices has been established essential for the growth in the field of low dimensional devices. Small-signal ac transport of degenerate two-dimensional hot electrons in GaAs quantum wells is studied here incorporating deformation potential acoustic, polar optic and ionized impurity scattering in the framework of heated drifted Fermi-Dirac carrier distribution. Delta doping is considered in the calculations to investigate the effects of double delta doping on millimeter and submillimeter wave response of two dimensional hot electrons in GaAs nanostructures. The inclusion of delta doping is found to enhance considerably the two dimensional electron density which in turn improves the carrier mobility (both ac and dc) values in the GaAs quantum wells thereby providing scope of getting higher speed devices in future.

Keywords: Carrier mobility, Delta doping, Hot carriers, Quantum wells.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1673
937 An Improved Single Point Closure Model Based on Dissipation Anisotropy for Geophysical Turbulent Flows

Authors: A. P. Joshi, H. V. Warrior, J. P. Panda

Abstract:

This paper is a continuation of the work carried out by various turbulence modelers in Oceanography on the topic of oceanic turbulent mixing. It evaluates the evolution of ocean water temperature and salinity by the appropriate modeling of turbulent mixing utilizing proper prescription of eddy viscosity. Many modelers in past have suggested including terms like shear, buoyancy and vorticity to be the parameters that decide the slow pressure strain correlation. We add to it the fact that dissipation anisotropy also modifies the correlation through eddy viscosity parameterization. This recalibrates the established correlation constants slightly and gives improved results. This anisotropization of dissipation implies that the critical Richardson’s number increases much beyond unity (to 1.66) to accommodate enhanced mixing, as is seen in reality. The model is run for a couple of test cases in the General Ocean Turbulence Model (GOTM) and the results are presented here.

Keywords: Anisotropy, GOTM, pressure-strain correlation, Richardson Critical number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 949
936 The Design of Acoustic Horns for Ultrasonic Aided Tube Double Side Flange Making

Authors: Kuen-Ming Shu, Jyun-Wei Chen

Abstract:

Encapsulated O-rings are specifically designed to address the problem of sealing the most hostile chemicals and extreme temperature applications. Ultrasonic vibration hot embossing and ultrasonic welding techniques provide a fast and reliable method to fabricate encapsulated O-ring. This paper performs the design and analysis method of the acoustic horns with double extrusion to process tube double side flange simultaneously. The paper deals with study through Finite Element Method (FEM) of ultrasonic stepped horn used to process a capsulated O-ring, the theoretical dimensions of horns, and their natural frequencies and amplitudes are obtained through the simulations of COMOSOL software. Furthermore, real horns were fabricated, tested and verified to proof the practical utility of these horns. 

Keywords: Encapsulated O-rings, ultrasonic vibration hot embossing, flange making, acoustic horn, finite element analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3401
935 Entropy Generation Analyze Due to the Steady Natural Convection of Newtonian Fluid in a Square Enclosure

Authors: T. T. Naas, Y. Lasbet, C. Kezrane

Abstract:

The thermal control in many systems is widely accomplished applying mixed convection process due to its low cost, reliability and easy maintenance. Typical applications include the aircraft electronic equipment, rotating-disc heat exchangers, turbo machinery, and nuclear reactors, etc. Natural convection in an inclined square enclosure heated via wall heater has been studied numerically. Finite volume method is used for solving momentum and energy equations in the form of stream function–vorticity. The right and left walls are kept at a constant temperature, while the other parts are adiabatic. The range of the inclination angle covers a whole revolution. The method is validated for a vertical cavity. A general power law dependence of the Nusselt number with respect to the Rayleigh number with the coefficient and exponent as functions of the inclination angle is presented. For a fixed Rayleigh number, the inclination angle increases or decreases is found.

Keywords: Inclined enclosure, natural convection in enclosure, Nusselt number.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2228
934 Comparisons of Co-Seismic Gravity Changes between GRACE Observations and the Predictions from the Finite-Fault Models for the 2012 Mw = 8.6 Indian Ocean Earthquake Off-Sumatra

Authors: Armin Rahimi

Abstract:

The Gravity Recovery and Climate Experiment (GRACE) has been a very successful project in determining math redistribution within the Earth system. Large deformations caused by earthquakes are in the high frequency band. Unfortunately, GRACE is only capable to provide reliable estimate at the low-to-medium frequency band for the gravitational changes. In this study, we computed the gravity changes after the 2012 Mw8.6 Indian Ocean earthquake off-Sumatra using the GRACE Level-2 monthly spherical harmonic (SH) solutions released by the University of Texas Center for Space Research (UTCSR). Moreover, we calculated gravity changes using different fault models derived from teleseismic data. The model predictions showed non-negligible discrepancies in gravity changes. However, after removing high-frequency signals, using Gaussian filtering 350 km commensurable GRACE spatial resolution, the discrepancies vanished, and the spatial patterns of total gravity changes predicted from all slip models became similar at the spatial resolution attainable by GRACE observations, and predicted-gravity changes were consistent with the GRACE-detected gravity changes. Nevertheless, the fault models, in which give different slip amplitudes, proportionally lead to different amplitude in the predicted gravity changes.

Keywords: Undersea earthquake, GRACE observation, gravity change, dislocation model, slip distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 991
933 Stresses in Cast Metal Inlays Restored Molars

Authors: Sandu L., Topală F., Porojan S.

Abstract:

Cast metal inlays can be used on molars requiring a class II restoration instead amalgam and offer a durable alternative. Because it is known that class II inlays may increase the susceptibility to fracture, it is important to ensure optimal performance in selection of the adequate preparation design to reduce stresses in teeth structures and also in the restorations. The aim of the study was to investigate the influence of preparation design on stress distribution in molars with different class II preparations and in cast metal inlays. The first step of the study was to achieve 3D models in order to analyze teeth and cast metal class II inlays. The geometry of the intact tooth was obtained by 3D scanning using a manufactured device. With a NURBS modeling program the preparations and the appropriately inlays were designed. 3D models of first upper molars of the same shape and size were created. Inlay cavities designs were created using literature data. The geometrical model was exported and the mesh structure of the solid 3D model was created for structural simulations. Stresses were located around the occlusal contact areas. For the studied cases, the stress values were not significant influenced by the taper of the preparation. it was demonstrated stresses are higher in the cast metal restorations and therefore the strength of the teeth is not affected.

Keywords: cast metal inlays, class II restoration, molars, 3D models, structural simulations.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2426
932 Analysis and Protection of Soil in Controlled Regime Using Techniques Adapted to the Specifics of Precision Agriculture

Authors: Voicu Petre, Oaida Mircea, Surugiu Petru

Abstract:

It is now unanimously accepted that conventional agriculture has led to the emergence and intensification of some forms of soil and environmental degradation, some of which are due to poorly applied or insufficiently substantiated technological measures. For this reason, the elaboration of any agricultural technology requires a deep knowledge of all the factors involved as well as of the interaction relations between them. This is also the way in which the research will be approached in this paper. Despite the fact that at European level the implementation of precision agriculture has a low level compared to some countries located on the American continent, it is emerging not only as an alternative to conventional agriculture but, as a viable way to preserve the quality of the environment in general, and the edaphic environment in particular. This gives an increased importance to the research in this paper through physical, chemical, biological, mineralogical and micromorphological analytical determinations, processing of analytical results, identification of processes, causes, factors, establishment of soil quality indicators and the perspective of measurements from distance by satellite techniques of some of these soil properties (humidity, temperature, pH, N, P, K and so on).

Keywords: Conventional agriculture, environmental degradation, precision agriculture, soil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 847
931 Efficacy and Stability of Ceramic Powder to Inactivate Avian Influenza Virus

Authors: Chanathip Thammakarn, Misato Tsujimura, Keisuke Satoh, Tomomi Hasegawa, Miho Tamura, Akinobu Kawamura, Yuki Ishida, Atsushi Suguro, Hakimullah Hakim, Sakchai Ruenphet, , Kazuaki Takehara

Abstract:

This experiment aims to demonstrate the efficacy of ceramic powder derived from various sources to inactivate avian influenza virus and its possibility to use in the environment. The ceramics used in the present experiment were derived from chicken feces (CF), scallop shell (SS), polyvinyl chloride (PVC) and soybean (SB). All ceramics were mixed with low pathogenic AIV (LPAIV) H7N1, and then kept at room temperature. The recovered virus was titrated onto Madin-Darby canine kidney (MDCK) cells. All ceramics were assessed the inactivation stability in the environment by keeping under sunlight and under wet-dry condition until reached 7 week or 7 resuspension times respectively. The results indicate that all ceramics have excellent efficacy to inactivate LPAIV. This efficacy can be maintained under the simulated condition. The ceramics are expected to be the good materials for application in the biosecurity system at farms.

Keywords: Avian Influenza, Ceramics, Efficacy, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826
930 Creeping Insulation - Hong Kong Green Wall

Authors: X. L. Zhang, K. L. Li, R. M. Skitmore

Abstract:

Hong Kong is a densely populated city suffering badly from the urban heat island effect. Green wall offers a means of ameliorating the situation but there are doubts over its suitability in Hong Kong’s unique environment. In this paper, we look at the potential for green walls in Hong Kong first by summarizing some of the Chinese green walling systems and associated vegetation in use, then by an introduction to three existing green walls in Hong Kong, and finally through a small experiment aimed at identifying the likely main effects of green walled housing.

The results indicate that green walling in Hong Kong is likely to provide enhanced internal house environment in terms of warm weather temperature reduction, stabilization and damping, with direct energy savings in air-conditioning and indirect district benefits of reduced heat island effect and carbon emissions. The green walling insulation properties also suggest the possibility of warmer homes in winter and/or energy savings in mechanical heating provision.

Keywords: Case studies, experiment, green wall, Hong Kong.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3240
929 Dye Removal from Aqueous Solution by Regenerated Spent Bleaching Earth

Authors: Ahmed I. Shehab, Sabah M. Abdel Basir, M. A. Abdel Khalek, M. H. Soliman, G. Elgemeie

Abstract:

Spent bleaching earth (SBE) recycling and utilization as an adsorbent to eliminate dyes from aqueous solution was studied. Organic solvents and subsequent thermal treatment were carried out to recover and reactivate the SBE. The effect of pH, temperature, dye’s initial concentration, and contact time on the dye removal using recycled spent bleaching earth (RSBE) was investigated. Recycled SBE showed better removal affinity of cationic than anionic dyes. The maximum removal was achieved at pH 2 and 8 for anionic and cationic dyes, respectively. Kinetic data matched with the pseudo second-order model. The adsorption phenomenon governing this process was identified by the Langmuir and Freundlich isotherms for anionic dye while Freundlich model represented the sorption process for cationic dye. The changes of Gibbs free energy (ΔG°), enthalpy (ΔH°), and entropy (ΔS°) were computed and compared through thermodynamic study for both dyes.

Keywords: Spent bleaching earth, Regeneration, Dye removal, Thermodynamics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 940
928 Experimental Investigation of Phase Distributions of Two-phase Air-silicone Oil Flow in a Vertical Pipe

Authors: M. Abdulkadir, V. Hernandez-Perez, S. Sharaf, I. S. Lowndes, B. J. Azzopardi

Abstract:

This paper reports the results of an experimental study conducted to characterise the gas-liquid multiphase flows experienced within a vertical riser transporting a range of gas-liquid flow rates. The scale experiments were performed using an air/silicone oil mixture within a 6 m long riser. The superficial air velocities studied ranged from 0.047 to 2.836 m/ s, whilst maintaining a liquid superficial velocity at 0.047 m/ s. Measurements of the mean cross-sectional and time average radial void fraction were obtained using a wire mesh sensor (WMS). The data were recorded at an acquisition frequency of 1000 Hz over an interval of 60 seconds. For the range of flow conditions studied, the average void fraction was observed to vary between 0.1 and 0.9. An analysis of the data collected concluded that the observed void fraction was strongly affected by the superficial gas velocity, whereby the higher the superficial gas velocity, the higher was the observed average void fraction. The average void fraction distributions observed were in good agreement with the results obtained by other researchers. When the air-silicone oil flows were fully developed reasonably symmetric profiles were observed, with the shape of the symmetry profile being strongly dependent on the superficial gas velocity.

Keywords: WMS, phase distribution, silicone-oil, riser

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2273
927 Status, Habitat Use, and Behaviour of Wintering Greater Flamingos Phoenicopterus roseus in Semi-Arid and Saharan Wetlands of Algeria

Authors: E. Bensaci, M. Saheb, Y. Nouidjem, A. Zoubiri, A. Bouzegag, M. Houhamdi

Abstract:

The Greater flamingo is considered the flagship species of wetlands across semi-arid and Saharan regions of Africa, especially Chotts and Sebkhas, which also concentrate significant numbers of bird species. Flamingos have different status (wintering and breeder) which vary between sites in different parts of Algeria. We conducted surveys and recorded banded flamingos across distinct regions within two climatic belts: semi-arid (Hauts Plateaux) and arid (Sahara), showing the importance of these sites in the migratory flyways particularly the relation between West Mediterranean and West Africa populations. The distribution of Greater flamingos varied between sites and seasons, where the concentrations mainly were in the wide, lees deep and salt lakes. Many of the sites (17) in the surveyed area were regularly supporting at least 1% of the regional population during winter. The analysis of Greater flamingos behaviour in different climatic regions in relation showed that the feeding is the dominant diurnal activity with rates exceeding 60% of the time. While feeding varies between seasons, and showed a negative relationship with the degree of disturbance.

Keywords: Algeria, greater flamingo, Phoenicopterus roseus, Sahara, semi-arid.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1148
926 Gas Flow Rate Identification in Biomass Power Plants by Response Surface Method

Authors: J. Satonsaowapak, M. Krapeedang, R. Oonsivilai, A. Oonsivilai

Abstract:

The utilize of renewable energy sources becomes more crucial and fascinatingly, wider application of renewable energy devices at domestic, commercial and industrial levels is not only affect to stronger awareness but also significantly installed capacities. Moreover, biomass principally is in form of woods and converts to be energy for using by humans for a long time. Gasification is a process of conversion of solid carbonaceous fuel into combustible gas by partial combustion. Many gasified models have various operating conditions because the parameters kept in each model are differentiated. This study applied the experimental data including three inputs variables including biomass consumption; temperature at combustion zone and ash discharge rate and gas flow rate as only one output variable. In this paper, response surface methods were applied for identification of the gasified system equation suitable for experimental data. The result showed that linear model gave superlative results.

Keywords: Gasified System, Identification, Response SurfaceMethod

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
925 Numerical Simulation of Thermo-Fluid Behavior in Wavy Microchannel Used in Microelectronic Devices

Authors: A. Balabel, A. F. Khadrawi, Ali S. Al-Osaimy

Abstract:

The hydrodynamic and thermal behaviors of fluid flow in wavy microchannel are investigated numerically. Effects of Reynolds number on the hydrodynamics and thermal behaviors are investigated. Three cases of Reynolds number (580, 1244, and 1910) are adopted in this study. It is found that the separation zone begin appears when Reynolds number is greater than 1910 at the endsection of the wave. Also it is found that dimensionless maximum velocity at the mid-section of the wave decreases and becomes as a turbulent behavior as Reynolds numbers increases. The maximum temperature at the center line at the mid-section of the wave increases as Reynolds number increases until it reaches the turbulent behavior when Reynolds number is equal or greater than 1244, while this behavior will be achieved at very high velocities at the end section of the wave.

Keywords: Thermo-Fluid Behavior, Microelectronic Devices, Numerical Simulation, Wavy Microchannel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1355
924 Acoustic and Thermal Insulating Materials Based On Natural Fibres Used in Floor Construction

Authors: J. Hroudova, J. Zach

Abstract:

The majority of contemporary insulation materials commonly used in the building industry is made from non-renewable raw materials; furthermore, their production often brings high energy costs. A long-term trend as far as sustainable development is concerned has been the reduction of energy and material demands of building material production. One of the solutions is the possibility of using easily renewable natural raw material sources which are considerably more ecological and their production is mostly less energy-consuming compared to the production of normal insulations (mineral wool, polystyrene). The paper describes the results of research focused on the development of thermal and acoustic insulation materials based on natural fibres intended for floor constructions. Given the characteristic open porosity of natural fibre materials, the hygrothermal behaviour of the developed materials was studied. Especially the influence of relative humidity and temperature on thermal insulation properties was observed.

Keywords: Green thermal and acoustic insulating materials, natural fibres, technical hemp, flax, floor construction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3210
923 Forming Simulation of Thermoplastic Pre-Impregnated Textile Composite

Authors: Masato Nishi, Tetsushi Kaburagi, Masashi Kurose, Tei Hirashima, Tetsusei Kurasiki

Abstract:

The process of thermoforming a carbon fiber reinforced thermoplastic (CFRTP) has increased its presence in the automotive industry for its wide applicability to the mass production car. A non-isothermal forming for CFRTP can shorten its cycle time to less than 1 minute. In this paper, the textile reinforcement FE model which the authors proposed in a previous work is extended to the CFRTP model for non-isothermal forming simulation. The effect of thermoplastic is given by adding shell elements which consider thermal effect to the textile reinforcement model. By applying Reuss model to the stress calculation of thermoplastic, the proposed model can accurately predict in-plane shear behavior, which is the key deformation mode during forming, in the range of the process temperature. Using the proposed model, thermoforming simulation was conducted and the results are in good agreement with the experimental results.

Keywords: Carbon fiber reinforced thermoplastic (CFRTP), Finite element analysis (FEA), Pre-impregnated textile composite, Non-isothermal forming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3469
922 Total Lipid of Mutant Synechococcus sp. PCC 7002

Authors: Azlin S Azmi, Mus’ab Zainal, Sarina Sulaiman, Azura Amid, Zaki Zainudin

Abstract:

Microalgae lipid is a promising feedstock for biodiesel production. The objective of this work was to study growth factors affecting marine mutant Synechococcus sp. (PCC 7002) for high lipid production. Four growth factors were investigated; nitrogen-phosporus-potassium (NPK) concentration, light intensity, temperature and NaNO3 concentration on mutant strain growth and lipid production were studied. Design Expert v8.0 was used to design the experimental and analyze the data. The experimental design selected was Min-Run Res IV which consists of 12 runs and the response surfaces measured were specific growth rate and lipid concentration. The extraction of lipid was conducted by chloroform/methanol solvents system. Based on the study, mutant Synechococcus sp. PCC 7002 gave the highest specific growth rate of 0.0014 h-1 at 0% NPK, 2500 lux, 40oC and 0% NaNO3. On the other hand, the highest lipid concentration was obtained at 0% NPK, 3500 lux, 30oC and 1% NaNO3.

Keywords: Cyanobacteria, lipid, mutant, marine Synechococcus sp. PCC 7002, specific growth rate.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2670
921 System Identification and Performance Improvement to a Micro Gas Turbine Applying Biogas

Authors: Chun Hsiang Yang, Cheng Chia Lee, Chiun Hsun Chen

Abstract:

In this study, the effects of biogas fuels on the performance of an annular micro gas turbine (MGT) were assessed experimentally and numerically. In the experiments, the proposed MGT system was operated successfully under each test condition; minimum composition to the fuel with the biogas was roughly 50% CH4 with 50% CO2. The power output was around 170W at 85,000 RPM as 90% CH4 with 10% CO2 was used and 70W at 65,000 RPM as 70% CH4 with 30% CO2 was used. When a critical limit of 60% CH4 was reached, the power output was extremely low. Furthermore, the theoretical Brayton cycle efficiency and electric efficiency of the MGT were calculated as 23% and 10%, respectively. Following the experiments, the measured data helped us identify the parameters of dynamic model in numerical simulation. Additionally, a numerical analysis of re-designed combustion chamber showed that the performance of MGT could be improved by raising the temperature at turbine inlet. This study presents a novel distributed power supply system that can utilize renewable biogas. The completed micro biogas power supply system is small, low cost, easy to maintain and suited to household use.

Keywords: Micro Gas Turbine, Biogas; System Identification, Distributed power supply system

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2545
920 Statistical Modeling for Permeabilization of a Novel Yeast Isolate for β-Galactosidase Activity Using Organic Solvents

Authors: Shweta Kumari, Parmjit S. Panesar, Manab B. Bera

Abstract:

The hydrolysis of lactose using β-galactosidase is one of the most promising biotechnological applications, which has wide range of potential applications in food processing industries. However, due to intracellular location of the yeast enzyme, and expensive extraction methods, the industrial applications of enzymatic hydrolysis processes are being hampered. The use of permeabilization technique can help to overcome the problems associated with enzyme extraction and purification of yeast cells and to develop the economically viable process for the utilization of whole cell biocatalysts in food industries. In the present investigation, standardization of permeabilization process of novel yeast isolate was carried out using a statistical model approach known as Response Surface Methodology (RSM) to achieve maximal b-galactosidase activity. The optimum operating conditions for permeabilization process for optimal β-galactosidase activity obtained by RSM were 1:1 ratio of toluene (25%, v/v) and ethanol (50%, v/v), 25.0 oC temperature and treatment time of 12 min, which displayed enzyme activity of 1.71 IU /mg DW.

Keywords: β-galactosidase, optimization, permeabilization, response surface methodology, yeast.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4135
919 Automatic Adjustment of Thresholds via Closed-Loop Feedback Mechanism for Solder Paste Inspection

Authors: Chia-Chen Wei, Pack Hsieh, Jeffrey Chen

Abstract:

Surface Mount Technology (SMT) is widely used in the area of the electronic assembly in which the electronic components are mounted to the surface of the printed circuit board (PCB). Most of the defects in the SMT process are mainly related to the quality of solder paste printing. These defects lead to considerable manufacturing costs in the electronics assembly industry. Therefore, the solder paste inspection (SPI) machine for controlling and monitoring the amount of solder paste printing has become an important part of the production process. So far, the setting of the SPI threshold is based on statistical analysis and experts’ experiences to determine the appropriate threshold settings. Because the production data are not normal distribution and there are various variations in the production processes, defects related to solder paste printing still occur. In order to solve this problem, this paper proposes an online machine learning algorithm, called the automatic threshold adjustment (ATA) algorithm, and closed-loop architecture in the SMT process to determine the best threshold settings. Simulation experiments prove that our proposed threshold settings improve the accuracy from 99.85% to 100%.

Keywords: Big data analytics, Industry 4.0, SPI threshold setting, surface mount technology.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 814