Search results for: static allocation
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 910

Search results for: static allocation

610 Improvement of Parallel Compressor Model in Dealing Outlet Unequal Pressure Distribution

Authors: Kewei Xu, Jens Friedrich, Kevin Dwinger, Wei Fan, Xijin Zhang

Abstract:

Parallel Compressor Model (PCM) is a simplified approach to predict compressor performance with inlet distortions. In PCM calculation, it is assumed that the sub-compressors’ outlet static pressure is uniform and therefore simplifies PCM calculation procedure. However, if the compressor’s outlet duct is not long and straight, such assumption frequently induces error ranging from 10% to 15%. This paper provides a revised calculation method of PCM that can correct the error. The revised method employs energy equation, momentum equation and continuity equation to acquire needed parameters and replace the equal static pressure assumption. Based on the revised method, PCM is applied on two compression system with different blades types. The predictions of their performance in non-uniform inlet conditions are yielded through the revised calculation method and are employed to evaluate the method’s efficiency. Validating the results by experimental data, it is found that although little deviation occurs, calculated result agrees well with experiment data whose error ranges from 0.1% to 3%. Therefore, this proves the revised calculation method of PCM possesses great advantages in predicting the performance of the distorted compressor with limited exhaust duct.

Keywords: Parallel Compressor Model (PCM), Revised Calculation Method, Inlet Distortion, Outlet Unequal Pressure Distribution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1652
609 Static Headspace GC Method for Aldehydes Determination in Different Food Matrices

Authors: A. Mandić, M. Sakač, A. Mišan, B. Šojić, L. Petrović, I. Lončarević, B. Pajin, I. Sedej

Abstract:

Aldehydes as secondary lipid oxidation products are highly specific to the oxidative degradation of particular polyunsaturated fatty acids present in foods. Gas chromatographic analysis of those volatile compounds has been widely used for monitoring of the deterioration of food products. Developed static headspace gas chromatography method using flame ionization detector (SHS GC FID) was applied to monitor the aldehydes present in processed foods such as bakery, meat and confectionary products.

Five selected aldehydes were determined in samples without any sample preparation, except grinding for bakery and meat products. SHS–GC analysis allows the separation of propanal, pentanal, hexanal, heptanal and octanal, within 15min. Aldehydes were quantified in fresh and stored samples, and the obtained range of aldehydes in crackers was 1.62±0.05 – 9.95±0.05mg/kg, in sausages 6.62±0.46 – 39.16±0.39mg/kg; and in cocoa spread cream 0.48±0.01 – 1.13±0.02mg/kg. Referring to the obtained results, the following can be concluded, proposed method is suitable for different types of samples, content of aldehydes varies depending on the type of a sample, and differs in fresh and stored samples of the same type.

Keywords: Lipid oxidation, aldehydes, crackers, sausage, cocoa cream spread.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4881
608 PSS with Multiple FACTS Controllers Coordinated Design and Real-Time Implementation Using Advanced Adaptive PSO

Authors: Rajendraprasad Narne, P. C. Panda

Abstract:

In this article, coordinated tuning of power system stabilizer (PSS) with static var compensator (SVC) and thyristor controlled series capacitor (TCSC) in multi-machine power system is proposed. The design of proposed coordinated damping controller is formulated as an optimization problem and the controller gains are optimized instantaneously using advanced adaptive particle swarm optimization (AAPSO). The objective function is framed with the inter-area speed deviations of the generators and it is minimized using AAPSO to improve the dynamic stability of power system under severe disturbance. The proposed coordinated controller performance is evaluated under a wide range of system operating conditions with three-phase fault disturbance. Using time domain simulations the damping characteristics of proposed controller is compared with individually tuned PSS, SVC and TCSC controllers. Finally, the real-time simulations are carried out in Opal-RT hardware simulator to synchronize the proposed controller performance in the real world.

Keywords: Advanced adaptive particle swarm optimization, Coordinated design, Power system stabilizer, Real-time implementation, static var compensator, Thyristor controlled series capacitor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2558
607 Moving Area Filter to Detect Object in Video Sequence from Moving Platform

Authors: Sallama Athab, Hala Bahjat

Abstract:

Detecting object in video sequence is a challenging mission for identifying, tracking moving objects. Background removal considered as a basic step in detected moving objects tasks. Dual static cameras placed in front and rear moving platform gathered information which is used to detect objects. Background change regarding with speed and direction moving platform, so moving objects distinguished become complicated. In this paper, we propose framework allows detection moving object with variety of speed and direction dynamically. Object detection technique built on two levels the first level apply background removal and edge detection to generate moving areas. The second level apply Moving Areas Filter (MAF) then calculate Correlation Score (CS) for adjusted moving area. Merging moving areas with closer CS and marked as moving object. Experiment result is prepared on real scene acquired by dual static cameras without overlap in sense. Results showing accuracy in detecting objects compared with optical flow and Mixture Module Gaussian (MMG), Accurate ratio produced to measure accurate detection moving object.

Keywords: Background Removal, Correlation, Mixture Module Gaussian, Moving Platform, Object Detection.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2089
606 Dynamics Characterizations of Dielectric Electro-Active Polymer Pull Actuator for Vibration Control

Authors: A. M. Wahab, E. Rustighi

Abstract:

Elastomeric dielectric material has recently become a new alternative for actuator technology. The characteristics of dielectric elastomers placed between two electrodes to withstand large strain when electrodes are charged has attracted the attention of many researcher to study this material for actuator technology. Thus, in the past few years Danfoss Ventures A/S has established their own dielectric electro-active polymer (DEAP), which was called PolyPower. The main objective of this work was to investigate the dynamic characteristics for vibration control of a PolyPower actuator folded in ‘pull’ configuration. A range of experiments was carried out on the folded actuator including passive (without electrical load) and active (with electrical load) testing. For both categories static and dynamic testing have been done to determine the behavior of folded DEAP actuator. Voltage-Strain experiments show that the DEAP folded actuator is a non-linear system. It is also shown that the voltage supplied has no effect on the natural frequency. Finally, varying AC voltage with different amplitude and frequency shows the parameters that influence the performance of DEAP folded actuator. As a result, the actuator performance dominated by the frequency dependence of the elastic response and was less influenced by dielectric properties.

Keywords: Dielectric Electro-active Polymer, Pull Actuator, Static, Dynamic, Electromechanical.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2081
605 A Neural Network Control for Voltage Balancing in Three-Phase Electric Power System

Authors: Dana M. Ragab, Jasim A. Ghaeb

Abstract:

The three-phase power system suffers from different challenging problems, e.g. voltage unbalance conditions at the load side. The voltage unbalance usually degrades the power quality of the electric power system. Several techniques can be considered for load balancing including load reconfiguration, static synchronous compensator and static reactive power compensator. In this work an efficient neural network is designed to control the unbalanced condition in the Aqaba-Qatrana-South Amman (AQSA) electric power system. It is designed for highly enhanced response time of the reactive compensator for voltage balancing. The neural network is developed to determine the appropriate set of firing angles required for the thyristor-controlled reactor to balance the three load voltages accurately and quickly. The parameters of AQSA power system are considered in the laboratory model, and several test cases have been conducted to test and validate the proposed technique capabilities. The results have shown a high performance of the proposed Neural Network Control (NNC) technique for correcting the voltage unbalance conditions at three-phase load based on accuracy and response time.

Keywords: Three-phase power system, reactive power control, voltage unbalance factor, neural network, power quality.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 965
604 Investigation of the Effect of Number of Story on Different Structural Components of RC Building

Authors: Zasiah Tafheem, Mahadee Hasan Shourav, Zahidul Islam, Saima Islam Tumpa

Abstract:

The paper aims at investigating the effect of number of story on different structural components of reinforced concrete building due to gravity and lateral loading. For the study, three building models having same building plan of three, six and nine stories are analyzed and designed using software package. All the buildings are residential and are located in Dhaka city of Bangladesh. Lateral load including wind and earthquake loading are applied to the building along both longitudinal and transverse direction as per Bangladesh National Building Code (BNBC, 2006). Equivalent static force method is followed for the applied seismic loading. The present study investigates as well as compares mainly total steel requirement in different structural components for those buildings. It has been found that total longitudinal steel requirement for beams at each floor is 48.57% for three storied building, 61.36% for six storied building when the total percentage is taken as 100% in case of nine storied building. For an exterior column, the steel ratio is 2.1%, 3.06%, 4.55% for three, six and nine storied building respectively for the first three floors. In addition, it has been noted that total weight of longitudinal reinforcement of an interior column is 14.02 % for threestoried building and 43.12% for six storied building when the total reinforcement is considered 100% for nine storied building for the first three floors.

Keywords: Equivalent Static Force Method, longitudinal reinforcement, seismic loading, steel ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1746
603 Steady State Rolling and Dynamic Response of a Tire at Low Frequency

Authors: Md Monir Hossain, Anne Staples, Kuya Takami, Tomonari Furukawa

Abstract:

Tire noise has a significant impact on ride quality and vehicle interior comfort, even at low frequency. Reduction of tire noise is especially important due to strict state and federal environmental regulations. The primary sources of tire noise are the low frequency structure-borne noise and the noise that originates from the release of trapped air between the tire tread and road surface during each revolution of the tire. The frequency response of the tire changes at low and high frequency. At low frequency, the tension and bending moment become dominant, while the internal structure and local deformation become dominant at higher frequencies. Here, we analyze tire response in terms of deformation and rolling velocity at low revolution frequency. An Abaqus FEA finite element model is used to calculate the static and dynamic response of a rolling tire under different rolling conditions. The natural frequencies and mode shapes of a deformed tire are calculated with the FEA package where the subspace-based steady state dynamic analysis calculates dynamic response of tire subjected to harmonic excitation. The analysis was conducted on the dynamic response at the road (contact point of tire and road surface) and side nodes of a static and rolling tire when the tire was excited with 200 N vertical load for a frequency ranging from 20 to 200 Hz. The results show that frequency has little effect on tire deformation up to 80 Hz. But between 80 and 200 Hz, the radial and lateral components of displacement of the road and side nodes exhibited significant oscillation. For the static analysis, the fluctuation was sharp and frequent and decreased with frequency. In contrast, the fluctuation was periodic in nature for the dynamic response of the rolling tire. In addition to the dynamic analysis, a steady state rolling analysis was also performed on the tire traveling at ground velocity with a constant angular motion. The purpose of the computation was to demonstrate the effect of rotating motion on deformation and rolling velocity with respect to a fixed Newtonian reference point. The analysis showed a significant variation in deformation and rolling velocity due to centrifugal and Coriolis acceleration with respect to a fixed Newtonian point on ground.

Keywords: Natural frequency, rotational motion, steady state rolling, subspace-based steady state dynamic analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1285
602 The Transient Reactive Power Regulation Capability of SVC for Large Scale WECS Connected to Distribution Networks

Authors: Y. Ates, A. R. Boynuegri, M. Uzunoglu, A. Karakas

Abstract:

The recent interest in alternative and renewable energy systems results in increased installed capacity ratio of such systems in total energy production of the world. Specifically, Wind Energy Conversion Systems (WECS) draw significant attention among possible alternative energy options, recently. On the contrary of the positive points of penetrating WECS in all over the world in terms of environment protection, energy independence of the countries, etc., there are significant problems to be solved for the grid connection of large scale WECS. The reactive power regulation, voltage variation suppression, etc. can be presented as major issues to be considered in this regard. Thus, this paper evaluates the application of a Static VAr Compensator (SVC) unit for the reactive power regulation and operation continuity of WECS during a fault condition. The system is modeled employing the IEEE 13 node test system. Thus, it is possible to evaluate the system performance with an overall grid simulation model close to real grid systems. The overall simulation model is developed in MATLAB/Simulink/SimPowerSystems® environments and the obtained results effectively match the target of the provided study.

Keywords: IEEE 13 bus distribution system, reactive power regulation, static VAr compensator, wind energy conversion system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1949
601 Practical Design Procedures of 3D Reinforced Concrete Shear Wall-Frame Structure Based on Structural Optimization Method

Authors: H. Nikzad, S. Yoshitomi

Abstract:

This study investigates and develops the structural optimization method. The effect of size constraints on practical solution of reinforced concrete (RC) building structure with shear wall is proposed. Cross-sections of beam and column, and thickness of shear wall are considered as design variables. The objective function to be minimized is total cost of the structure by using a simple and efficient automated MATLAB platform structural optimization methodology. With modification of mathematical formulations, the result is compared with optimal solution without size constraints. The most suitable combination of section sizes is selected as for the final design application based on linear static analysis. The findings of this study show that defining higher value of upper bound of sectional sizes significantly affects optimal solution, and defining of size constraints play a vital role in finding of global and practical solution during optimization procedures. The result and effectiveness of proposed method confirm the ability and efficiency of optimal solutions for 3D RC shear wall-frame structure.

Keywords: Structural optimization, linear static analysis, ETABS, MATLAB, RC shear wall-frame structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1250
600 Applying Element Free Galerkin Method on Beam and Plate

Authors: Mahdad M’hamed, Belaidi Idir

Abstract:

This paper develops a meshless approach, called Element Free Galerkin (EFG) method, which is based on the weak form Moving Least Squares (MLS) of the partial differential governing equations and employs the interpolation to construct the meshless shape functions. The variation weak form is used in the EFG where the trial and test functions are approximated bye the MLS approximation. Since the shape functions constructed by this discretization have the weight function property based on the randomly distributed points, the essential boundary conditions can be implemented easily. The local weak form of the partial differential governing equations is obtained by the weighted residual method within the simple local quadrature domain. The spline function with high continuity is used as the weight function. The presently developed EFG method is a truly meshless method, as it does not require the mesh, either for the construction of the shape functions, or for the integration of the local weak form. Several numerical examples of two-dimensional static structural analysis are presented to illustrate the performance of the present EFG method. They show that the EFG method is highly efficient for the implementation and highly accurate for the computation. The present method is used to analyze the static deflection of beams and plate hole

Keywords: Numerical computation, element-free Galerkin, moving least squares, meshless methods.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2399
599 Aerodynamic Interaction between Two Speed Skaters Measured in a Closed Wind Tunnel

Authors: Ola Elfmark, Lars M. Bardal, Luca Oggiano, H˚avard Myklebust

Abstract:

Team pursuit is a relatively new event in international long track speed skating. For a single speed skater the aerodynamic drag will account for up to 80% of the braking force, thus reducing the drag can greatly improve the performance. In a team pursuit the interactions between athletes in near proximity will also be essential, but is not well studied. In this study, systematic measurements of the aerodynamic drag, body posture and relative positioning of speed skaters have been performed in the low speed wind tunnel at the Norwegian University of Science and Technology, in order to investigate the aerodynamic interaction between two speed skaters. Drag measurements of static speed skaters drafting, leading, side-by-side, and dynamic drag measurements in a synchronized and unsynchronized movement at different distances, were performed. The projected frontal area was measured for all postures and movements and a blockage correction was performed, as the blockage ratio ranged from 5-15% in the different setups. The static drag measurements where performed on two test subjects in two different postures, a low posture and a high posture, and two different distances between the test subjects 1.5T and 3T where T being the length of the torso (T=0.63m). A drag reduction was observed for all distances and configurations, from 39% to 11.4%, for the drafting test subject. The drag of the leading test subject was only influenced at -1.5T, with the biggest drag reduction of 5.6%. An increase in drag was seen for all side-by-side measurements, the biggest increase was observed to be 25.7%, at the closest distance between the test subjects, and the lowest at 2.7% with ∼ 0.7 m between the test subjects. A clear aerodynamic interaction between the test subjects and their postures was observed for most measurements during static measurements, with results corresponding well to recent studies. For the dynamic measurements, the leading test subject had a drag reduction of 3% even at -3T. The drafting showed a drag reduction of 15% when being in a synchronized (sync) motion with the leading test subject at 4.5T. The maximal drag reduction for both the leading and the drafting test subject were observed when being as close as possible in sync, with a drag reduction of 8.5% and 25.7% respectively. This study emphasize the importance of keeping a synchronized movement by showing that the maximal gain for the leading and drafting dropped to 3.2% and 3.3% respectively when the skaters are in opposite phase. Individual differences in technique also appear to influence the drag of the other test subject.

Keywords: Aerodynamic interaction, drag cycle, drag force, frontal area, speed skating.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 996
598 An Analysis of Learners’ Reports for Measuring Co-Creational Education

Authors: Takatoshi Ishii, Koji Kimita, Keiichi Muramatsu, Yoshiki Shimomura

Abstract:

To increase the quality of learning, teacher and learner need mutual effort for realization of educational value. For this purpose, we need to manage the co-creational education among teacher and learners. In this research, we try to find a feature of co-creational education. To be more precise, we analyzed learners’ reports by natural language processing, and extract some features that describe the state of the co-creational education.

Keywords: Co-creational education, e-portfolios, ICT integration, labeled Latent Dirichlet allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1631
597 Finite Element Analysis of Connecting Rod

Authors: Mohammed Mohsin Ali H., Mohamed Haneef

Abstract:

The connecting rod transmits the piston load to the crank causing the latter to turn, thus converting the reciprocating motion of the piston into a rotary motion of the crankshaft. Connecting rods are subjected to forces generated by mass and fuel combustion. This study investigates and compares the fatigue behavior of forged steel, powder forged and ASTM a 514 steel cold quenched connecting rods. The objective is to suggest for a new material with reduced weight and cost with the increased fatigue life. This has entailed performing a detailed load analysis. Therefore, this study has dealt with two subjects: first, dynamic load and stress analysis of the connecting rod, and second, optimization for material, weight and cost. In the first part of the study, the loads acting on the connecting rod as a function of time were obtained. Based on the observations of the dynamic FEA, static FEA, and the load analysis results, the load for the optimization study was selected. It is the conclusion of this study that the connecting rod can be designed and optimized under a load range comprising tensile load and compressive load. Tensile load corresponds to 360o crank angle at the maximum engine speed. The compressive load is corresponding to the peak gas pressure. Furthermore, the existing connecting rod can be replaced with a new connecting rod made of ASTM a 514 steel cold quenched that is 12% lighter and 28% cheaper.

Keywords: Connecting rod, ASTM a514 cold quenched steel, static analysis, fatigue analysis, stress life approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2692
596 Steady State Power Flow Calculations with STATCOM under Load Increase Scenario and Line Contingencies

Authors: A. S. Telang, P. P. Bedekar

Abstract:

Flexible AC transmission system controllers play an important role in controlling the line power flow and in improving voltage profiles of the power system network. They can be used to increase the reliability and efficiency of transmission and distribution system. The modeling of these FACTS controllers in power flow calculations have become a challenging research problem. This paper presents a simple and systematic approach for a steady state power flow calculations of power system with STATCOM (Static Synchronous Compensator). It shows how systematically STATCOM can be implemented in conventional power flow calculations. The main contribution of this paper is to investigate this approach for two special conditions i.e. consideration of load increase pattern incorporating load change (active, reactive and both active and reactive) at all load buses simultaneously and the line contingencies under such load change. Such investigation proves to be relevant for determination of strategy for the optimal placement of STATCOM to enhance the voltage stability. The performance has been evaluated on many standard IEEE test systems. The results for standard IEEE-30 bus test system are presented here.

Keywords: Load flow analysis, Newton-Raphson (N-R) power flow, Flexible AC transmission system, FACTS, Static synchronous compensator, STATCOM, voltage profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1130
595 Robot Operating System-Based SLAM for a Gazebo-Simulated Turtlebot2 in 2d Indoor Environment with Cartographer Algorithm

Authors: Wilayat Ali, Li Sheng, Waleed Ahmed

Abstract:

The ability of the robot to make simultaneously map of the environment and localize itself with respect to that environment is the most important element of mobile robots. To solve SLAM many algorithms could be utilized to build up the SLAM process and SLAM is a developing area in Robotics research. Robot Operating System (ROS) is one of the frameworks which provide multiple algorithm nodes to work with and provide a transmission layer to robots. Manyof these algorithms extensively in use are Hector SLAM, Gmapping and Cartographer SLAM. This paper describes a ROS-based Simultaneous localization and mapping (SLAM) library Google Cartographer mapping, which is open-source algorithm. The algorithm was applied to create a map using laser and pose data from 2d Lidar that was placed on a mobile robot. The model robot uses the gazebo package and simulated in Rviz. Our research work's primary goal is to obtain mapping through Cartographer SLAM algorithm in a static indoor environment. From our research, it is shown that for indoor environments cartographer is an applicable algorithm to generate 2d maps with LIDAR placed on mobile robot because it uses both odometry and poses estimation. The algorithm has been evaluated and maps are constructed against the SLAM algorithms presented by Turtlebot2 in the static indoor environment.

Keywords: SLAM, ROS, navigation, localization and mapping, Gazebo, Rviz, Turtlebot2, SLAM algorithms, 2d Indoor environment, Cartographer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1178
594 Experimental Study on the Variation of Young's Modulus of Hollow Clay Brick Obtained from Static and Dynamic Tests

Authors: M. Aboudalle, Le Btth, M. Sari, F. Meftah

Abstract:

In parallel with the appearance of new materials, brick masonry had and still has an essential part of the construction market today, with new technical challenges in designing bricks to meet additional requirements. Being used in structural applications, predicting the performance of clay brick masonry allows a significant cost reduction, in terms of practical experimentation. The behavior of masonry walls depends on the behavior of their elementary components, such as bricks, joints, and coatings. Therefore, it is necessary to consider it at different scales (from the scale of the intrinsic material to the real scale of the wall) and then to develop appropriate models, using numerical simulations. The work presented in this paper focuses on the mechanical characterization of the terracotta material at ambient temperature. As a result, the static Young’s modulus obtained from the flexural test shows different values in comparison with the compression test, as well as with the dynamic Young’s modulus obtained from the Impulse excitation of vibration test. Moreover, the Young's modulus varies according to the direction in which samples are extracted, where the values in the extrusion direction diverge from the ones in the orthogonal directions. Based on these results, hollow bricks can be considered as transversely isotropic bimodulus material.

Keywords: Bimodulus material, hollow clay brick, impulse excitation of vibration, transversely isotropic material, Young’s modulus.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 415
593 Static Analysis of Security Issues of the Python Packages Ecosystem

Authors: Adam Gorine, Faten Spondon

Abstract:

Python is considered the most popular programming language and offers its own ecosystem for archiving and maintaining open-source software packages. This system is called the Python Package Index (PyPI), the repository of this programming language. Unfortunately, one-third of these software packages have vulnerabilities that allow attackers to execute code automatically when a vulnerable or malicious package is installed. This paper contributes to large-scale empirical studies investigating security issues in the Python ecosystem by evaluating package vulnerabilities. These provide a series of implications that can help the security of software ecosystems by improving the process of discovering, fixing, and managing package vulnerabilities. The vulnerable dataset is generated using the NVD, the National Vulnerability Database, and the Snyk vulnerability dataset. In addition, we evaluated 807 vulnerability reports in the NVD and 3900 publicly known security vulnerabilities in Python Package Manager (Pip) from the Snyk database from 2002 to 2022. As a result, many Python vulnerabilities appear in high severity, followed by medium severity. The most problematic areas have been improper input validation and denial of service attacks. A hybrid scanning tool that combines the three scanners, Bandit, Snyk and Dlint, which provide a clear report of the code vulnerability, is also described.

Keywords: Python vulnerabilities, Bandit, Snyk, Dlint, Python Package Index, ecosystem, static analysis, malicious attacks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 172
592 A Study of Priority Evaluation and Resource Allocation for Revitalization of Cultural Heritages in the Urban Development

Authors: Wann-Ming Wey, Yi-Chih Huang

Abstract:

Proper maintenance and preservation of significant cultural heritages or historic buildings is necessary. It can not only enhance environmental benefits and a sense of community, but also preserve a city's history and people’s memory. It allows the next generation to be able to get a glimpse of our past, and achieve the goal of sustainable preserved cultural assets. However, the management of maintenance work has not been appropriate for many designated heritages or historic buildings so far. The planning and implementation of the reuse has yet to have a breakthrough specification. It leads the heritages to a mere formality of being “reserved”, instead of the real meaning of “conservation”. For the restoration and preservation of cultural heritages study issues, it is very important due to the consideration of historical significance, symbolism, and economic benefits effects. However, the decision makers such as the officials from public sector they often encounter which heritage should be prioritized to be restored first under the available limited budgets. Only very few techniques are available today to determine the appropriately restoration priorities for the diverse historical heritages, perhaps because of a lack of systematized decision-making aids been proposed before. In the past, the discussions of management and maintenance towards cultural assets were limited to the selection of reuse alternatives instead of the allocation of resources. In view of this, this research will adopt some integrated research methods to solve the existing problems that decision-makers might encounter when allocating resources in the management and maintenance of heritages and historic buildings.

The purpose of this study is to develop a sustainable decision making model for local governments to resolve these problems. We propose an alternative decision support model to prioritize restoration needs within the limited budgets. The model is constructed based on fuzzy Delphi, fuzzy analysis network process (FANP) and goal programming (GP) methods. In order to avoid misallocate resources; this research proposes a precise procedure that can take multi-stakeholders views, limited costs and resources into consideration. Also, the combination of many factors and goals has been taken into account to find the highest priority and feasible solution results. To illustrate the approach we propose in this research, seven cultural heritages in Taipei city as one example has been used as an empirical study, and the results are in depth analyzed to explain the application of our proposed approach.

Keywords: Cultural Heritage, Historic Buildings, Priority Evaluation, Multi-Criteria Decision Making, Goal Programming, Fuzzy Analytic Network Process, Resource Allocation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2261
591 Optimization of Energy Conservation Potential for VAV Air Conditioning System using Fuzzy based Genetic Algorithm

Authors: R. Parameshwaran, R. Karunakaran, S. Iniyan, Anand A. Samuel

Abstract:

The objective of this study is to present the test results of variable air volume (VAV) air conditioning system optimized by two objective genetic algorithm (GA). The objective functions are energy savings and thermal comfort. The optimal set points for fuzzy logic controller (FLC) are the supply air temperature (Ts), the supply duct static pressure (Ps), the chilled water temperature (Tw), and zone temperature (Tz) that is taken as the problem variables. Supply airflow rate and chilled water flow rate are considered to be the constraints. The optimal set point values are obtained from GA process and assigned into fuzzy logic controller (FLC) in order to conserve energy and maintain thermal comfort in real time VAV air conditioning system. A VAV air conditioning system with FLC installed in a software laboratory has been taken for the purpose of energy analysis. The total energy saving obtained in VAV GA optimization system with FLC compared with constant air volume (CAV) system is expected to achieve 31.5%. The optimal duct static pressure obtained through Genetic fuzzy methodology attributes to better air distribution by delivering the optimal quantity of supply air to the conditioned space. This combination enhanced the advantages of uniform air distribution, thermal comfort and improved energy savings potential.

Keywords: Energy savings, fuzzy logic, Genetic algorithm, Thermal Comfort

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3187
590 Experimental Investigation of Plane Jets Exiting Five Parallel Channels with Large Aspect Ratio

Authors: Laurentiu Moruz, Jens Kitzhofer, Mircea Dinulescu

Abstract:

The paper aims to extend the knowledge about jet behavior and jet interaction between five plane unventilated jets with large aspect ratio (AR). The distance between the single plane jets is two times the channel height. The experimental investigation applies 2D Particle Image Velocimetry (PIV) and static pressure measurements. Our study focuses on the influence of two different outlet nozzle geometries (triangular shape with 2 x 7.5° and blunt geometry) with respect to variation of Reynolds number from 5500 - 12000. It is shown that the outlet geometry has a major influence on the jet formation in terms of uniformity of velocity profiles downstream of the sudden expansion. Furthermore, we describe characteristic regions like converging region, merging region and combined region. The triangular outlet geometry generates most uniform velocity distributions in comparison to a blunt outlet nozzle geometry. The blunt outlet geometry shows an unstable behavior where the jets tend to attach to one side of the walls (ceiling) generating a large recirculation region on the opposite side. Static pressure measurements confirm the observation and indicate that the recirculation region is connected to larger pressure drop.

Keywords: 2D particle image velocimetry, parallel jet interaction, pressure drop, sudden expansion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 852
589 Experimental Inspection of Damage and Performance Evaluation after Repair and Strengthening of Jiamusi Highway Prestressed Concrete Bridge in China

Authors: Ali Fadhil Naser, Wang Zonglin

Abstract:

The main objectives of this study are to inspect and identify any damage of jaimusi highway prestressed concrete bridge after repair and strengthening of damaged structural members and to evaluate the performance of the bridge structural members by adopting static load test. Inspection program after repair and strengthening includes identifying and evaluating the structural members of bridge such as T-shape cantilever structure, hanging beams, corbels, external tendons, anchor beams, sticking steel plate, and piers. The results of inspection show that the overall state of the bridge structural member after repair and strengthening is good. The results of rebound test of concrete strength show that the average strength of concrete is 46.31Mpa. Whereas, the average value of concrete strength of anchor beam is 49.82Mpa. According to the results of static load test, the experimental values are less than theoretical values of internal forces, deflection, and strain, indicating that the stiffness of the experimental structure, overall deformation and integrity satisfy the designed standard and the working performance is good, and the undertaking capacity has a certain surplus. There is not visible change in the length and width of cracks and there are not new cracks under experimental load.

Keywords: Jiamusi Bridge, Damage inspection, deflection, strain.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1781
588 Radio Regulation Development and Radio Spectrum Analysis of Earth Station in Motion Service

Authors: Fei Peng, Jun Yuan, Chen Fan, Fan Jiang, Qian Sun, Yudi Liu

Abstract:

Although Earth Station in Motion (ESIM) services are widely used and there is a huge market demand around the world, International Telecommunication Union (ITU) does not have unified conclusion for the use of ESIM yet. ESIM are Mobile Satellite Services (MSS) due to its mobile-based attributes, while multiple administrations want to use ESIM in Fixed Satellite Service (FSS). However, Radio Regulations (RR) have strict distinction between MSS and FSS. In this case, ITU has been very controversial because this kind of application will violate the RR Article and the conflict will bring risks to the global deployment. Thus, this paper illustrates the development of rules, regulations, standards concerning ESIM and the radio spectrum usage of ESIM in different regions around the world. Firstly, the basic rules, standard and definition of ITU’s Radiocommunication Sector (ITU-R) is introduced. Secondly, the World Radiocommunication Conference (WRC) agenda item on radio spectrum allocation for ESIM, e.g. in C/Ku/Ka band, is introduced and multi-view on the radio spectrum allocation is elaborated, especially on 19.7-20.2 GHz & 29.5-30.0 GHz. Then, some ITU-R Recommendations and Reports are analyzed on the specific technique to enable these ESIM to communicate with Geostationary Earth Orbit Satellite (GSO) space stations in the FSS without causing interference at levels in excess of that caused by conventional FSS earth stations. Meanwhile, the opposite opinion on not allocating EISM service in FSS frequency band is also elaborated. Finally, based on the ESIM’s future application, the ITU-R standards development trend is forecasted. In conclusion, using radio spectrum resource in an equitable, rational and efficient manner is the basic guideline of ITU. Although it is not a good approach to obstruct the revise of RR when there is a large demand for radio spectrum resource in satellite industry, still the propulsion and global demand of the whole industry may face difficulties on the unclear application in modify rules of RR.

Keywords: Earth Station in motion, ITU standards, radio regulations, radio spectrum, satellite communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1134
587 Optimal Capacitor Placement in Distribution Feeders

Authors: N. Rugthaicharoencheep, S. Auchariyamet

Abstract:

Optimal capacitor allocation in distribution systems has been studied for a long times. It is an optimization problem which has an objective to define the optimal sizes and locations of capacitors to be installed. In this works, an overview of capacitor placement problem in distribution systems is briefly introduced. The objective functions and constraints of the problem are listed and the methodologies for solving the problem are summarized.

Keywords: Capacitor Placement, Distribution Systems, Optimization Techniques

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2390
586 Optimizing Organizational Performance: The Critical Role of Headcount Budgeting in Strategic Alignment and Financial Stability

Authors: Shobhit Mittal

Abstract:

Headcount budgeting stands as a pivotal element in organizational financial management, extending beyond traditional budgeting to encompass strategic resource allocation for workforce-related expenses. This process is integral to maintaining financial stability and fostering a productive workforce, requiring a comprehensive analysis of factors such as market trends, business growth projections, and evolving workforce skill requirements. It demands a collaborative approach, primarily involving Human Resources (HR) and finance departments, to align workforce planning with an organization's financial capabilities and strategic objectives. The dynamic nature of headcount budgeting necessitates continuous monitoring and adjustment in response to economic fluctuations, business strategy shifts, technological advancements, and market dynamics. Its significance in talent management is also highlighted, aligning financial planning with talent acquisition and retention strategies to ensure a competitive edge in the market. The consequences of incorrect headcount budgeting are explored, showing how it can lead to financial strain, operational inefficiencies, and hindered strategic objectives. Examining case studies like IBM's strategic workforce rebalancing and Microsoft's shift for long-term success, the importance of aligning headcount budgeting with organizational goals is underscored. These examples illustrate that effective headcount budgeting transcends its role as a financial tool, emerging as a strategic element crucial for an organization's success. This necessitates continuous refinement and adaptation to align with evolving business goals and market conditions, highlighting its role as a key driver in organizational success and sustainability.

Keywords: Strategic planning, fiscal budget, headcount planning, resource allocation, financial management, decision-making, operational efficiency, risk management, headcount budget.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 52
585 Assessment Power and Frequency Oscillation Damping Using POD Controller and Proposed FOD Controller

Authors: Yahya Naderi, Tohid Rahimi, Babak Yousefi, Seyed Hossein Hosseini

Abstract:

Today’s modern interconnected power system is highly complex in nature. In this, one of the most important requirements during the operation of the electric power system is the reliability and security. Power and frequency oscillation damping mechanism improve the reliability. Because of power system stabilizer (PSS) low speed response against of major fault such as three phase short circuit, FACTs devise that can control the network condition in very fast time, are becoming popular. But FACTs capability can be seen in a major fault present when nonlinear models of FACTs devise and power system equipment are applied. To realize this aim, the model of multi-machine power system with FACTs controller is developed in MATLAB/SIMULINK using Sim Power System (SPS) blockiest. Among the FACTs device, Static synchronous series compensator (SSSC) due to high speed changes its reactance characteristic inductive to capacitive, is effective power flow controller. Tuning process of controller parameter can be performed using different method. But Genetic Algorithm (GA) ability tends to use it in controller parameter tuning process. In this paper firstly POD controller is used to power oscillation damping. But in this station, frequency oscillation dos not has proper damping situation. So FOD controller that is tuned using GA is using that cause to damp out frequency oscillation properly and power oscillation damping has suitable situation.

Keywords: Power oscillation damping (POD), frequency oscillation damping (FOD), Static synchronous series compensator (SSSC), Genetic Algorithm (GA).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3132
584 Resolving a Piping Vibration Problem by Installing Viscous Damper Supports

Authors: Carlos Herrera Sierralta, Husain M. Muslim, Meshal T. Alsaiari, Daniel Fischer

Abstract:

The vast majority of piping vibration problems in the Oil & Gas industry are provoked by the process flow characteristics which are basically related to the fluid properties, the type of service and its different operational scenarios. In general, the corrective actions recommended for flow induced vibration in piping systems can be grouped in two major areas: those which affect the excitation mechanisms typically associated to process variables, and those which affect the response mechanism of the pipework per se. Where possible the first option is to try to solve the flow induced problem from the excitation mechanism perspective. However, in producing facilities the approach of changing process parameters might not always be convenient as it could lead to reduction of production rates or it may require the shutdown of the system. That impediment might lead to a second option, which is to modify the response of the piping system to excitation generated by the process flow. In principle, the action of shifting the natural frequency of the system well above the frequency inherent to the process always favours the elimination, or considerably reduces the level of vibration experienced by the piping system. Tightening up the clearances at the supports (ideally zero gap) and adding new static supports at the system, are typical ways of increasing the natural frequency of the piping system. However, only stiffening the piping system may not be sufficient to resolve the vibration problem, and in some cases, it might not be feasible to implement it at all, as the available piping layout could create limitations on adding supports due to thermal expansion/contraction requirements. In these cases, utilization of viscous damper supports could be recommended as these devices can allow relatively large quasi-static movement of piping while providing sufficient capabilities of dissipating the vibration. Therefore, when correctly selected and installed, viscous damper supports can provide a significant effect on the response of the piping system over a wide range of frequencies. Viscous dampers cannot be used to support sustained, static loads. This paper shows over a real case example, a methodology which allows to determine the selection of the viscous damper supports via a dynamic analysis model. By implementing this methodology, it is possible to resolve piping vibration problems by adding new viscous dampers supports to the system. The methodology applied on this paper can be used to resolve similar vibration issues.

Keywords: dynamic analysis, flow induced vibration, piping supports, turbulent flow, slug flow, viscous damper

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 251
583 Solubility of Organics in Water and Silicon Oil: A Comparative Study

Authors: Edison Muzenda

Abstract:

The aim of this study was to compare the solubility of selected volatile organic compounds in water and silicon oil using the simple static headspace method. The experimental design allowed equilibrium achievement within 30 – 60 minutes. Infinite dilution activity coefficients and Henry-s law constants for various organics representing esters, ketones, alkanes, aromatics, cycloalkanes and amines were measured at 303K. The measurements were reproducible with a relative standard deviation and coefficient of variation of 1.3x10-3 and 1.3 respectively. The static determined activity coefficients using shaker flasks were reasonably comparable to those obtained using the gas liquid - chromatographic technique and those predicted using the group contribution methods mainly the UNIFAC. Silicon oil chemically known as polydimethysiloxane was found to be better absorbent for VOCs than water which quickly becomes saturated. For example the infinite dilution mole fraction based activity coefficients of hexane is 0.503 and 277 000 in silicon oil and water respectively. Thus silicon oil gives a superior factor of 550 696. Henry-s law constants and activity coefficients at infinite dilution play a significant role in the design of scrubbers for abatement of volatile organic compounds from contaminated air streams. This paper presents the phase equilibrium of volatile organic compounds in very dilute aqueous and polymeric solutions indicating the movement and fate of chemical in air and solvent. The successful comparison of the results obtained here and those obtained using other methods by the same authors and in literature, means that the results obtained here are reliable.

Keywords: Abatement, absorbent, activity coefficients, equilibrium, Henry's law constant.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2646
582 Seismic Retrofitting of RC Buildings with Soft Storey and Floating Columns

Authors: Vinay Agrawal, Suyash Garg, Ravindra Nagar, Vinay Chandwani

Abstract:

Open ground storey with floating columns is a typical feature in the modern multistory constructions in urban India. Such features are very much undesirable in buildings built in seismically active areas. The present study proposes a feasible solution to mitigate the effects caused due to non-uniformity of stiffness and discontinuity in load path and to simultaneously hold the functional use of the open storey particularly under the floating column, through a combination of various lateral strengthening systems. An investigation is performed on an example building with nine different analytical models to bring out the importance of recognising the presence of open ground storey and floating columns. Two separate analyses on various models of the building namely, the equivalent static analysis and the response spectrum analysis as per IS: 1893-2002 were performed. Various measures such as incorporation of Chevron bracings and shear walls, strengthening the columns in the open ground storey, and their different combinations were examined. The analysis shows that, in comparison to two short ones separated by interconnecting beams, the structural walls are most effective when placed at the periphery of the buildings and used as one long structural wall. Further, it can be shown that the force transfer from floating columns becomes less horizontal when the Chevron Bracings are placed just below them, thereby reducing the shear forces in the beams on which the floating column rests.

Keywords: Equivalent static analysis, floating column, open ground storey, response spectrum analysis, shear wall, stiffness irregularity.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1482
581 Coupled Multifield Analysis of Piezoelectrically Actuated Microfluidic Device for Transdermal Drug Delivery Applications

Authors: Muhammad Waseem Ashraf, Shahzadi Tayyaba, Nitin Afzulpurkar, Asim Nisar, Adisorn Tuantranont, Erik L J Bohez

Abstract:

In this paper, design, fabrication and coupled multifield analysis of hollow out-of-plane silicon microneedle array with piezoelectrically actuated microfluidic device for transdermal drug delivery (TDD) applications is presented. The fabrication process of silicon microneedle array is first done by series of combined isotropic and anisotropic etching processes using inductively coupled plasma (ICP) etching technology. Then coupled multifield analysis of MEMS based piezoelectrically actuated device with integrated 2×2 silicon microneedle array is presented. To predict the stress distribution and model fluid flow in coupled field analysis, finite element (FE) and computational fluid dynamic (CFD) analysis using ANSYS rather than analytical systems has been performed. Static analysis and transient CFD analysis were performed to predict the fluid flow through the microneedle array. The inlet pressure from 10 kPa to 150 kPa was considered for static CFD analysis. In the lumen region fluid flow rate 3.2946 μL/min is obtained at 150 V for 2×2 microneedle array. In the present study the authors have performed simulation of structural, piezoelectric and CFD analysis on three dimensional model of the piezoelectrically actuated mcirofluidic device integrated with 2×2 microneedle array.

Keywords: Coupled multifield, finite element analysis, hollow silicon microneedle, transdermal drug delivery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1826