Search results for: resistance temperature detector
3034 Generalized Predictive Control of Batch Polymerization Reactor
Authors: R. Khaniki, M.B. Menhaj, H. Eliasi
Abstract:
This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactions are sensitive to temperature for formation of desired products. This controller consist of two part (1) a nonlinear control method GLC (Global Linearizing Control) to create a linear model of system and (2) a Model predictive controller used to obtain optimal input control sequence. The temperature of reactor is tuned to track a predetermined temperature trajectory that applied to the batch reactor. To do so two input signals, electrical powers and the flow of coolant in the coil are used. Simulation results show that the proposed controller has a remarkable performance for tracking reference trajectory while at the same time it is robust against noise imposed to system output.
Keywords: Generalized Predictive Control (GPC), TemperatureControl, Global Linearizing Control (GLC), Batch Reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15043033 Generalized Predictive Control of Batch Polymerization Reactor
Authors: R. Khaniki, M.B. Menhaj, H. Eliasi
Abstract:
This paper describes the application of a model predictive controller to the problem of batch reactor temperature control. Although a great deal of work has been done to improve reactor throughput using batch sequence control, the control of the actual reactor temperature remains a difficult problem for many operators of these processes. Temperature control is important as many chemical reactions are sensitive to temperature for formation of desired products. This controller consist of two part (1) a nonlinear control method GLC (Global Linearizing Control) to create a linear model of system and (2) a Model predictive controller used to obtain optimal input control sequence. The temperature of reactor is tuned to track a predetermined temperature trajectory that applied to the batch reactor. To do so two input signals, electrical powers and the flow of coolant in the coil are used. Simulation results show that the proposed controller has a remarkable performance for tracking reference trajectory while at the same time it is robust against noise imposed to system output.Keywords: Generalized Predictive Control (GPC), TemperatureControl, Global Linearizing Control (GLC), Batch Reactor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17823032 A New Empirical Expression of the Breakdown Voltage for Combined Variations of Temperature and Pressure
Authors: Elyse Sili, Jean Pascal Cambronne
Abstract:
In aircraft applications, according to the nature of electrical equipment its location may be in unpressurized area or very close to the engine; thus, the environmental conditions may change from atmospheric pressure to less than 100 mbar, and the temperature may be higher than the ambient one as in most real working conditions of electrical equipment. Then, the classical Paschen curve has to be replotted since these parameters may affect the discharge ignition voltage. In this paper, we firstly investigate the domain of validity of two corrective expressions on the Paschen-s law found in the literature, in case of changing the air environment and known as Peek and Dunbar corrections. Results show that these corrections are no longer valid for combined variation of temperature and pressure. After that, a new empirical expression for breakdown voltage is proposed and is validated in the case of combined variations of temperature and pressure.Keywords: Gas breakdown, gas density, Paschen curve, temperature effects
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48943031 Study on the Application of Lime to Improve the Rheological Properties of Polymer Modified Bitumen
Authors: A. Chegenizadeh, M. Keramatikerman, H. Nikraz
Abstract:
Bitumen is one of the most applicable materials in pavement engineering. It is a binding material with unique viscoelastic properties, especially when it mixes with polymer. In this study, to figure out the viscoelastic behaviour of the polymer modified with bitumen (PMB), a series of dynamic shearing rheological (DSR) tests were conducted. Four percentages of lime (i.e. 1%, 2%, 4% and 5%) were mixed with PMB and tested under four different temperatures including 64ºC, 70ºC, 76ºC and 82ºC. The results indicated that complex shearing modulus (G*) increased by increasing the frequency due to raised resistance against deformation. The phase angle (δ) showed a decreasing trend by incrementing the frequency. The addition of lime percentages increased the complex modulus value and declined phase angle parameter. Increasing the temperature decreased the complex modulus and increased the phase angle until 70ºC. The decreasing trend of rutting factor with increasing temperature revealed that rutting factor improved by the addition of the lime to the PMB.
Keywords: Rheological properties, DSR test, polymer mixed with bitumen, complex modulus, lime.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8553030 CFD simulation of Pressure Drops in Liquid Acquisition Device Channel with Sub-Cooled Oxygen
Authors: David J. Chato, John B. McQuillen, Brian J.Motil, David F. Chao, Nengli Zhang
Abstract:
In order to better understand the performance of screen channel liquid acquisition devices (LADs) in liquid oxygen (LOX), a computational fluid dynamics (CFD) simulation of LOX passing through a LAD screen channel was conducted. In the simulation, the screen is taken as a 'porous jump' where the pressure drop across the screen depends on the incoming velocity and is formulated by Δp = Av + Bv2 . The CFD simulation reveals the importance of the pressure losses due to the flow entering from across the screen and impacting and merging with the channel flow and the vortices in the channel to the cumulative flow resistance. In fact, both the flow resistance of flows impact and mergence and the resistance created by vortices are much larger than the friction and dynamic pressure losses in the channel and are comparable to the flow resistance across the screen. Therefore, these resistances in the channel must be considered as part of the evaluation for the LAD channel performance. For proper operation of a LAD in LOX these resistances must be less than the bubble point pressure for the screen channel in LOX. The simulation also presents the pressure and velocity distributions within the LAD screen channel, expanding the understanding of the fluid flow characteristics within the channel.Keywords: Liquid acquisition devices, liquid oxygen, pressure drop, vortex, bubble point, flow rate limitation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20253029 Comparison of Different Gas Turbine Inlet Air Cooling Methods
Authors: Ana Paula P. dos Santos, Claudia R. Andrade, Edson L. Zaparoli
Abstract:
Gas turbine air inlet cooling is a useful method for increasing output for regions where significant power demand and highest electricity prices occur during the warm months. Inlet air cooling increases the power output by taking advantage of the gas turbine-s feature of higher mass flow rate when the compressor inlet temperature decreases. Different methods are available for reducing gas turbine inlet temperature. There are two basic systems currently available for inlet cooling. The first and most cost-effective system is evaporative cooling. Evaporative coolers make use of the evaporation of water to reduce the gas turbine-s inlet air temperature. The second system employs various ways to chill the inlet air. In this method, the cooling medium flows through a heat exchanger located in the inlet duct to remove heat from the inlet air. However, the evaporative cooling is limited by wet-bulb temperature while the chilling can cool the inlet air to temperatures that are lower than the wet bulb temperature. In the present work, a thermodynamic model of a gas turbine is built to calculate heat rate, power output and thermal efficiency at different inlet air temperature conditions. Computational results are compared with ISO conditions herein called "base-case". Therefore, the two cooling methods are implemented and solved for different inlet conditions (inlet temperature and relative humidity). Evaporative cooler and absorption chiller systems results show that when the ambient temperature is extremely high with low relative humidity (requiring a large temperature reduction) the chiller is the more suitable cooling solution. The net increment in the power output as a function of the temperature decrease for each cooling method is also obtained.Keywords: Absorption chiller, evaporative cooling, gas turbine, turbine inlet cooling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75523028 Optimization of Thermal and Discretization Parameters in Laser Welding Simulation Nd:YAG Applied for Shin Plate Transparent Mode Of DP600
Authors: Chansopheak Seang, Afia David Kouadri, Eric Ragneau
Abstract:
Three dimensional analysis of thermal model in laser full penetration welding, Nd:YAG, by transparent mode DP600 alloy steel 1.25mm of thickness and gap of 0.1mm. Three models studied the influence of thermal dependent temperature properties, thermal independent temperature and the effect of peak value of specific heat at phase transformation temperature, AC1, on the transient temperature. Another seven models studied the influence of discretization, meshes on the temperature distribution in weld plate. It is shown that for the effects of thermal properties, the errors less 4% of maximum temperature in FZ and HAZ have identified. The minimum value of discretization are at least one third increment per radius for temporal discretization and the spatial discretization requires two elements per radius and four elements through thickness of the assembled plate, which therefore represent the minimum requirements of modeling for the laser welding in order to get minimum errors less than 5% compared to the fine mesh.Keywords: FEA, welding, discretization, ABAQUS user subroutine DFLUX
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18183027 Thermal Analysis of Toroidal Transformers Using Finite Element Method
Authors: Adrian T.
Abstract:
In this paper a three dimensional thermal model of a power toroidal transformer is proposed for both steady-state or transient conditions. The influence of electric current and ambient temperature on the temperature distribution, has been investigated. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.Keywords: Temperature distribution, thermal analysis, toroidal transformer.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35783026 Least Square-SVM Detector for Wireless BPSK in Multi-Environmental Noise
Authors: J. P. Dubois, Omar M. Abdul-Latif
Abstract:
Support Vector Machine (SVM) is a statistical learning tool developed to a more complex concept of structural risk minimization (SRM). In this paper, SVM is applied to signal detection in communication systems in the presence of channel noise in various environments in the form of Rayleigh fading, additive white Gaussian background noise (AWGN), and interference noise generalized as additive color Gaussian noise (ACGN). The structure and performance of SVM in terms of the bit error rate (BER) metric is derived and simulated for these advanced stochastic noise models and the computational complexity of the implementation, in terms of average computational time per bit, is also presented. The performance of SVM is then compared to conventional binary signaling optimal model-based detector driven by binary phase shift keying (BPSK) modulation. We show that the SVM performance is superior to that of conventional matched filter-, innovation filter-, and Wiener filter-driven detectors, even in the presence of random Doppler carrier deviation, especially for low SNR (signal-to-noise ratio) ranges. For large SNR, the performance of the SVM was similar to that of the classical detectors. However, the convergence between SVM and maximum likelihood detection occurred at a higher SNR as the noise environment became more hostile.Keywords: Colour noise, Doppler shift, innovation filter, least square-support vector machine, matched filter, Rayleigh fading, Wiener filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18133025 Analysis of Evaporation of Liquid Ammonia in a Vertical Cylindrical Storage Tank
Authors: S. Chikh, S. Boulifa
Abstract:
The present study addresses the problem of ammonia evaporation during filling of a vertical cylindrical tank and the influence of various external factors on the stability of storage by determining the conditions for minimum evaporation. Numerical simulation is carried out by solving the governing equations namely, continuity, momentum, energy, and diffusion of species. The effect of temperature of surrounding air, the filling speed of the reservoir and the temperature of the filling liquid ammonia on the evaporation rate is investigated. Results show that the temperature of the filling liquid has little effect on the liquid ammonia for a short period, which, in fact, is function of the filling speed. The evaporation rate along the free surface of the liquid is non-uniform. The inlet temperature affects the vapor ammonia temperature because of pressure increase. The temperature of the surrounding air affects the temperature of the vapor phase rather than the liquid phase. The maximum of evaporation is reached at the final step of filling. In order to minimize loss of ammonia vapors automatically causing losses in quantity of the liquid stored, it is suggested to ensure the proper insulation for the walls and roof of the reservoir and to increase the filling speed.Keywords: Evaporation, liquid ammonia, storage tank, numerical simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24593024 Development and Usability Assessment of a Connected Resistance Exercise Band Application for Strength-Monitoring
Authors: J. A. Batsis, G. G. Boateng, L. M. Seo, C. L. Petersen, K. L. Fortuna, E. V. Wechsler, R. J. Peterson, S. B. Cook, D. Pidgeon, R. S. Dokko, R. J. Halter, D. F. Kotz
Abstract:
Resistance exercise bands are a core component of any physical activity strengthening program. Strength training can mitigate the development of sarcopenia, the loss of muscle mass or strength and function with aging. Yet, the adherence of such behavioral exercise strategies in a home-based setting are fraught with issues of monitoring and compliance. Our group developed a Bluetooth-enabled resistance exercise band capable of transmitting data to an open-source platform. In this work, we developed an application to capture this information in real-time, and conducted three usability studies in two mixed-aged groups of participants (n=6 each) and a group of older adults with obesity participating in a weight-loss intervention (n=20). The system was favorable, acceptable and provided iterative information that could assist in future deployment on ubiquitous platforms. Our formative work provides the foundation to deliver home-based monitoring interventions in a high-risk, older adult population.
Keywords: Application, mHealth, older adult, resistance exercise band, sarcopenia.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7583023 Polyisoprene-coated Silica/Natural Rubber Composite
Authors: Chatwarin Poochai, Puttichai Pae-on, Thirawudh Pongpayoon
Abstract:
The commercial white tyres are usually used for forklifts in food and medicine industries. Conventionally, silica is used as reinforcement in the tyres. However, the adhesion between silica particles and rubber is remarkably poor. To improve the problem of adhesion and hence enhance wear resistance, modification of silica surface is one of the solutions. In this work, the natural rubber compound blending with polyisoprene-coated silica prepared by admicellar polymerization technique was studied to compare with the natural rubber compound of unmodified silica. The surface characterization of modified silica was also examined by SEM, FTIR, and TGA. The results show that polyisoprene-coated silica/natural rubber compound gave better overall mechanical properties, especially wear resistance with the improvement of the adhesion between silica and natural rubber matrix that can be seen in the SEM micrograph.
Keywords: White tyre, admicellar polymerization, modified silica, wear resistance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30013022 Control of Building Ventilation with CO2 Gas Sensors Based on Doped Magnesium Ferrite Nanoparticles for the Development of Construction and Infrastructure Industry
Authors: Maryam Kiani, Abdul Basit Kiani
Abstract:
To develop construction and infrastructure industry, sensors are highly desired to control building ventilation. Zinc doped magnesium ferrite nanoparticles (Z@MFO) (Zn = 0.0, 0.2, 0.3, 0.4) were prepared in this paper. Structural analyses confirmed the formation of spinel cubic nanostructures. X-Ray diffraction (XRD) data represent high reactive surface area due to small average particle size about 15 nm, which efficiently influences the gas sensing mechanism. The gas sensing property of Z@MFO for several gases was obtained by measuring the resistance as a function of different factors, such as composition and response time in air and in presence of gas. The sensitivity of spinel ferrite to CO2 at room temperature has been compared. The Z@MFO nano-structure exhibited high sensitivity represented good response time of (~1 min) to CO2, demonstrated that the material can be used in the field of gas sensors with high sensitivity and good selectivity at room temperature to control building ventilation. CO2 gas sensors play a vital role in ensuring the safety, comfort, and sustainability of modern building environments.
Keywords: MgFe2O4 nanoparticles, synthesis, gas sensing properties, X ray differentiation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2023021 Image Restoration in Non-Linear Filtering Domain using MDB approach
Authors: S. K. Satpathy, S. Panda, K. K. Nagwanshi, C. Ardil
Abstract:
This paper proposes a new technique based on nonlinear Minmax Detector Based (MDB) filter for image restoration. The aim of image enhancement is to reconstruct the true image from the corrupted image. The process of image acquisition frequently leads to degradation and the quality of the digitized image becomes inferior to the original image. Image degradation can be due to the addition of different types of noise in the original image. Image noise can be modeled of many types and impulse noise is one of them. Impulse noise generates pixels with gray value not consistent with their local neighborhood. It appears as a sprinkle of both light and dark or only light spots in the image. Filtering is a technique for enhancing the image. Linear filter is the filtering in which the value of an output pixel is a linear combination of neighborhood values, which can produce blur in the image. Thus a variety of smoothing techniques have been developed that are non linear. Median filter is the one of the most popular non-linear filter. When considering a small neighborhood it is highly efficient but for large window and in case of high noise it gives rise to more blurring to image. The Centre Weighted Mean (CWM) filter has got a better average performance over the median filter. However the original pixel corrupted and noise reduction is substantial under high noise condition. Hence this technique has also blurring affect on the image. To illustrate the superiority of the proposed approach, the proposed new scheme has been simulated along with the standard ones and various restored performance measures have been compared.
Keywords: Filtering, Minmax Detector Based (MDB), noise, centre weighted mean filter, PSNR, restoration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27393020 Backcalculation of HMA Stiffness Based On Finite Element Model
Authors: Md Rashadul Islam, Umme Amina Mannan, Rafiqul A. Tarefder
Abstract:
Stiffness of Hot Mix Asphalt (HMA) in flexible pavement is largely dependent of temperature, mode of testing and age of pavement. Accurate measurement of HMA stiffness is thus quite challenging. This study determines HMA stiffness based on Finite Element Model (FEM) and validates the results using field data. As a first step, stiffnesses of different layers of a pavement section on Interstate 40 (I-40) in New Mexico were determined by Falling Weight Deflectometer (FWD) test. Pavement temperature was not measured at that time due to lack of temperature probe. Secondly, a FE model is developed in ABAQUS. Stiffness of the base, subbase and subgrade were taken from the FWD test output obtained from the first step. As HMA stiffness largely varies with temperature it was assigned trial and error approach. Thirdly, horizontal strain and vertical stress at the bottom of the HMA and temperature at different depths of the pavement were measured with installed sensors on the whole day on December 25th, 2012. Fourthly, outputs of FEM were correlated with measured stress-strain responses. After a number of trials a relationship was developed between the trial stiffness of HMA and measured mid-depth HMA temperature. At last, the obtained relationship between stiffness and temperature is verified by further FWD test when pavement temperature was recorded. A promising agreement between them is observed. Therefore, conclusion can be drawn that linear elastic FEM can accurately predict the stiffness and the structural response of flexible pavement.
Keywords: Asphalt pavement, falling weight deflectometer test, field instrumentation, finite element model, horizontal strain, temperature probes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24153019 Correlation of Microstructure and Corrosion Behavior of Martensitic Stainless Steel Surgical Grade AISI 420A Exposed to 980-1035oC
Authors: Taqi Zahid Butt, Tanveer Ahmad Tabish
Abstract:
Martensitic stainless steels have been extensively used for their good corrosion resistance and better mechanical properties. Heat treatment was suggested as one of the most excellent ways to this regard; hence, it affects the microstructure, mechanical and corrosion properties of the steel. In the current research work the microstructural changes and corrosion behavior in an AISI 420A stainless steel exposed to temperatures in the 980-1035oC range were investigated. The heat treatment is carried out in vacuum furnace within the said temperature range. The quenching of the samples was carried out in oil, brine and water media. The formation and stability of passive film was studied by Open Circuit Potential, Potentiodynamic polarization and Electrochemical Scratch Tests. The Electrochemical Impedance Spectroscopy results simulated with Equivalent Electrical Circuit suggested bilayer structure of outer porous and inner barrier oxide films. The quantitative data showed thick inner barrier oxide film retarded electrochemical reactions. Micrographs of the quenched samples showed sigma and chromium carbide phases which prove the corrosion resistance of steel alloy.Keywords: Martensitic stainless steel corrosion, microstructure, vacuum furnace.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 26463018 Research on the Impact on Building Temperature and Ventilation by Outdoor Shading Devices in Hot-Humid Area: Through Measurement and Simulation on an Office Building in Guangzhou
Authors: Hankun Lin, Yiqiang Xiao, Qiaosheng Zhan
Abstract:
Shading devices (SDs) are widely used in buildings in the hot-humid climate areas for reducing cooling energy consumption for interior temperature, as the result of reducing the solar radiation directly. Contrasting the surface temperature of materials of SDs to the glass on the building façade could give more analysis for the shading effect. On the other side, SDs are much more used as the independence system on building façade in hot-humid area. This typical construction could have some impacts on building ventilation as well. This paper discusses the outdoor SDs’ effects on the building thermal environment and ventilation, through a set of measurements on a 2-floors office building in Guangzhou, China, which install a dynamic aluminum SD-system around the façade on 2nd-floor. The measurements recorded the in/outdoor temperature, relative humidity, velocity, and the surface temperature of the aluminum panel and the glaze. After that, a CFD simulation was conducted for deeper discussion of ventilation. In conclusion, this paper reveals the temperature differences on the different material of the façade, and finds that the velocity of indoor environment could be reduced by the outdoor SDs.
Keywords: Outdoor shading devices, hot-humid area, temperature, ventilation, measurement, CFD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10263017 Preconcentration and Determination of Cyproheptadine in Biological Samples by Hollow Fiber Liquid Phase Microextraction Coupled with High Performance Liquid Chromatography
Authors: Najari Moghadam Sh., Qomi M., Raofie F., Khadiv J.
Abstract:
In this study, a liquid phase microextraction by hollow fiber (HF-LPME) combined with high performance liquid chromatography-UV detector was applied to preconcentrate and determine trace levels of Cyproheptadine in human urine and plasma samples. Cyproheptadine was extracted from 10 mL alkaline aqueous solution (pH: 9.81) into an organic solvent (n-octnol) which was immobilized in the wall pores of a hollow fiber. Then was back-extracted into an acidified aqueous solution (pH: 2.59) located inside the lumen of the hollow fiber. This method is simple, efficient and cost-effective. It is based on pH gradient and differences between two aqueous phases. In order to optimize the HF-LPME some affecting parameters including the pH of donor and acceptor phases, the type of organic solvent, ionic strength, stirring rate, extraction time and temperature were studied and optimized. Under optimal conditions enrichment factor, limit of detection (LOD) and relative standard deviation (RSD(%), n=3) were up to 112, 15 μg.L−1 and 2.7, respectively.
Keywords: Biological samples, Cyproheptadine, hollow fiber, liquid phase microextraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22323016 Three Dimensional Numerical Simulation of a Full Scale CANDU Reactor Moderator to Study Temperature Fluctuations
Authors: A. Sarchami, N. Ashgriz, M. Kwee
Abstract:
Threedimensional numerical simulations are conducted on a full scale CANDU Moderator and Transient variations of the temperature and velocity distributions inside the tank are determined. The results show that the flow and temperature distributions inside the moderator tank are three dimensional and no symmetry plane can be identified.Competition between the upward moving buoyancy driven flows and the downward moving momentum driven flows, results in the formation of circulation zones. The moderator tank operates in the buoyancy driven mode and any small disturbances in the flow or temperature makes the system unstable and asymmetric. Different types of temperature fluctuations are noted inside the tank: (i) large amplitude are at the boundaries between the hot and cold (ii) low amplitude are in the core of the tank (iii) high frequency fluctuations are in the regions with high velocities and (iv) low frequency fluctuations are in the regions with lower velocities.
Keywords: Bruce, Fluctuations, Numerical, Temperature, Thermal hydraulics
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19303015 Thermal Effect on Wave Interaction in Composite Structures
Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry
Abstract:
There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element.Keywords: Temperature dependent mechanical characteristics, wave propagation properties, damage detection, wave finite element, composite structure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12093014 Design of Air Conditioning Automation for Patisserie Shopwindow
Authors: Kemal Tutuncu, Recai Ozcan
Abstract:
Having done in this study, air-conditioning automation for patisserie shopwindow was designed. In the cooling sector it is quite important to cooling up the air temperature in the shopwindow within short time interval. Otherwise the patisseries inside of the shopwindow will be spoilt in a few days. Additionally the humidity is other important parameter for the patisseries kept in shopwindow. It must be raised up to desired level in a quite short time. Traditional patisserie shopwindows only allow controlling temperature manually. There is no humidity control and humidity is supplied by fans that are directed to the water at the bottom of the shopwindows. In this study, humidity and temperature sensors (SHT11), PIC, AC motor controller, DC motor controller, ultrasonic nebulizer and other electronic circuit members were used to simulate air conditioning automation for patisserie shopwindow in proteus software package. The simulation results showed that temperature and humidity values are adjusted in desired time duration by openloop control technique. Outer and inner temperature and humidity values were used for control mechanism.
Keywords: Air conditioning automation, temperature and humidity, SHT11, AC motor controller, open-loop control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22043013 Numerical Simulation of Heat Exchanger Area of R410A-R23 and R404A-R508B Cascade Refrigeration System at Various Evaporating and Condensing Temperature
Authors: A. D. Parekh, P. R. Tailor
Abstract:
Capacity and efficiency of any refrigerating system diminish rapidly as the difference between the evaporating and condensing temperature is increased by reduction in the evaporator temperature. The single stage vapour compression refrigeration system is limited to an evaporator temperature of -40 0C. Below temperature of -40 0C the either cascade refrigeration system or multi stage vapour compression system is employed. Present work describes thermal design of main three heat exchangers namely condenser (HTS), cascade condenser and evaporator (LTS) of R404A-R508B and R410A-R23 cascade refrigeration system. Heat transfer area of condenser (HTS), cascade condenser and evaporator (LTS) for both systems have been compared and the effect of condensing and evaporating temperature on heat-transfer area for both systems have been studied under same operating condition. The results shows that the required heat-transfer area of condenser and cascade condenser for R410A-R23 cascade system is lower than the R404A-R508B cascade system but heat transfer area of evaporator is similar for both the system. The heat transfer area of condenser and cascade condenser decreases with increase in condensing temperature (Tc), whereas the heat transfer area of cascade condenser and evaporator increases with increase in evaporating temperature (Te).Keywords: Heat-transfer area, R410A, R404A, R508B, R23, Refrigeration system, Thermal design
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24393012 Development of Combined Cure Type for Rigid Pavement with Reactive Powder Concrete
Authors: Fatih Hattatoglu, Abdulrezzak Bakiş
Abstract:
In this study, fiberless reactive powder concrete (RPC) was produced with high pressure and flexural strength. C30/37 concrete was chosen as the control sample. In this study, 9 different cure types were applied to fiberless RPC. the most suitable combined cure type was selected according to the pressure and flexure strength. Pressure and flexural strength tests were applied to these samples after curing. As a result of the study, the combined cure type with the highest pressure resistance was obtained. The highest pressure resistance was achieved with consecutive standard water cure at 20 °C for 7 days – hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days. As a result of the study, the highest pressure resistance of fiberless RPC was found as 123 MPa with water cure at 20 °C for 7 days - hot water cure at 90 °C for 2 days - drying oven cure at 180 °C for 2 days; and the highest flexural resistance was found as 8.37 MPa for the same combined cure type.
Keywords: Rigid pavement, reactive powder concrete, combined cure, pressure test, flexural test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13973011 Cascaded Transcritical/Supercritical CO2 Cycles and Organic Rankine Cycles to Recover Low-Temperature Waste Heat and LNG Cold Energy Simultaneously
Authors: Haoshui Yu, Donghoi Kim, Truls Gundersen
Abstract:
Low-temperature waste heat is abundant in the process industries, and large amounts of Liquefied Natural Gas (LNG) cold energy are discarded without being recovered properly in LNG terminals. Power generation is an effective way to utilize low-temperature waste heat and LNG cold energy simultaneously. Organic Rankine Cycles (ORCs) and CO2 power cycles are promising technologies to convert low-temperature waste heat and LNG cold energy into electricity. If waste heat and LNG cold energy are utilized simultaneously in one system, the performance may outperform separate systems utilizing low-temperature waste heat and LNG cold energy, respectively. Low-temperature waste heat acts as the heat source and LNG regasification acts as the heat sink in the combined system. Due to the large temperature difference between the heat source and the heat sink, cascaded power cycle configurations are proposed in this paper. Cascaded power cycles can improve the energy efficiency of the system considerably. The cycle operating at a higher temperature to recover waste heat is called top cycle and the cycle operating at a lower temperature to utilize LNG cold energy is called bottom cycle in this study. The top cycle condensation heat is used as the heat source in the bottom cycle. The top cycle can be an ORC, transcritical CO2 (tCO2) cycle or supercritical CO2 (sCO2) cycle, while the bottom cycle only can be an ORC due to the low-temperature range of the bottom cycle. However, the thermodynamic path of the tCO2 cycle and sCO2 cycle are different from that of an ORC. The tCO2 cycle and the sCO2 cycle perform better than an ORC for sensible waste heat recovery due to a better temperature match with the waste heat source. Different combinations of the tCO2 cycle, sCO2 cycle and ORC are compared to screen the best configurations of the cascaded power cycles. The influence of the working fluid and the operating conditions are also investigated in this study. Each configuration is modeled and optimized in Aspen HYSYS. The results show that cascaded tCO2/ORC performs better compared with cascaded ORC/ORC and cascaded sCO2/ORC for the case study.
Keywords: LNG cold energy, low-temperature waste heat, organic Rankine cycle, supercritical CO2 cycle, transcritical CO2 cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10743010 Numerical Investigation on the Progressive Collapse Resistance of an RC Building with Brick Infills under Column Loss
Authors: Meng-Hao Tsai, Tsuei-Chiang Huang
Abstract:
Interior brick-infill partitions are usually considered as non-structural components and only their weight is accounted for in practical structural design. In this study, their effect on the progressive collapse resistance of an RC building subjected to sudden column loss is investigated. Three notional column loss conditions with four different brick-infill locations are considered. Column-loss response analyses of the RC building with and without brick infills are carried out. Analysis results indicate that the collapse resistance is only slightly influenced by the brick infills due to their brittle failure characteristic. Even so, they may help to reduce the inelastic displacement response under column loss. For practical engineering, it is reasonably conservative to only consider the weight of brick-infill partitions in the structural analysis.Keywords: Progressive collapse, column loss, brick-infill partition, compression strut.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21353009 Analysis of Resistance Characteristics of Conductive Concrete Using Press-Electrode Method
Authors: Chun-Yao Lee, Siang-Ren Wang
Abstract:
This paper aims to discuss the influence of resistance characteristic on the high conductive concrete considering the changes of voltage and environment. The high conductive concrete with appropriate proportion is produced to the press-electrode method. The curve of resistivity with the changes of voltage and environment is plotted and the changes of resistivity are explored.Keywords: conductive concrete, resistivity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15773008 Investigation of Hydraulic and Thermal Performances of Fin Array at Different Shield Positions without By-Pass
Authors: Ramy H. Mohammed
Abstract:
In heat sinks, the flow within the core exhibits separation and hence does not lend itself to simple analytical boundary layer or duct flow analysis of the wall friction. In this paper, we present some findings from an experimental and numerical study aimed to obtain physical insight into the influence of the presence of the shield and its position on the hydraulic and thermal performance of square pin fin heat sink without top by-pass. The variations of the Nusselt number and friction factor are obtained under varied parameters, such as the Reynolds number and the shield position. The numerical code is validated by comparing the numerical results with the available experimental data. It is shown that, there is a good agreement between the temperature predictions based on the model and the experimental data. Results show that, as the presence of the shield, the heat transfer of fin array is enhanced and the flow resistance increased. The surface temperature distribution of the heat sink base is more uniform when the dimensionless shield position equals to 1/3 or 2/3. The comprehensive performance evaluation approach based on identical pumping power criteria is adopted and shows that the optimum shield position is at x/l=0.43.
Keywords: Shield, Fin array, Performance evaluation, Heat transfer, Validation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18383007 Thermal Analysis of the Fuse with Unequal Fuse Links Using Finite Element Method
Authors: Adrian T.Pleşca
Abstract:
In this paper a three dimensional thermal model of high breaking capacity fuse with unequal fuse links is proposed for both steady-state or transient conditions. The influence of ambient temperature and electric current on the temperature distribution inside the fuse, has been investigated. A thermal analysis of the unbalanced distribution of the electric current through the fuse elements and their influence on fuse link temperature rise, has been performed. To validate the three dimensional thermal model, some experimental tests have been done. There is a good correlation between experimental and simulation results.Keywords: Electric fuse, fuse links, temperature distribution, thermal analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28113006 Development of a Basic Robot System for Medical and Nursing Care for Patients with Glaucoma
Authors: Naoto Suzuki
Abstract:
Medical methods to completely treat glaucoma are yet to be developed. Therefore, ophthalmologists manage patients mainly to delay disease progression. Patients with glaucoma are mainly elderly individuals. In elderly people's houses, having an equipment that can provide medical treatment and care can release their family from their care. For elderly people with the glaucoma to live by themselves as much as possible, we developed a support robot having five functions: elderly people care, ophthalmological examination, trip assistance to the neighborhood, medical treatment, and data referral to a hospital. The medical and nursing care robot should approach the visual field that the patients can see at a speed suitable for their eyesight. This is because the robot will be dangerous if it approaches the patients from the visual field that they cannot see. We experimentally developed a robot that brings a white cane to elderly people with glaucoma. The base part of the robot is a carriage, which is a Megarover 1.1, and it has two infrared sensors. The robot moves along a white line on the floor using the infrared sensors and has a special arm, which does not use electricity. The arm can scoop the block attached to the white cane. Next, we also developed a direction detector comprised of a charge-coupled device camera (SVR41ResucueHD; Sun Mechatronics), goggles (MG-277MLF; Midori Anzen Co. Ltd.), and biconvex lenses with a focal length of 25 mm (Edmund Co.). Some young people were photographed using the direction detector, which was put on their faces. Image processing was performed using Scilab 6.1.0 and Image Processing and Computer Vision Toolbox 4.1.2. To measure the people's line of vision, we calculated the iris's center of gravity using five processes: reduction, trimming, binarization or gray scale, edge extraction, and Hough transform. We compared the binarization and gray scale processes in image processing. The binarization process was better than the gray scale process. For edge extraction, we compared five methods: Sobel, Prewitt, Laplacian of Gaussian, fast Fourier transform, and Canny. The Canny method was the optimal extraction method. We performed the Hough transform to search for the main coordinates from the iris's edge, and we found that the Hough transform could calculate the center point of the iris.
Keywords: Glaucoma, support robot, elderly people, Hough transform, direction detector, line of vision.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5473005 A Dynamic Equation for Downscaling Surface Air Temperature
Authors: Ch. Surawut, D. Sukawat
Abstract:
In order to utilize results from global climate models, dynamical and statistical downscaling techniques have been developed. For dynamical downscaling, usually a limited area numerical model is used, with associated high computational cost. This research proposes dynamic equation for specific space-time regional climate downscaling from the Educational Global Climate Model (EdGCM) for Southeast Asia. The equation is for surface air temperature. This equation provides downscaling values of surface air temperature at any specific location and time without running a regional climate model. In the proposed equations, surface air temperature is approximated from ground temperature, sensible heat flux and 2m wind speed. Results from the application of the equation show that the errors from the proposed equations are less than the errors for direct interpolation from EdGCM.Keywords: Dynamic Equation, Downscaling, Inverse distance weight interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2455