Search results for: heat island effect.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5526

Search results for: heat island effect.

5226 Bioconcentration Analysis of Iodine Species in Seaweed (Eucheuma cottonii) from Maluku Marine as Alternative Food Source

Authors: Yeanchon H. Dulanlebit, Nikmans Hattu, Gloria Bora

Abstract:

Seaweed is a type of macro algae which are good source of iodine and have been widely used as food and nutrition supplement. One of iodine species that found in ocean plant is iodate. Analysis of iodate in seaweed (Eucheuma cottonii) from coastal area of Maluku has been done. The determination is done by using spectrophotometric method. Iodate in sample is reduced in excess of potassium iodide in the presence of acid solution, and then is reacted with starch to form blue complex. The study found out that the highest wavelength on determination of iodate species using spectrophotometer analysis method is 570 nm. Optimum value to yield maximum absorption is used in this research. Contents of iodate in seawater from coastal area of Ambon Island, Western Seram and Southeast Maluku are 0.2655, 0.2719 and 0.1760 mg/L, respectively. While in seaweeds from Ambon Island, Western Seram, Southeast Maluku-Taar, Ohoidertawun and Wab are 6.3122, 6.3293, 6.2333, 3.7406 and 4.4207 mg/kg in dry weight. Bioconcentration (enrichment) factor of iodate in seaweed (Eucheuma cottonii) from the three samples (cluster) is different; in Coastal area of Ambon Island, Western Seram and Southeast Maluku respectively are 23.78, 23.28 and 27.26.

Keywords: Bioconcentration, Eucheuma cottonii, iodate, iodine, seaweed.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 944
5225 An Inverse Heat Transfer Algorithm for Predicting the Thermal Properties of Tumors during Cryosurgery

Authors: Mohamed Hafid, Marcel Lacroix

Abstract:

This study aimed at developing an inverse heat transfer approach for predicting the time-varying freezing front and the temperature distribution of tumors during cryosurgery. Using a temperature probe pressed against the layer of tumor, the inverse approach is able to predict simultaneously the metabolic heat generation and the blood perfusion rate of the tumor. Once these parameters are predicted, the temperature-field and time-varying freezing fronts are determined with the direct model. The direct model rests on one-dimensional Pennes bioheat equation. The phase change problem is handled with the enthalpy method. The Levenberg-Marquardt Method (LMM) combined to the Broyden Method (BM) is used to solve the inverse model. The effect (a) of the thermal properties of the diseased tissues; (b) of the initial guesses for the unknown thermal properties; (c) of the data capture frequency; and (d) of the noise on the recorded temperatures is examined. It is shown that the proposed inverse approach remains accurate for all the cases investigated.

Keywords: Cryosurgery, inverse heat transfer, Levenberg-Marquardt method, thermal properties, Pennes model, enthalpy method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1499
5224 Analyzing of Temperature-Dependent Thermal Conductivity Effect in the Numerical Modeling of Fin-Tube Radiators: Introduction of a New Method

Authors: Farzad Bazdidi-Tehrani, Mohammad Hadi Kamrava

Abstract:

In all industries which are related to heat, suitable thermal ranges are defined for each device to operate well. Consideration of these limits requires a thermal control unit beside the main system. The Satellite Thermal Control Unit exploits from different methods and facilities individually or mixed. For enhancing heat transfer between primary surface and the environment, utilization of radiating extended surfaces are common. Especially for large temperature differences; variable thermal conductivity has a strong effect on performance of such a surface .In most literatures, thermo-physical properties, such as thermal conductivity, are assumed as constant. However, in some recent researches the variation of these parameters is considered. This may be helpful for the evaluation of fin-s temperature distribution in relatively large temperature differences. A new method is introduced to evaluate temperature-dependent thermal conductivity values. The finite volume method is employed to simulate numerically the temperature distribution in a space radiating fin. The present modeling is carried out for Aluminum as fin material and compared with previous method. The present results are also compared with those of two other analytical methods and good agreement is shown.

Keywords: Variable thermal conductivity, New method, Finitevolume method, Combined heat transfer, Extended Surface

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2329
5223 Analysis of Combined Heat Transfer through the Core Materials of VIPs with Various Scattering Properties

Authors: Jaehyug Lee, Tae-Ho Song

Abstract:

Vacuum Insulation Panel (VIP) can achieve very low thermal conductivity by evacuating its inner space. Heat transfer in the core materials of highly-evacuated VIP occurs by conduction through the solid structure and radiation through the pore. The effect of various scattering modes in combined conduction-radiation in VIP is investigated through numerical analysis. The discrete ordinates interpolation method (DOIM) incorporated with the commercial code FLUENT® is employed. It is found that backward scattering is more effective in reducing the total heat transfer while isotropic scattering is almost identical with pure absorbing/emitting case of the same optical thickness. For a purely scattering medium, the results agrees well with additive solution with diffusion approximation, while a modified term is added in the effect of optical thickness to backward scattering is employed. For other scattering phase functions, it is also confirmed that backwardly scattering phase function gives a lower effective thermal conductivity. Thus the materials with backward scattering properties, with radiation shields are desirable to lower the thermal conductivity of VIPs.

Keywords: Combined conduction and radiation, discrete ordinates interpolation method, scattering phase function, vacuum insulation panel.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3054
5222 Conjugate Heat Transfer in an Enclosure Containing a Polygon Object

Authors: Habibis Saleh, Ishak Hashim

Abstract:

Conjugate natural convection in a differentially heated square enclosure containing a polygon shaped object is studied numerically in this article. The effect of various polygon types on the fluid flow and thermal performance of the enclosure is addressed for different thermal conductivities. The governing equations are modeled and solved numerically using the built-in finite element method of COMSOL software. It is found that the heat transfer rate remains stable by varying the polygon types.

Keywords: Natural convection, Polygon object, COMSOL

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1889
5221 Enhancement of Heat Transfer Rate in a Solar Flat Plate Collector Using Twisted Tapes and Wire Coiled Turbulators

Authors: S. Vijayakumar, R. Vinoth, K. Abilash, P. Praveen

Abstract:

Effects of insertion of coiled wire in juxtaposition with twisted tapes on heat transfer rate and solar radiation without disturbing the flow inside the riser tubes in a solar flat plate collector is experimentally reconnoitered in this present work. The wire coil used as a turbulator is placed inside the riser tube while the twisted tape is inserted into the wire coil to create a continuous swirling flow along the tube wall. The results of the heat transfer have been compared well with the available results. The heat transfer rate in the collector has been found to be increased by 18% to 70%. Solar water heaters having inserts in the flow tubes perform better than the conventional plain ones. It has been observed that heat losses are reduced consequently increasing the thermal performance about 30% over the plain water heaters under the same operating conditions. The effect of twisted tape with wire coils, flow Reynolds number, and the intensity of solar radiation on the thermal performance of the solar water heater has been presented. Effects of insertion of coiled wire in juxtaposition with twisted tapes on heat transfer rate and solar radiation without disturbing the flow inside the riser tubes in a solar flat plate collector is experimentally reconnoitered in this present work. The wire coil used as a turbulator is placed inside the riser tube while the twisted tape is inserted into the wire coil to create a continuous swirling flow along the tube wall. The results of the heat transfer have been compared well with the available results. The heat transfer rate in the collector has been found to be increased by 18% to 70%. Solar water heaters having inserts in the flow tubes perform better than the conventional plain ones. It has been observed that heat losses are reduced consequently increasing the thermal performance about 30% over the plain water heaters under the same operating conditions. The effect of twisted tape with wire coils, flow Reynolds number, and the intensity of solar radiation on the thermal performance of the solar water heater has been presented.

Keywords: Solar Flat Plate Collector, Heat Transfer, Twisted tape, Wire coiled turbulators

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2871
5220 Fin Spacing Effect of the Tube Fin Heat Exchanger at the Floor Heating Convector

Authors: F. Lemfeld, K. Frana

Abstract:

This article deals with numerical simulation of the floor heating convector in 3D. Numerical simulation is focused on cooling mode of the floor heating convector. Geometrical model represents section of the heat exchanger – two fins with the gap between, pipes are not involved. Two types of fin are examined – sinusoidal and angular shape with different fin spacing. Results of fin spacing in case of constant Reynolds number are presented. For the numerical simulation was used commercial software Ansys Fluent.

Keywords: fin spacing, cooling output, floor heating convector, numerical simulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961
5219 Contaminant Transport Modeling Due to Thermal Diffusion Effects with the Effect of Biodegradation

Authors: Nirmala P. Ratchagar, S. Senthamilselvi

Abstract:

The heat and mass transfer characteristics of contaminants in groundwater subjected to a biodegradation reaction is analyzed by taking into account the thermal diffusion (Soret) effects. This phenomenon is modulated mathematically by a system of partial differential equations which govern the motion of fluid (groundwater) and solid (contaminants) particles. The numerical results are presented graphically for different values of the parameters entering into the problem on the velocity profiles of fluid, contaminants, temperature and concentration profile.

Keywords: Heat and mass transfer, Soret number, porous media.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1620
5218 Study on Mixed Convection Heat Transfer in Vertical Ducts with Radiation Effects

Authors: G. Rajamohan, N. Ramesh, P. Kumar

Abstract:

Experiments have been performed to investigate the radiation effects on mixed convection heat transfer for thermally developing airflow in vertical ducts with two differentially heated isothermal walls and two adiabatic walls. The investigation covers the Reynolds number Re = 800 to Re = 2900, heat flux varied from 256 W/m2 to 863 W/m2, hot wall temperature ranges from 27°C to 100 °C, aspect ratios 1 & 0.5 and the emissivity of internal walls are 0.05 and 0.85. In the present study, combined flow visualization was conducted to observe the flow patterns. The effect of surface temperature along the walls was studied to investigate the local Nusselt number variation within the duct. The result shows that flow condition and radiation significantly affect the total Nusselt number and tends to reduce the buoyancy condition.

Keywords: Mixed convection, vertical duct, thermally developing and radiation effects.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2757
5217 Radiation Heat Transfer Effect in Solid Oxide Fuel Cell: Application of the Lattice Boltzmann Method

Authors: Imen Mejri, Ahmed Mahmoudi, Mohamed A. Abbassi, Ahmed Omri

Abstract:

The radiation effect within the solid anode, electrolyte, and cathode SOFC layers problem has been investigated in this paper. Energy equation is solved by the Lattice Boltzmann method (LBM). The Rosseland method is used to model the radiative transfer in the electrodes. The Schuster-Schwarzschild method is used to model the radiative transfer in the electrolyte. Without radiative effect, the found results are in good agreement with those published. The obtained results show that the radiative effect can be neglected.

Keywords: SOFC, lattice Boltzmann method, conduction, radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2451
5216 3-D Transient Heat Transfer Analysis of Slab Heating Characteristics in a Reheating Furnace in Hot Strip Mills

Authors: J. Y. Jang, Y. W. Lee, C. N. Lin, C. H. Wang

Abstract:

The reheating furnace is used to reheat the steel slabs before the hot-rolling process. The supported system includes the stationary/moving beams, and the skid buttons which block some thermal radiation transmitted to the bottom of the slabs. Therefore, it is important to analyze the steel slab temperature distribution during the heating period. A three-dimensional mathematical transient heat transfer model for the prediction of temperature distribution within the slab has been developed. The effects of different skid button height (H=60mm, 90mm, and 120mm) and different gap distance between two slabs (S=50mm, 75mm, and 100mm) on the slab skid mark formation and temperature profiles are investigated. Comparison with the in-situ experimental data from Steel Company in Taiwan shows that the present heat transfer model works well for the prediction of thermal behavior of the slab in the reheating furnace. It is found that the skid mark severity decreases with an increase in the skid button height. The effect of gap distance is important only for the slab edge planes, while it is insignificant for the slab central planes.

Keywords: 3-D, slab, transient heat conduction, reheating furnace, thermal radiation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2333
5215 Solution of Two Dimensional Quasi-Harmonic Equations with CA Approach

Authors: F. Rezaie Moghaddam, J. Amani, T. Rezaie Moghaddam

Abstract:

Many computational techniques were applied to solution of heat conduction problem. Those techniques were the finite difference (FD), finite element (FE) and recently meshless methods. FE is commonly used in solution of equation of heat conduction problem based on the summation of stiffness matrix of elements and the solution of the final system of equations. Because of summation process of finite element, convergence rate was decreased. Hence in the present paper Cellular Automata (CA) approach is presented for the solution of heat conduction problem. Each cell considered as a fixed point in a regular grid lead to the solution of a system of equations is substituted by discrete systems of equations with small dimensions. Results show that CA can be used for solution of heat conduction problem.

Keywords: Heat conduction, Cellular automata, convergencerate, discrete system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1775
5214 Effects of Operating Conditions on Calcium Carbonate Fouling in a Plate Heat Exchanger

Authors: K. Pana-Suppamassadu, P. Jeimrittiwong, P. Narataruksa, S. Tungkamani

Abstract:

The aim of this work is to investigate on the internalflow patterns in a plate heat exchanger channel, which affect the rate of sedimentation fouling on the heat transfer surface of the plate heat exchanger. The research methodologies were the computer simulation using Computational Fluid Dynamics (CFD) and the experimental works. COMSOL MULTIPHYSICS™ Version 3.3 was used to simulate the velocity flow fields to verify the low and high flow regions. The results from the CFD technique were then compared with the images obtained from the experiments in which the fouling test rig was set up with a singlechannel plate heat exchanger to monitor the fouling of calcium carbonate. Two parameters were varied i.e., the crossing angle of the two plate: 55/55, 10/10, and 55/10 degree, and the fluid flow rate at the inlet: 0.0566, 0.1132 and 0.1698 m/s. The type of plate “GX-12" (the surface area 0.12 m2, the depth 2.9 mm, the width of fluid flow 215 mm and the thickness of stainless plate of 0.5 mm) was used in this study. The results indicated that the velocity distribution for the case of 55/55 degree seems to be very well organized when compared with the others. Also, an increase in the inlet velocity resulted in the reduction of fouling rate on the surface of plate heat exchangers.

Keywords: Computational fluid dynamics, crossing angles, finite element method, plate heat exchanger.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2524
5213 Numerical Simulation of Effect of Various Rib Configurations on Enhancing Heat Transfer of Matrix Cooling Channel

Authors: Seok Min Choi, Minho Bang, Seuong Yun Kim, Hyungmin Lee, Won-Gu Joo, Hyung Hee Cho

Abstract:

The matrix cooling channel was used for gas turbine blade cooling passage. The matrix cooling structure is useful for the structure stability however the cooling performance of internal cooling channel was not enough for cooling. Therefore, we designed the rib configurations in the matrix cooling channel to enhance the cooling performance. The numerical simulation was conducted to analyze cooling performance of rib configured matrix cooling channel. Three different rib configurations were used which are vertical rib, angled rib and c-type rib. Three configurations were adopted in two positions of matrix cooling channel which is one fourth and three fourth of channel. The result shows that downstream rib has much higher cooling performance than upstream rib. Furthermore, the angled rib in the channel has much higher cooling performance than vertical rib. This is because; the angled rib improves the swirl effect of matrix cooling channel more effectively. The friction factor was increased with the installation of rib. However, the thermal performance was increased with the installation of rib in the matrix cooling channel.

Keywords: Matrix cooling, rib, heat transfer, gas turbine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1239
5212 Parametric Studies of Wood Pyrolysis Particles

Authors: W. Afef, A. Mohamed Ammar, G. Kamel, O. Ahmed

Abstract:

In the present study, a numerical approach to describe the pyrolysis of a single solid particle of wood is used to study the influence of various conditions such as particle size, heat transfer coefficient, reactor temperature and heating rate. The influence of these parameters in the change of the duration of the pyrolysis cycle was studied. Mathematical modeling was employed to simulate the heat, mass transfer, and kinetic processes inside the reactor. The evolutions of the mass loss as well as the evolution of temperature inside the thick piece are investigated numerically. The elaborated model was also employed to study the effect of the reactor temperature and the rate of heating on the change of the temperature and the local loss of the mass inside the piece of wood. The obtained results are in good agreement with the experimental data available in the literature.

Keywords: Wood, Pyrolysis, Modeling, Convective heat transfer, Kinetic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1375
5211 On Thermal Instabilities in a Viscoelastic Fluid Subject to Internal Heat Generation

Authors: Donna M. G. Comissiong, Tyrone D. Dass, Harold Ramkissoon, Alana R. Sankar

Abstract:

The B'enard-Marangoni thermal instability problem for a viscoelastic Jeffreys- fluid layer with internal heat generation is investigated. The fluid layer is bounded above by a realistic free deformable surface and by a plane surface below. Our analysis shows that while the internal heat generation and the relaxation time both destabilize the fluid layer, its stability may be enhanced by an increased retardation time.

Keywords: Viscoelastic fluid, Jeffreys' model, Maxwell model, internal heat generation, retardation time, relaxation time.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1656
5210 Turbulent Forced Convection Flow in a Channel over Periodic Grooves Using Nanofluids

Authors: Farshid Fathinia, Mohammad Parsazadeh, Amirhossein Heshmati

Abstract:

Turbulent forced convection flow in a 2-dimensional channel over periodic grooves is numerically investigated. Finite volume method is used to study the effect of turbulence model. The range of Reynolds number varied from 10000 to 30000 for the ribheight to channel-height ratio (B/H) of 2. The downstream wall is heated by a uniform heat flux while the upstream wall is insulated. The investigation is analyzed with different types of nanoparticles such as SiO2, Al2O3, and ZnO, with water as a base fluid are used. The volume fraction is varied from 1% to 4% and the nanoparticle diameter is utilized between 20nm to 50nm. The results revealed 114% heat transfer enhancement compared to the water in a grooved channel by using SiO2 nanoparticle with volume fraction and nanoparticle diameter of 4% and 20nm respectively.

Keywords: Forced convection, Periodic grooves, Nanofluids, Turbulent model, Heat transfer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2063
5209 Transcritical CO2 Heat Pump Simulation Model and Validation for Simultaneous Cooling and Heating

Authors: Jahar Sarkar

Abstract:

In the present study, a steady-state simulation model has been developed to evaluate the system performance of a transcritical carbon dioxide heat pump system for simultaneous water cooling and heating. Both the evaporator (including both two-phase and superheated zone) and gas cooler models consider the highly variable heat transfer characteristics of CO2 and pressure drop. The numerical simulation model of transcritical CO2 heat pump has been validated by test data obtained from experiments on the heat pump prototype. Comparison between the test results and the model prediction for system COP variation with compressor discharge pressure shows a modest agreement with a maximum deviation of 15% and the trends are fairly similar. Comparison for other operating parameters also shows fairly similar deviation between the test results and the model prediction. Finally, the simulation results are presented to study the effects of operating parameters such as, temperature of heat exchanger fluid at the inlet, discharge pressure, compressor speed on system performance of CO2 heat pump, suitable in a dairy plant where simultaneous cooling at 4oC and heating at 73oC are required. Results show that good heat transfer properties of CO2 for both two-phase and supercritical region and efficient compression process contribute a lot for high system COPs.

Keywords: CO2 heat pump, dairy system, experiment, simulation model, validation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
5208 The Role of Heat Pumps for the Decarbonization of European Regions

Authors: D. M. Mongelli, M. De Carli, L. Carnieletto, F. Busato

Abstract:

This research aims to provide a contribution to the reduction of fossil fuels and the consequent reduction of CO2eq emissions for each European region. Simulations have been carried out to replace fossil fuel fired heating boilers with air-to-water heat pumps, when allowed by favorable environmental conditions (outdoor temperature, water temperature in emission systems, etc.). To estimate the potential coverage of high-temperature heat pumps in European regions, the energy profiles of buildings were considered together with the potential coefficient of performance (COP) of heat pumps operating with flow temperature with variable climatic regulation. The electrification potential for heating buildings was estimated by dividing the 38 European countries examined into 179 territorial units. The yields have been calculated in terms of energy savings and CO2eq reduction.

Keywords: Decarbonization, Space heating, Heat pumps, Energy policies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 212
5207 Human Intraocular Thermal Field in Action with Different Boundary Conditions Considering Aqueous Humor and Vitreous Humor Fluid Flow

Authors: Dara Singh, Keikhosrow Firouzbakhsh, Mohammad Taghi Ahmadian

Abstract:

In this study, a validated 3D finite volume model of human eye is developed to study the fluid flow and heat transfer in the human eye at steady state conditions. For this purpose, discretized bio-heat transfer equation coupled with Boussinesq equation is analyzed with different anatomical, environmental, and physiological conditions. It is demonstrated that the fluid circulation is formed as a result of thermal gradients in various regions of eye. It is also shown that posterior region of the human eye is less affected by the ambient conditions compared to the anterior segment which is sensitive to the ambient conditions and also to the way the gravitational field is defined compared to the geometry of the eye making the circulations and the thermal field complicated in transient states. The effect of variation in material and boundary conditions guides us to the conclusion that thermal field of a healthy and non-healthy eye can be distinguished via computer simulations.

Keywords: Bio-heat, Boussinesq, conduction, convection, eye.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 869
5206 Comparative Study of Experimental and Theoretical Convective, Evaporative for Two Model Distiller

Authors: Khaoula Hidouri, Ali Benhmidene, Bechir Chouachi

Abstract:

The purification of brackish seawater becomes a necessity and not a choice against demographic and industrial growth especially in third world countries. Two models can be used in this work: simple solar still and simple solar still coupled with a heat pump. In this research, the productivity of water by Simple Solar Distiller (SSD) and Simple Solar Distiller Hybrid Heat Pump (SSDHP) was determined by the orientation, the use of heat pump, the simple or double glass cover. The productivity can exceed 1.2 L/m²h for the SSDHP and 0.5 L/m²h for SSD model. The result of the global efficiency is determined for two models SSD and SSDHP give respectively 30%, 50%. The internal efficiency attained 35% for SSD and 60% of the SSDHP models. Convective heat coefficient can be determined by attained 2.5 W/m²°C and 0.5 W/m²°C respectively for SSDHP and SSD models.

Keywords: Productivity, efficiency, convective heat coefficient, SSD model, SSDHP model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 810
5205 Aging Effect on Mechanical Behavior of Duplex Satinless Steel

Authors: Jungho Moon, Tae Kwon Ha

Abstract:

Effect of alloying on the microstructure and mechanical properties of heat-resisting duplex stainless steel (DSS) for Mg production was investigated in this study. 25Cr-8Ni based DSS’s were cast into rectangular ingots of which the dimension was 350×350×100 mm3 . Nitrogen and Yttrium were added in the range within 0.3 in weight percent. Phase equilibrium was calculated using the FactSage®, thermodynamic software. Hot exposure, high temperature tensile and compression tests were conducted on the ingots at 1230oC, which is operation temperature employed for Mg production by Silico-thermic reduction. The steel with N and Y showed much higher strength than 310S alloy in both tensile and compression tests. By thermal exposition at 1230oC for 200 hrs, hardness of DSS containing N and Y was found to increase. Hot workability of the heat-resisting DSS was evaluated by employing hot rolling at 1230 oC. Hot shortness was observed in the ingot with N and found to disappear after addition of Y.

Keywords: Duplex Stainless Steel, alloying elements, eutectic carbides, microstructure, aging treatment.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
5204 Investigation of Corona wind Effect on Heat and Mass Transfer Enhancement

Authors: R.Karami, B.Kamkari, K.Kashefi

Abstract:

Applying corona wind as a novel technique can lead to a great level of heat and mass transfer augmentation by using very small amount of energy. Enhancement of forced flow evaporation rate by applying electric field (corona wind) has been experimentally evaluated in this study. Corona wind produced by a fine wire electrode which is charged with positive high DC voltage impinges to water surface and leads to evaporation enhancement by disturbing the saturated air layer over water surface. The study was focused on the effect of corona wind velocity, electrode spacing and air flow velocity on the level of evaporation enhancement. Two sets of experiments, i.e. with and without electric field, have been conducted. Data obtained from the first experiment were used as reference for evaluation of evaporation enhancement at the presence of electric field. Applied voltages ranged from corona threshold voltage to spark over voltage at 1 kV increments. The results showed that corona wind has great enhancement effect on water evaporation rate, but its effectiveness gradually diminishes by increasing air flow velocity. Maximum enhancements were 7.3 and 3.6 for air velocities of 0.125 and 1.75 m/s, respectively.

Keywords: Electrohydodynamics (EHD), corona wind, high electric field, Evaporation enhancement

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1895
5203 From Experiments to Numerical Modeling: A Tool for Teaching Heat Transfer in Mechanical Engineering

Authors: D. Zabala, Y. Cárdenas, G. Núñez

Abstract:

In this work the numerical simulation of transient heat transfer in a cylindrical probe is done. An experiment was conducted introducing a steel cylinder in a heating chamber and registering its surface temperature along the time during one hour. In parallel, a mathematical model was solved for one dimension transient heat transfer in cylindrical coordinates, considering the boundary conditions of the test. The model was solved using finite difference method, because the thermal conductivity in the cylindrical steel bar and the convection heat transfer coefficient used in the model are considered temperature dependant functions, and both conditions prevent the use of the analytical solution. The comparison between theoretical and experimental results showed the average deviation is below 2%. It was concluded that numerical methods are useful in order to solve engineering complex problems. For constant k and h, the experimental methodology used here can be used as a tool for teaching heat transfer in mechanical engineering, using mathematical simplified models with analytical solutions.

Keywords: Heat transfer experiment, thermal conductivity, finite difference, engineering education.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1460
5202 Maxwell-Cattaneo Regularization of Heat Equation

Authors: F. Ekoue, A. Fouache d'Halloy, D. Gigon, G Plantamp, E. Zajdman

Abstract:

This work focuses on analysis of classical heat transfer equation regularized with Maxwell-Cattaneo transfer law. Computer simulations are performed in MATLAB environment. Numerical experiments are first developed on classical Fourier equation, then Maxwell-Cattaneo law is considered. Corresponding equation is regularized with a balancing diffusion term to stabilize discretizing scheme with adjusted time and space numerical steps. Several cases including a convective term in model equations are discussed, and results are given. It is shown that limiting conditions on regularizing parameters have to be satisfied in convective case for Maxwell-Cattaneo regularization to give physically acceptable solutions. In all valid cases, uniform convergence to solution of initial heat equation with Fourier law is observed, even in nonlinear case.

Keywords: Maxwell-Cattaneo heat transfers equations, fourierlaw, heat conduction, numerical solution.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5059
5201 Porous Effect on Heat Transfer of Non Uniform Velocity Inlet Flow Using LBM

Authors: A. Hasanpour, M. Farhadi, K.Sedighi, H.R.Ashorynejad

Abstract:

A numerical study of flow in a horizontally channel partially filled with a porous screen with non-uniform inlet has been performed by lattice Boltzmann method (LBM). The flow in porous layer has been simulated by the Brinkman-Forchheimer model. Numerical solutions have been obtained for variable porosity models and the effects of Darcy number and porosity have been studied in detail. It is found that the flow stabilization is reliant on the Darcy number. Also the results show that the stabilization of flow field and heat transfer is depended to Darcy number. Distribution of stream field becomes more stable by decreasing Darcy number. Results illustrate that the effect of variable porosity is significant just in the region of the solid boundary. In addition, difference between constant and variable porosity models is decreased by decreasing the Darcy number.

Keywords: Lattice Boltzmann Method, Porous Media, Variable Porosity, Flow Stabilization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1929
5200 SeqWord Gene Island Sniffer: a Program to Study the Lateral Genetic Exchange among Bacteria

Authors: Bezuidt O., Lima-Mendez G., Reva O. N.

Abstract:

SeqWord Gene Island Sniffer, a new program for the identification of mobile genetic elements in sequences of bacterial chromosomes is presented. This program is based on the analysis of oligonucleotide usage variations in DNA sequences. 3,518 mobile genetic elements were identified in 637 bacterial genomes and further analyzed by sequence similarity and the functionality of encoded proteins. The results of this study are stored in an open database http://anjie.bi.up.ac.za/geidb/geidbhome. php). The developed computer program and the database provide the information valuable for further investigation of the distribution of mobile genetic elements and virulence factors among bacteria. The program is available for download at www.bi.up.ac.za/SeqWord/sniffer/index.html.

Keywords: mobile genetic elements, virulence, bacterial genomes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1745
5199 Optimization of Copper-Water Negative Inclination Heat Pipe with Internal Composite Wick Structure

Authors: I. Brandys, M. Levy, K. Harush, Y. Haim, M. Korngold

Abstract:

Theoretical optimization of a copper-water negative inclination heat pipe with internal composite wick structure had been performed, regarding a new introduced parameter: the ratio between the coarse mesh wraps and the fine mesh wraps of the composite wick. Since in many cases, the design of a heat pipe matches specific thermal requirements and physical limitations, this work demonstrates the optimization of a 1m length, 8mm internal diameter heat pipe without an adiabatic section, at a negative inclination angle of -10º. The optimization is based on a new introduced parameter, LR: the ratio between the coarse mesh wraps and the fine mesh wraps.

Keywords: Heat pipe, inclination, optimization, ratio.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2278
5198 Sustainable Use of Laura Lens during Drought

Authors: Kazuhisa Koda, Tsutomu Kobayashi

Abstract:

Laura Island, which is located about 50 km away from downtown, is a source of water supply in Majuro atoll, which is the capital of the Republic of the Marshall Islands. Low and flat Majuro atoll has neither river nor lake. It is very important for Majuro atoll to ensure the conservation of its water resources. However, upconing, which is the process of partial rising of the freshwater-saltwater boundary near the water-supply well, was caused by the excess pumping from it during the severe drought in 1998. Upconing will make the water usage of the freshwater lens difficult. Thus, appropriate water usage is required to prevent up coning in the freshwater lens because there is no other water source during drought. Numerical simulation of water usage applying SEAWAT model was conducted at the central part of Laura Island, including the water supply well, which was affected by upconing. The freshwater lens was created as a result of infiltration of consistent average rainfall. The lens shape was almost the same as the one in 1985. 0 of monthly rainfall and variable daily pump discharge were used to calculate the sustainable pump discharge from the water supply well. Consequently, the total amount of pump discharge was increased as the daily pump discharge was increased, indicating that it needs more time to recover from upconing. Thus, a pump standard to reduce the pump intensity is being proposed, which is based on numerical simulation concerning the occurrence of the up-coning phenomenon in Laura Island during the drought.

Keywords: Freshwater lens, islands, numerical simulation, sustainable water use.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1917
5197 An Evaluation of Digital Elevation Models to Short-Term Monitoring of a High Energy Barrier Island, Northeast Brazil

Authors: Venerando E. Amaro, Francisco Gabriel F. de Lima, Marcelo S.T. Santos

Abstract:

The morphological short-term evolution of Ponta do Tubarão Island (PTI) was investigated through high accurate surveys based on post-processed kinematic (PPK) relative positioning on Global Navigation Satellite Systems (GNSS). PTI is part of a barrier island system on a high energy northeast Brazilian coastal environment and also an area of high environmental sensitivity. Surveys were carried out quarterly over a two years period from May 2010 to May 2012. This paper assesses statically the performance of digital elevation models (DEM) derived from different interpolation methods to represent morphologic features and to quantify volumetric changes and TIN models shown the best results to that purposes. The MDE allowed quantifying surfaces and volumes in detail as well as identifying the most vulnerable segments of the PTI to erosion and/or accumulation of sediments and relate the alterations to climate conditions. The coastal setting and geometry of PTI protects a significant mangrove ecosystem and some oil and gas facilities installed in the vicinities from damaging effects of strong oceanwaves and currents. Thus, the maintenance of PTI is extremely required but the prediction of its longevity is uncertain because results indicate an irregularity of sedimentary balance and a substantial decline in sediment supply to this coastal area.

Keywords: DEM, GNSS, short-term monitoring, Brazil.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2628