Search results for: epistemic functions of emotions.
906 Blind Image Deconvolution by Neural Recursive Function Approximation
Authors: Jiann-Ming Wu, Hsiao-Chang Chen, Chun-Chang Wu, Pei-Hsun Hsu
Abstract:
This work explores blind image deconvolution by recursive function approximation based on supervised learning of neural networks, under the assumption that a degraded image is linear convolution of an original source image through a linear shift-invariant (LSI) blurring matrix. Supervised learning of neural networks of radial basis functions (RBF) is employed to construct an embedded recursive function within a blurring image, try to extract non-deterministic component of an original source image, and use them to estimate hyper parameters of a linear image degradation model. Based on the estimated blurring matrix, reconstruction of an original source image from a blurred image is further resolved by an annealed Hopfield neural network. By numerical simulations, the proposed novel method is shown effective for faithful estimation of an unknown blurring matrix and restoration of an original source image.
Keywords: Blind image deconvolution, linear shift-invariant(LSI), linear image degradation model, radial basis functions (rbf), recursive function, annealed Hopfield neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2065905 Particle Swarm Optimization Based Interconnected Hydro-Thermal AGC System Considering GRC and TCPS
Authors: Banaja Mohanty, Prakash Kumar Hota
Abstract:
This paper represents performance of particle swarm optimisation (PSO) algorithm based integral (I) controller and proportional-integral controller (PI) for interconnected hydro-thermal automatic generation control (AGC) with generation rate constraint (GRC) and Thyristor controlled phase shifter (TCPS) in series with tie line. The control strategy of TCPS provides active control of system frequency. Conventional objective function integral square error (ISE) and another objective function considering square of derivative of change in frequencies of both areas and change in tie line power are considered. The aim of designing the objective function is to suppress oscillation in frequency deviations and change in tie line power oscillation. The controller parameters are searched by PSO algorithm by minimising the objective functions. The dynamic performance of the controllers I and PI, for both the objective functions, are compared with conventionally optimized I controller.
Keywords: Automatic generation control (AGC), Generation rate constraint (GRC), Thyristor control phase shifter (TCPS), Particle swarm optimization (PSO).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2178904 A Bayesian Kernel for the Prediction of Protein- Protein Interactions
Authors: Hany Alashwal, Safaai Deris, Razib M. Othman
Abstract:
Understanding proteins functions is a major goal in the post-genomic era. Proteins usually work in context of other proteins and rarely function alone. Therefore, it is highly relevant to study the interaction partners of a protein in order to understand its function. Machine learning techniques have been widely applied to predict protein-protein interactions. Kernel functions play an important role for a successful machine learning technique. Choosing the appropriate kernel function can lead to a better accuracy in a binary classifier such as the support vector machines. In this paper, we describe a Bayesian kernel for the support vector machine to predict protein-protein interactions. The use of Bayesian kernel can improve the classifier performance by incorporating the probability characteristic of the available experimental protein-protein interactions data that were compiled from different sources. In addition, the probabilistic output from the Bayesian kernel can assist biologists to conduct more research on the highly predicted interactions. The results show that the accuracy of the classifier has been improved using the Bayesian kernel compared to the standard SVM kernels. These results imply that protein-protein interaction can be predicted using Bayesian kernel with better accuracy compared to the standard SVM kernels.Keywords: Bioinformatics, Protein-protein interactions, Bayesian Kernel, Support Vector Machines.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2167903 Structure and Functions of Urban Surface Water System in Coastal Areas: The Case of Almere
Authors: Tao Zou, Zhengnan Zhou
Abstract:
In the context of global climate change, flooding and sea level rise is increasingly threatening coastal urban areas, in which large population is continuously concentrated. Dutch experiences in urban water system management provide high reference value for sustainable coastal urban development projects. Preliminary studies shows the urban water system in Almere, a typical Dutch polder city, have three kinds of operational modes, achieving functions as: (1) coastline control – strong multiple damming system prevents from storm surges and maintains sufficient capacity upon risks; (2) high flexibility – large area and widely scattered open water system greatly reduce local runoff and water level fluctuation; (3) internal water maintenance – weir and sluice system maintains relatively stable water level, providing excellent boating and landscaping service, coupling with water circulating model maintaining better water quality. Almere has provided plenty of hints and experiences for ongoing development of coastal cities in emerging economies.
Keywords: Coastal area, resilience, sustainable urban watersystem, water circulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2539902 An Empirical Study on Switching Activation Functions in Shallow and Deep Neural Networks
Authors: Apoorva Vinod, Archana Mathur, Snehanshu Saha
Abstract:
Though there exists a plethora of Activation Functions (AFs) used in single and multiple hidden layer Neural Networks (NN), their behavior always raised curiosity, whether used in combination or singly. The popular AFs – Sigmoid, ReLU, and Tanh – have performed prominently well for shallow and deep architectures. Most of the time, AFs are used singly in multi-layered NN, and, to the best of our knowledge, their performance is never studied and analyzed deeply when used in combination. In this manuscript, we experiment on multi-layered NN architecture (both on shallow and deep architectures; Convolutional NN and VGG16) and investigate how well the network responds to using two different AFs (Sigmoid-Tanh, Tanh-ReLU, ReLU-Sigmoid) used alternately against a traditional, single (Sigmoid-Sigmoid, Tanh-Tanh, ReLU-ReLU) combination. Our results show that on using two different AFs, the network achieves better accuracy, substantially lower loss, and faster convergence on 4 computer vision (CV) and 15 Non-CV (NCV) datasets. When using different AFs, not only was the accuracy greater by 6-7%, but we also accomplished convergence twice as fast. We present a case study to investigate the probability of networks suffering vanishing and exploding gradients when using two different AFs. Additionally, we theoretically showed that a composition of two or more AFs satisfies Universal Approximation Theorem (UAT).
Keywords: Activation Function, Universal Approximation function, Neural Networks, convergence.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 159901 Spectral Investigation for Boundary Layer Flow over a Permeable Wall in the Presence of Transverse Magnetic Field
Authors: Saeed Sarabadan, Mehran Nikarya, Kouroah Parand
Abstract:
The magnetohydrodynamic (MHD) Falkner-Skan equations appear in study of laminar boundary layers flow over a wedge in presence of a transverse magnetic field. The partial differential equations of boundary layer problems in presence of a transverse magnetic field are reduced to MHD Falkner-Skan equation by similarity solution methods. This is a nonlinear ordinary differential equation. In this paper, we solve this equation via spectral collocation method based on Bessel functions of the first kind. In this approach, we reduce the solution of the nonlinear MHD Falkner-Skan equation to a solution of a nonlinear algebraic equations system. Then, the resulting system is solved by Newton method. We discuss obtained solution by studying the behavior of boundary layer flow in terms of skin friction, velocity, various amounts of magnetic field and angle of wedge. Finally, the results are compared with other methods mentioned in literature. We can conclude that the presented method has better accuracy than others.Keywords: MHD Falkner-Skan, nonlinear ODE, spectral collocation method, Bessel functions, skin friction, velocity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1174900 An Artificial Emotion Model For Visualizing Emotion of Characters
Authors: Junseok Ham, Chansun Jung, Junhyung Park, Jihye Ryeo, Ilju Ko
Abstract:
It is hard to express emotion through only speech when we watch a character in a movie or a play because we cannot estimate the size, kind, and quantity of emotion. So this paper proposes an artificial emotion model for visualizing current emotion with color and location in emotion model. The artificial emotion model is designed considering causality of generated emotion, difference of personality, difference of continual emotional stimulus, and co-relation of various emotions. This paper supposed the Emotion Field for visualizing current emotion with location, and current emotion is expressed by location and color in the Emotion Field. For visualizing changes within current emotion, the artificial emotion model is adjusted to characters in Hamlet.Keywords: Emotion, Artificial Emotion, Visualizing, EmotionModel.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1254899 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features
Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova
Abstract:
The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.
Keywords: Emotion recognition, facial recognition, signal processing, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2025898 Isospectral Hulthén Potential
Authors: Anil Kumar
Abstract:
Supersymmetric Quantum Mechanics is an interesting framework to analyze nonrelativistic quantal problems. Using these techniques, we construct a family of strictly isospectral Hulth´en potentials. Isospectral wave functions are generated and plotted for different values of the deformation parameter.
Keywords: Hulth´en potential, Isospectral Hamiltonian.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3524897 Comparison of Artificial Neural Network and Multivariate Regression Methods in Prediction of Soil Cation Exchange Capacity
Authors: Ali Keshavarzi, Fereydoon Sarmadian
Abstract:
Investigation of soil properties like Cation Exchange Capacity (CEC) plays important roles in study of environmental reaserches as the spatial and temporal variability of this property have been led to development of indirect methods in estimation of this soil characteristic. Pedotransfer functions (PTFs) provide an alternative by estimating soil parameters from more readily available soil data. 70 soil samples were collected from different horizons of 15 soil profiles located in the Ziaran region, Qazvin province, Iran. Then, multivariate regression and neural network model (feedforward back propagation network) were employed to develop a pedotransfer function for predicting soil parameter using easily measurable characteristics of clay and organic carbon. The performance of the multivariate regression and neural network model was evaluated using a test data set. In order to evaluate the models, root mean square error (RMSE) was used. The value of RMSE and R2 derived by ANN model for CEC were 0.47 and 0.94 respectively, while these parameters for multivariate regression model were 0.65 and 0.88 respectively. Results showed that artificial neural network with seven neurons in hidden layer had better performance in predicting soil cation exchange capacity than multivariate regression.Keywords: Easily measurable characteristics, Feed-forwardback propagation, Pedotransfer functions, CEC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2217896 Complex-Valued Neural Network in Signal Processing: A Study on the Effectiveness of Complex Valued Generalized Mean Neuron Model
Authors: Anupama Pande, Ashok Kumar Thakur, Swapnoneel Roy
Abstract:
A complex valued neural network is a neural network which consists of complex valued input and/or weights and/or thresholds and/or activation functions. Complex-valued neural networks have been widening the scope of applications not only in electronics and informatics, but also in social systems. One of the most important applications of the complex valued neural network is in signal processing. In Neural networks, generalized mean neuron model (GMN) is often discussed and studied. The GMN includes a new aggregation function based on the concept of generalized mean of all the inputs to the neuron. This paper aims to present exhaustive results of using Generalized Mean Neuron model in a complex-valued neural network model that uses the back-propagation algorithm (called -Complex-BP-) for learning. Our experiments results demonstrate the effectiveness of a Generalized Mean Neuron Model in a complex plane for signal processing over a real valued neural network. We have studied and stated various observations like effect of learning rates, ranges of the initial weights randomly selected, error functions used and number of iterations for the convergence of error required on a Generalized Mean neural network model. Some inherent properties of this complex back propagation algorithm are also studied and discussed.Keywords: Complex valued neural network, Generalized Meanneuron model, Signal processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733895 Use of Gaussian-Euclidean Hybrid Function Based Artificial Immune System for Breast Cancer Diagnosis
Authors: Cuneyt Yucelbas, Seral Ozsen, Sule Yucelbas, Gulay Tezel
Abstract:
Due to the fact that there exist only a small number of complex systems in artificial immune system (AIS) that work out nonlinear problems, nonlinear AIS approaches, among the well-known solution techniques, need to be developed. Gaussian function is usually used as similarity estimation in classification problems and pattern recognition. In this study, diagnosis of breast cancer, the second type of the most widespread cancer in women, was performed with different distance calculation functions that euclidean, gaussian and gaussian-euclidean hybrid function in the clonal selection model of classical AIS on Wisconsin Breast Cancer Dataset (WBCD), which was taken from the University of California, Irvine Machine-Learning Repository. We used 3-fold cross validation method to train and test the dataset. According to the results, the maximum test classification accuracy was reported as 97.35% by using of gaussian-euclidean hybrid function for fold-3. Also, mean of test classification accuracies for all of functions were obtained as 94.78%, 94.45% and 95.31% with use of euclidean, gaussian and gaussian-euclidean, respectively. With these results, gaussian-euclidean hybrid function seems to be a potential distance calculation method, and it may be considered as an alternative distance calculation method for hard nonlinear classification problems.
Keywords: Artificial Immune System, Breast Cancer Diagnosis, Euclidean Function, Gaussian Function.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2124894 Attitude of University Students in the Use of Artificial Intelligence
Authors: R. Merlo, M. González, Z. Rivero, L. González
Abstract:
This exploratory work aimed to understand university students’ perceptions of the use of artificial intelligence (AI) during their time in the classroom. The significance of using AI in education, the degree of interest, knowledge acquisition, and how it would influence an interactive resource for acquiring skills were explored. Within this framework, a test with 30 items was designed and administered to 800 volunteer first-year university students of natural and exact sciences. Based on a randomized pilot test, it was validated with Cronbach's alpha coefficient. Descriptive statistics of the sample used allowed us to observe the preponderance of the dimensions that constitute the attitude construct. Subsequently, factor analysis by dimensions provided insights into the students' habits, according to the knowledge acquired and the emotions engaged during the topics developed in the classroom.
Keywords: Attitude, artificial intelligence, didactics, teaching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6893 Prediction of Air-Water Two-Phase Frictional Pressure Drop Using Artificial Neural Network
Authors: H. B. Mehta, Vipul M. Patel, Jyotirmay Banerjee
Abstract:
The present paper discusses the prediction of gas-liquid two-phase frictional pressure drop in a 2.12 mm horizontal circular minichannel using Artificial Neural Network (ANN). The experimental results are obtained with air as gas phase and water as liquid phase. The superficial gas velocity is kept in the range of 0.0236 m/s to 0.4722 m/s while the values of 0.0944 m/s, 0.1416 m/s and 0.1889 m/s are considered for superficial liquid velocity. The experimental results are predicted using different Artificial Neural Network (ANN) models. Networks used for prediction are radial basis, generalised regression, linear layer, cascade forward back propagation, feed forward back propagation, feed forward distributed time delay, layer recurrent, and Elman back propagation. Transfer functions used for networks are Linear (PURELIN), Logistic sigmoid (LOGSIG), tangent sigmoid (TANSIG) and Gaussian RBF. Combination of networks and transfer functions give different possible neural network models. These models are compared for Mean Absolute Relative Deviation (MARD) and Mean Relative Deviation (MRD) to identify the best predictive model of ANN.
Keywords: Minichannel, Two-Phase Flow, Frictional Pressure Drop, ANN, MARD, MRD.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1406892 Teager-Huang Analysis Applied to Sonar Target Recognition
Authors: J.-C. Cexus, A.O. Boudraa
Abstract:
In this paper, a new approach for target recognition based on the Empirical mode decomposition (EMD) algorithm of Huang etal. [11] and the energy tracking operator of Teager [13]-[14] is introduced. The conjunction of these two methods is called Teager-Huang analysis. This approach is well suited for nonstationary signals analysis. The impulse response (IR) of target is first band pass filtered into subsignals (components) called Intrinsic mode functions (IMFs) with well defined Instantaneous frequency (IF) and Instantaneous amplitude (IA). Each IMF is a zero-mean AM-FM component. In second step, the energy of each IMF is tracked using the Teager energy operator (TEO). IF and IA, useful to describe the time-varying characteristics of the signal, are estimated using the Energy separation algorithm (ESA) algorithm of Maragos et al .[16]-[17]. In third step, a set of features such as skewness and kurtosis are extracted from the IF, IA and IMF energy functions. The Teager-Huang analysis is tested on set of synthetic IRs of Sonar targets with different physical characteristics (density, velocity, shape,? ). PCA is first applied to features to discriminate between manufactured and natural targets. The manufactured patterns are classified into spheres and cylinders. One hundred percent of correct recognition is achieved with twenty three echoes where sixteen IRs, used for training, are free noise and seven IRs, used for testing phase, are corrupted with white Gaussian noise.
Keywords: Target recognition, Empirical mode decomposition, Teager-Kaiser energy operator, Features extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2285891 Higher Frequency Modeling of Synchronous Exciter Machines by Equivalent Circuits and Transfer Functions
Authors: Marcus Banda
Abstract:
In this article the influence of higher frequency effects in addition to a special damper design on the electrical behavior of a synchronous generator main exciter machine is investigated. On the one hand these machines are often highly stressed by harmonics from the bridge rectifier thus facing additional eddy current losses. On the other hand the switching may cause the excitation of dangerous voltage peaks in resonant circuits formed by the diodes of the rectifier and the commutation reactance of the machine. Therefore modern rotating exciters are treated like synchronous generators usually modeled with a second order equivalent circuit. Hence the well known Standstill Frequency Response Test (SSFR) method is applied to a test machine in order to determine parameters for the simulation. With these results it is clearly shown that higher frequencies have a strong impact on the conventional equivalent circuit model. Because of increasing field displacement effects in the stranded armature winding the sub-transient reactance is even smaller than the armature leakage at high frequencies. As a matter of fact this prevents the algorithm to find an equivalent scheme. This issue is finally solved using Laplace transfer functions fully describing the transient behavior at the model ports.Keywords: Synchronous exciter machine, Linear transfer function, SSFR, Equivalent Circuit
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2052890 Geometrically Non-Linear Axisymmetric Free Vibrations of Thin Isotropic Annular Plates
Authors: Boutahar Lhoucine, El Bikri Khalid, Benamar Rhali
Abstract:
The effects of large vibration amplitudes on the first axisymetric mode shape of thin isotropic annular plates having both edges clamped are examined in this paper. The theoretical model based on Hamilton’s principle and spectral analysis by using a basis of Bessel’s functions is adapted اhere to the case of annular plates. The model effectively reduces the large amplitude free vibration problem to the solution of a set of non-linear algebraic equations.
The governing non-linear eigenvalue problem has been linearised in the neighborhood of each resonance and a new one-step iterative technique has been proposed as a simple alternative method of solution to determine the basic function contributions to the non-linear mode shape considered.
Numerical results are given for the first non-linear mode shape for a wide range of vibration amplitudes. For each value of the vibration amplitude considered, the corresponding contributions of the basic functions defining the non-linear transverse displacement function and the associated non-linear frequency, the membrane and bending stress distributions are given. By comparison with the iterative method of solution, it was found that the present procedure is efficient for a wide range of vibration amplitudes, up to at least 1.8 times the plate thickness,
Keywords: Non-linear vibrations, Annular plates, Large vibration amplitudes.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2281889 Traffic Forecasting for Open Radio Access Networks Virtualized Network Functions in 5G Networks
Authors: Khalid Ali, Manar Jammal
Abstract:
In order to meet the stringent latency and reliability requirements of the upcoming 5G networks, Open Radio Access Networks (O-RAN) have been proposed. The virtualization of O-RAN has allowed it to be treated as a Network Function Virtualization (NFV) architecture, while its components are considered Virtualized Network Functions (VNFs). Hence, intelligent Machine Learning (ML) based solutions can be utilized to apply different resource management and allocation techniques on O-RAN. However, intelligently allocating resources for O-RAN VNFs can prove challenging due to the dynamicity of traffic in mobile networks. Network providers need to dynamically scale the allocated resources in response to the incoming traffic. Elastically allocating resources can provide a higher level of flexibility in the network in addition to reducing the OPerational EXpenditure (OPEX) and increasing the resources utilization. Most of the existing elastic solutions are reactive in nature, despite the fact that proactive approaches are more agile since they scale instances ahead of time by predicting the incoming traffic. In this work, we propose and evaluate traffic forecasting models based on the ML algorithm. The algorithms aim at predicting future O-RAN traffic by using previous traffic data. Detailed analysis of the traffic data was carried out to validate the quality and applicability of the traffic dataset. Hence, two ML models were proposed and evaluated based on their prediction capabilities.
Keywords: O-RAN, traffic forecasting, NFV, ARIMA, LSTM, elasticity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 550888 On Generalized New Class of Matrix Polynomial Set
Authors: Ghazi S. Kahmmash
Abstract:
New generalization of the new class matrix polynomial set have been obtained. An explicit representation and an expansion of the matrix exponential in a series of these matrix are given for these matrix polynomials.
Keywords: Generating functions, Recurrences relation and Generalization of the new class matrix polynomial set.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1265887 A Proposed Approach for Emotion Lexicon Enrichment
Authors: Amr Mansour Mohsen, Hesham Ahmed Hassan, Amira M. Idrees
Abstract:
Document Analysis is an important research field that aims to gather the information by analyzing the data in documents. As one of the important targets for many fields is to understand what people actually want, sentimental analysis field has been one of the vital fields that are tightly related to the document analysis. This research focuses on analyzing text documents to classify each document according to its opinion. The aim of this research is to detect the emotions from text documents based on enriching the lexicon with adapting their content based on semantic patterns extraction. The proposed approach has been presented, and different experiments are applied by different perspectives to reveal the positive impact of the proposed approach on the classification results.Keywords: Document analysis, sentimental analysis, emotion detection, WEKA tool, NRC Lexicon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1458886 Fuzzy Join Dependency in Fuzzy Relational Databases
Authors: P. C. Saxena, D. K. Tayal
Abstract:
The join dependency provides the basis for obtaining lossless join decomposition in a classical relational schema. The existence of Join dependency shows that that the tables always represent the correct data after being joined. Since the classical relational databases cannot handle imprecise data, they were extended to fuzzy relational databases so that uncertain, ambiguous, imprecise and partially known information can also be stored in databases in a formal way. However like classical databases, the fuzzy relational databases also undergoes decomposition during normalization, the issue of joining the decomposed fuzzy relations remains intact. Our effort in the present paper is to emphasize on this issue. In this paper we define fuzzy join dependency in the framework of type-1 fuzzy relational databases & type-2 fuzzy relational databases using the concept of fuzzy equality which is defined using fuzzy functions. We use the fuzzy equi-join operator for computing the fuzzy equality of two attribute values. We also discuss the dependency preservation property on execution of this fuzzy equi- join and derive the necessary condition for the fuzzy functional dependencies to be preserved on joining the decomposed fuzzy relations. We also derive the conditions for fuzzy join dependency to exist in context of both type-1 and type-2 fuzzy relational databases. We find that unlike the classical relational databases even the existence of a trivial join dependency does not ensure lossless join decomposition in type-2 fuzzy relational databases. Finally we derive the conditions for the fuzzy equality to be non zero and the qualification of an attribute for fuzzy key.Keywords: Fuzzy - equi join, fuzzy functions, fuzzy join dependency, type-1 fuzzy relational database, type-2 fuzzy relational database.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2042885 Solving Process Planning, Weighted Earliest Due Date Scheduling and Weighted Due Date Assignment Using Simulated Annealing and Evolutionary Strategies
Authors: Halil Ibrahim Demir, Abdullah Hulusi Kokcam, Fuat Simsir, Özer Uygun
Abstract:
Traditionally, three important manufacturing functions which are process planning, scheduling and due-date assignment are performed sequentially and separately. Although there are numerous works on the integration of process planning and scheduling and plenty of works focusing on scheduling with due date assignment, there are only a few works on integrated process planning, scheduling and due-date assignment. Although due-dates are determined without taking into account of weights of the customers in the literature, here weighted due-date assignment is employed to get better performance. Jobs are scheduled according to weighted earliest due date dispatching rule and due dates are determined according to some popular due date assignment methods by taking into account of the weights of each job. Simulated Annealing, Evolutionary Strategies, Random Search, hybrid of Random Search and Simulated Annealing, and hybrid of Random Search and Evolutionary Strategies, are applied as solution techniques. Three important manufacturing functions are integrated step-by-step and higher integration levels are found better. Search meta-heuristics are found to be very useful while improving performance measure.
Keywords: Evolutionary strategies, hybrid searches, process planning, simulated annealing, weighted due-date assignment, weighted scheduling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1161884 A Cognitive Architectural Approach to the Institutional Roles of Agent Societies
Authors: Antônio Carlos da Rocha Costa
Abstract:
This paper concerns a formal model to help the simulation of agent societies where institutional roles and institutional links can be specified operationally. That is, this paper concerns institutional roles that can be specified in terms of a minimal behavioral capability that an agent should have in order to enact that role and, thus, to perform the set of institutional functions that role is responsible for. Correspondingly, the paper concerns institutional links that can be specified in terms of a minimal interactional capability that two agents should have in order to, while enacting the two institutional roles that are linked by that institutional link, perform for each other the institutional functions supported by that institutional link. The paper proposes a cognitive architecture approach to institutional roles and institutional links, that is, an approach in which a institutional role is seen as an abstract cognitive architecture that should be implemented by any concrete agent (or set of concrete agents) that enacts the institutional role, and in which institutional links are seen as interactions between the two abstract cognitive agents that model the two linked institutional roles. We introduce a cognitive architecture for such purpose, called the Institutional BCC (IBCC) model, which lifts Yoav Shoham-s BCC (Beliefs-Capabilities-Commitments) agent architecture to social contexts. We show how the resulting model can be taken as a means for a cognitive architecture account of institutional roles and institutional links of agent societies. Finally, we present an example of a generic scheme for certain fragments of the social organization of agent societies, where institutional roles and institutional links are given in terms of the model.Keywords: Simulation of agent societies, institutional roles, cognitive architecture of institutional roles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1420883 Comparisons of Fine Motor Functions in Subjects with Parkinson’s Disease and Essential Tremor
Authors: Nan-Ying Yu, Shao-Hsia Chang
Abstract:
This study explores the clinical features of neurodegenerative disease patients with tremor. We study the motor impairments in patients with Parkinson’s disease (PD) and essential tremor (ET). Since uncertainty exists on whether Parkinson's disease (PD) and essential tremor (ET) patients have similar degree of impairment during motor tasks, this study based on the self-developed computerized handwriting movement analysis to characterize motor functions of these two impairments. The recruited subjects were diagnosed and confirmed one of neurodegenerative diseases. They were undergone general clinical evaluations by physicians in the first year. We recruited 8 participants with PD and 10 with ET. Additional 12 participants without any neuromuscular dysfunction were recruited as control group. This study used fine motor control of penmanship on digital tablet for sensorimotor function tests. The movement speed in PD/ET group is found significant slower than subjects in normal control group. In movement intensity and speed, the result found subject with ET has similar clinical feature with PD subjects. The ET group shows smaller and slower movements than control group but not to the same extent as PD group. The results of this study contribute to the early screening and detection of diseases and the evaluation of disease progression.
Keywords: Parkinson’s disease, essential tremor, motor function, fine motor movement, computerized handwriting evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2279882 RBF Based Face Recognition and Expression Analysis
Authors: Praseeda Lekshmi.V, Dr.M.Sasikumar
Abstract:
Facial recognition and expression analysis is rapidly becoming an area of intense interest in computer science and humancomputer interaction design communities. The most expressive way humans display emotions is through facial expressions. In this paper skin and non-skin pixels were separated. Face regions were extracted from the detected skin regions. Facial expressions are analyzed from facial images by applying Gabor wavelet transform (GWT) and Discrete Cosine Transform (DCT) on face images. Radial Basis Function (RBF) Network is used to identify the person and to classify the facial expressions. Our method reliably works even with faces, which carry heavy expressions.Keywords: Face Recognition, Radial Basis Function, Gabor Wavelet Transform, Discrete Cosine Transform
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600881 Application of KL Divergence for Estimation of Each Metabolic Pathway Genes
Authors: Shohei Maruyama, Yasuo Matsuyama, Sachiyo Aburatani
Abstract:
Development of a method to estimate gene functions is an important task in bioinformatics. One of the approaches for the annotation is the identification of the metabolic pathway that genes are involved in. Since gene expression data reflect various intracellular phenomena, those data are considered to be related with genes’ functions. However, it has been difficult to estimate the gene function with high accuracy. It is considered that the low accuracy of the estimation is caused by the difficulty of accurately measuring a gene expression. Even though they are measured under the same condition, the gene expressions will vary usually. In this study, we proposed a feature extraction method focusing on the variability of gene expressions to estimate the genes' metabolic pathway accurately. First, we estimated the distribution of each gene expression from replicate data. Next, we calculated the similarity between all gene pairs by KL divergence, which is a method for calculating the similarity between distributions. Finally, we utilized the similarity vectors as feature vectors and trained the multiclass SVM for identifying the genes' metabolic pathway. To evaluate our developed method, we applied the method to budding yeast and trained the multiclass SVM for identifying the seven metabolic pathways. As a result, the accuracy that calculated by our developed method was higher than the one that calculated from the raw gene expression data. Thus, our developed method combined with KL divergence is useful for identifying the genes' metabolic pathway.
Keywords: Metabolic pathways, gene expression data, microarray, Kullback–Leibler divergence, KL divergence, support vector machines, SVM, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2338880 The Use of Emoticons in Polite Phrases of Greetings and Thanks
Authors: Zuzana Komrsková
Abstract:
This paper shows the connection between emoticons and politeness in written computer-mediated communication. It studies if there are some differences in the use of emoticon between Czech and English written tweets. The assumptions about the use of emoticons were based on the use of greetings and thanks in real, faceto-face situations. The first assumption, that welcome greeting phrase would be accompanied by positive emoticon, was correct. But for the farewell greeting are both positive and negative emoticons possible. The results show lower frequency of negative emoticons in this context. There were also quite often found both positive and negative emoticon in the same tweet. The expression of gratitude is associated with positive emotions. The results show that emoticons accompany polite phrases of greeting and thanks very often both in Czech and English. The use of emoticons with studied polite phrases shows that emoticons have become an integral part of these phrases.
Keywords: Computer-mediated communication, emoticons, politeness, Twitter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2511879 Electroencephalography Activity during Sensory Organization Balance Test
Authors: Tariq Ali Gujar, Anita Hökelmann
Abstract:
Postural balance plays essential role throughout life in daily activities. Somatosensory, visual and vestibular inputs play the fundamental role in maintaining body equilibrium to balance the posture. The aim of this study was to find out electroencephalography (EEG) responses during balance activity of young people during Sensory Organization Balance Test. The outcome of this study will help to create the fitness and neurorehabilitation plan. 25 young people (25 ± 3.1 years) have been analyzed on Balance Master NeuroCom® with the coupling of Brain Vision 32 electrode wireless EEG system during the Sensory Organization Test. From the results it has been found that the balance score of samples is significantly higher under the influence of somatosensory input as compared to visual and vestibular input (p < 0.05). The EEG between somatosensory and visual input to balance the posture showed significantly higher (p < 0.05) alpha and beta activities during somatosensory input in somatosensory, attention and visual functions of the cortex whereas executive and motor functions of the cerebral cortex showed significantly higher (p < 0.05) alpha EEG activity during the visual input. The results suggest that somatosensory and attention function of the cerebral cortex has alpha and beta activity, respectively high during somatosensory and vestibular input in maintaining balance. In patients with balance impairments both physical and cognitive training, including neurofeedback will be helpful to improve balance abilities.
Keywords: Balance, electroencephalography activity, somatosensory, visual, vestibular.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 614878 Tonal Pitch Structure as a Tool of Social Consolidation
Authors: Piotr Podlipniak
Abstract:
This paper proposes that in the course of evolution pitch structure became a human specific tool of communication the function of which is to induce emotional states such as uncertainty and cohesion. By the means of eliciting these emotions during collective music performance people are able to unconsciously give cues concerning social acceptance. This is probably one of the reasons why in all cultures people collectively perform tonal music. It is also suggested that tonal pitch structure had been invented socially before it became an evolutionary innovation of hominines. It means that a predisposition to tonally organize pitches evolved by the means of ‘Baldwin effect’ – a process in which natural selection transforms the learned response of an organism into the instinctive response. In the proposed, hypothetical evolutionary scenario of the emergence of tonal pitch structure social forces such as a need for closer cooperation play the crucial role.Keywords: Emotion, evolution, tonality, social consolidation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1410877 A Neural Network Based Facial Expression Analysis using Gabor Wavelets
Authors: Praseeda Lekshmi.V, Dr.M.Sasikumar
Abstract:
Facial expression analysis is rapidly becoming an area of intense interest in computer science and human-computer interaction design communities. The most expressive way humans display emotions is through facial expressions. In this paper we present a method to analyze facial expression from images by applying Gabor wavelet transform (GWT) and Discrete Cosine Transform (DCT) on face images. Radial Basis Function (RBF) Network is used to classify the facial expressions. As a second stage, the images are preprocessed to enhance the edge details and non uniform down sampling is done to reduce the computational complexity and processing time. Our method reliably works even with faces, which carry heavy expressions.Keywords: Face Expression, Radial Basis Function, GaborWavelet Transform, Human Computer Interaction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2109