Search results for: Target recognition
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1495

Search results for: Target recognition

1495 Visual Object Tracking and Interception in Industrial Settings

Authors: Ahmet Denker, Tuğrul Adıgüzel

Abstract:

This paper presents a solution for a robotic manipulation problem. We formulate the problem as combining target identification, tracking and interception. The task in our solution is sensing a target on a conveyor belt and then intercepting robot-s end-effector at a convenient rendezvous point. We used an object recognition method which identifies the target and finds its position from visualized scene picture, then the robot system generates a solution for rendezvous problem using the target-s initial position and belt velocity . The interception of the target and the end-effector is executed at a convenient rendezvous point along the target-s calculated trajectory. Experimental results are obtained using a real platform with an industrial robot and a vision system over it.

Keywords: Object recognition, rendezvous planning, robotics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1704
1494 Intention Recognition using a Graph Representation

Authors: So-Jeong Youn, Kyung-Whan Oh

Abstract:

The human friendly interaction is the key function of a human-centered system. Over the years, it has received much attention to develop the convenient interaction through intention recognition. Intention recognition processes multimodal inputs including speech, face images, and body gestures. In this paper, we suggest a novel approach of intention recognition using a graph representation called Intention Graph. A concept of valid intention is proposed, as a target of intention recognition. Our approach has two phases: goal recognition phase and intention recognition phase. In the goal recognition phase, we generate an action graph based on the observed actions, and then the candidate goals and their plans are recognized. In the intention recognition phase, the intention is recognized with relevant goals and user profile. We show that the algorithm has polynomial time complexity. The intention graph is applied to a simple briefcase domain to test our model.

Keywords: Intention recognition, intention, graph, HCI.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3357
1493 Target Detection with Improved Image Texture Feature Coding Method and Support Vector Machine

Authors: R. Xu, X. Zhao, X. Li, C. Kwan, C.-I Chang

Abstract:

An image texture analysis and target recognition approach of using an improved image texture feature coding method (TFCM) and Support Vector Machine (SVM) for target detection is presented. With our proposed target detection framework, targets of interest can be detected accurately. Cascade-Sliding-Window technique was also developed for automated target localization. Application to mammogram showed that over 88% of normal mammograms and 80% of abnormal mammograms can be correctly identified. The approach was also successfully applied to Synthetic Aperture Radar (SAR) and Ground Penetrating Radar (GPR) images for target detection.

Keywords: Image texture analysis, feature extraction, target detection, pattern classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1754
1492 Teager-Huang Analysis Applied to Sonar Target Recognition

Authors: J.-C. Cexus, A.O. Boudraa

Abstract:

In this paper, a new approach for target recognition based on the Empirical mode decomposition (EMD) algorithm of Huang etal. [11] and the energy tracking operator of Teager [13]-[14] is introduced. The conjunction of these two methods is called Teager-Huang analysis. This approach is well suited for nonstationary signals analysis. The impulse response (IR) of target is first band pass filtered into subsignals (components) called Intrinsic mode functions (IMFs) with well defined Instantaneous frequency (IF) and Instantaneous amplitude (IA). Each IMF is a zero-mean AM-FM component. In second step, the energy of each IMF is tracked using the Teager energy operator (TEO). IF and IA, useful to describe the time-varying characteristics of the signal, are estimated using the Energy separation algorithm (ESA) algorithm of Maragos et al .[16]-[17]. In third step, a set of features such as skewness and kurtosis are extracted from the IF, IA and IMF energy functions. The Teager-Huang analysis is tested on set of synthetic IRs of Sonar targets with different physical characteristics (density, velocity, shape,? ). PCA is first applied to features to discriminate between manufactured and natural targets. The manufactured patterns are classified into spheres and cylinders. One hundred percent of correct recognition is achieved with twenty three echoes where sixteen IRs, used for training, are free noise and seven IRs, used for testing phase, are corrupted with white Gaussian noise.

Keywords: Target recognition, Empirical mode decomposition, Teager-Kaiser energy operator, Features extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2257
1491 Face Recognition: A Literature Review

Authors: A. S. Tolba, A.H. El-Baz, A.A. El-Harby

Abstract:

The task of face recognition has been actively researched in recent years. This paper provides an up-to-date review of major human face recognition research. We first present an overview of face recognition and its applications. Then, a literature review of the most recent face recognition techniques is presented. Description and limitations of face databases which are used to test the performance of these face recognition algorithms are given. A brief summary of the face recognition vendor test (FRVT) 2002, a large scale evaluation of automatic face recognition technology, and its conclusions are also given. Finally, we give a summary of the research results.

Keywords: Combined classifiers, face recognition, graph matching, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7679
1490 Sentence Modality Recognition in French based on Prosody

Authors: Pavel Král, Jana Klečková, Christophe Cerisara

Abstract:

This paper deals with automatic sentence modality recognition in French. In this work, only prosodic features are considered. The sentences are recognized according to the three following modalities: declarative, interrogative and exclamatory sentences. This information will be used to animate a talking head for deaf and hearing-impaired children. We first statistically study a real radio corpus in order to assess the feasibility of the automatic modeling of sentence types. Then, we test two sets of prosodic features as well as two different classifiers and their combination. We further focus our attention on questions recognition, as this modality is certainly the most important one for the target application.

Keywords: Automatic sentences modality recognition (ASMR), fundamental frequency (F0), energy, modal corpus, prosody.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
1489 A Two-Stage Adaptation towards Automatic Speech Recognition System for Malay-Speaking Children

Authors: Mumtaz Begum Mustafa, Siti Salwah Salim, Feizal Dani Rahman

Abstract:

Recently, Automatic Speech Recognition (ASR) systems were used to assist children in language acquisition as it has the ability to detect human speech signal. Despite the benefits offered by the ASR system, there is a lack of ASR systems for Malay-speaking children. One of the contributing factors for this is the lack of continuous speech database for the target users. Though cross-lingual adaptation is a common solution for developing ASR systems for under-resourced language, it is not viable for children as there are very limited speech databases as a source model. In this research, we propose a two-stage adaptation for the development of ASR system for Malay-speaking children using a very limited database. The two stage adaptation comprises the cross-lingual adaptation (first stage) and cross-age adaptation. For the first stage, a well-known speech database that is phonetically rich and balanced, is adapted to the medium-sized Malay adults using supervised MLLR. The second stage adaptation uses the speech acoustic model generated from the first adaptation, and the target database is a small-sized database of the target users. We have measured the performance of the proposed technique using word error rate, and then compare them with the conventional benchmark adaptation. The two stage adaptation proposed in this research has better recognition accuracy as compared to the benchmark adaptation in recognizing children’s speech.

Keywords: Automatic speech recognition system, children speech, adaptation, Malay.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1733
1488 Comparing Arabic and Latin Handwritten Digits Recognition Problems

Authors: Sherif Abdelazeem

Abstract:

A comparison between the performance of Latin and Arabic handwritten digits recognition problems is presented. The performance of ten different classifiers is tested on two similar Arabic and Latin handwritten digits databases. The analysis shows that Arabic handwritten digits recognition problem is easier than that of Latin digits. This is because the interclass difference in case of Latin digits is smaller than in Arabic digits and variances in writing Latin digits are larger. Consequently, weaker yet fast classifiers are expected to play more prominent role in Arabic handwritten digits recognition.

Keywords: Handwritten recognition, Arabic recognition, Digits recognition, Document recognition

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1966
1487 OCR/ICR Text Recognition Using ABBYY FineReader as an Example Text

Authors: A. R. Bagirzade, A. Sh. Najafova, S. M. Yessirkepova, E. S. Albert

Abstract:

This article describes a text recognition method based on Optical Character Recognition (OCR). The features of the OCR method were examined using the ABBYY FineReader program. It describes automatic text recognition in images. OCR is necessary because optical input devices can only transmit raster graphics as a result. Text recognition describes the task of recognizing letters shown as such, to identify and assign them an assigned numerical value in accordance with the usual text encoding (ASCII, Unicode). The peculiarity of this study conducted by the authors using the example of the ABBYY FineReader, was confirmed and shown in practice, the improvement of digital text recognition platforms developed by Electronic Publication.

Keywords: ABBYY FineReader system, algorithm symbol recognition, OCR/ICR techniques, recognition technologies.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 737
1486 A New Biologically Inspired Pattern Recognition Spproach for Face Recognition

Authors: V. Kabeer, N.K.Narayanan

Abstract:

This paper reports a new pattern recognition approach for face recognition. The biological model of light receptors - cones and rods in human eyes and the way they are associated with pattern vision in human vision forms the basis of this approach. The functional model is simulated using CWD and WPD. The paper also discusses the experiments performed for face recognition using the features extracted from images in the AT & T face database. Artificial Neural Network and k- Nearest Neighbour classifier algorithms are employed for the recognition purpose. A feature vector is formed for each of the face images in the database and recognition accuracies are computed and compared using the classifiers. Simulation results show that the proposed method outperforms traditional way of feature extraction methods prevailing for pattern recognition in terms of recognition accuracy for face images with pose and illumination variations.

Keywords: Face recognition, Image analysis, Wavelet feature extraction, Pattern recognition, Classifier algorithms

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1660
1485 Object Tracking using MACH filter and Optical Flow in Cluttered Scenes and Variable Lighting Conditions

Authors: Waqar Shahid Qureshi, Abu-Baqar Nisar Alvi

Abstract:

Vision based tracking problem is solved through a combination of optical flow, MACH filter and log r-θ mapping. Optical flow is used for detecting regions of movement in video frames acquired under variable lighting conditions. The region of movement is segmented and then searched for the target. A template is used for target recognition on the segmented regions for detecting the region of interest. The template is trained offline on a sequence of target images that are created using the MACH filter and log r-θ mapping. The template is applied on areas of movement in successive frames and strong correlation is seen for in-class targets. Correlation peaks above a certain threshold indicate the presence of target and the target is tracked over successive frames.

Keywords: Correlation filters, optical flow, log r-θ mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2121
1484 Persian Printed Numeral Characters Recognition Using Geometrical Central Moments and Fuzzy Min-Max Neural Network

Authors: Hamid Reza Boveiri

Abstract:

In this paper, a new proposed system for Persian printed numeral characters recognition with emphasis on representation and recognition stages is introduced. For the first time, in Persian optical character recognition, geometrical central moments as character image descriptor and fuzzy min-max neural network for Persian numeral character recognition has been used. Set of different experiments on binary images of regular, translated, rotated and scaled Persian numeral characters has been done and variety of results has been presented. The best result was 99.16% correct recognition demonstrating geometrical central moments and fuzzy min-max neural network are adequate for Persian printed numeral character recognition.

Keywords: Fuzzy min-max neural network, geometrical centralmoments, optical character recognition, Persian digits recognition, Persian printed numeral characters recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1697
1483 Facial Recognition on the Basis of Facial Fragments

Authors: Tetyana Baydyk, Ernst Kussul, Sandra Bonilla Meza

Abstract:

There are many articles that attempt to establish the role of different facial fragments in face recognition. Various approaches are used to estimate this role. Frequently, authors calculate the entropy corresponding to the fragment. This approach can only give approximate estimation. In this paper, we propose to use a more direct measure of the importance of different fragments for face recognition. We propose to select a recognition method and a face database and experimentally investigate the recognition rate using different fragments of faces. We present two such experiments in the paper. We selected the PCNC neural classifier as a method for face recognition and parts of the LFW (Labeled Faces in the Wild) face database as training and testing sets. The recognition rate of the best experiment is comparable with the recognition rate obtained using the whole face.

Keywords: Face recognition, Labeled Faces in the Wild (LFW) database, Random Local Descriptor (RLD), random features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 990
1482 A Robust Method for Hand Tracking Using Mean-shift Algorithm and Kalman Filter in Stereo Color Image Sequences

Authors: Mahmoud Elmezain, Ayoub Al-Hamadi, Robert Niese, Bernd Michaelis

Abstract:

Real-time hand tracking is a challenging task in many computer vision applications such as gesture recognition. This paper proposes a robust method for hand tracking in a complex environment using Mean-shift analysis and Kalman filter in conjunction with 3D depth map. The depth information solve the overlapping problem between hands and face, which is obtained by passive stereo measuring based on cross correlation and the known calibration data of the cameras. Mean-shift analysis uses the gradient of Bhattacharyya coefficient as a similarity function to derive the candidate of the hand that is most similar to a given hand target model. And then, Kalman filter is used to estimate the position of the hand target. The results of hand tracking, tested on various video sequences, are robust to changes in shape as well as partial occlusion.

Keywords: Computer Vision and Image Analysis, Object Tracking, Gesture Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2889
1481 Automatic Number Plate Recognition System Based on Deep Learning

Authors: T. Damak, O. Kriaa, A. Baccar, M. A. Ben Ayed, N. Masmoudi

Abstract:

In the last few years, Automatic Number Plate Recognition (ANPR) systems have become widely used in the safety, the security, and the commercial aspects. Forethought, several methods and techniques are computing to achieve the better levels in terms of accuracy and real time execution. This paper proposed a computer vision algorithm of Number Plate Localization (NPL) and Characters Segmentation (CS). In addition, it proposed an improved method in Optical Character Recognition (OCR) based on Deep Learning (DL) techniques. In order to identify the number of detected plate after NPL and CS steps, the Convolutional Neural Network (CNN) algorithm is proposed. A DL model is developed using four convolution layers, two layers of Maxpooling, and six layers of fully connected. The model was trained by number image database on the Jetson TX2 NVIDIA target. The accuracy result has achieved 95.84%.

Keywords: Automatic number plate recognition, character segmentation, convolutional neural network, CNN, deep learning, number plate localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1247
1480 Integrating Low and High Level Object Recognition Steps

Authors: András Barta, István Vajk

Abstract:

In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.

Keywords: Object recognition, Bayesian network, Wavelets, Document processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1462
1479 Integrating Low and High Level Object Recognition Steps by Probabilistic Networks

Authors: András Barta, István Vajk

Abstract:

In pattern recognition applications the low level segmentation and the high level object recognition are generally considered as two separate steps. The paper presents a method that bridges the gap between the low and the high level object recognition. It is based on a Bayesian network representation and network propagation algorithm. At the low level it uses hierarchical structure of quadratic spline wavelet image bases. The method is demonstrated for a simple circuit diagram component identification problem.

Keywords: Object recognition, Bayesian network, Wavelets, Document processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1650
1478 Practical Aspects of Face Recognition

Authors: S. Vural, H. Yamauchi

Abstract:

Current systems for face recognition techniques often use either SVM or Adaboost techniques for face detection part and use PCA for face recognition part. In this paper, we offer a novel method for not only a powerful face detection system based on Six-segment-filters (SSR) and Adaboost learning algorithms but also for a face recognition system. A new exclusive face detection algorithm has been developed and connected with the recognition algorithm. As a result of it, we obtained an overall high-system performance compared with current systems. The proposed algorithm was tested on CMU, FERET, UNIBE, MIT face databases and significant performance has obtained.

Keywords: Adaboost, Face Detection, Face recognition, SVM, Gabor filters, PCA-ICA.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1577
1477 A Novel Tracking Method Using Filtering and Geometry

Authors: Sang Hoon Lee, Jong Sue Bae, Taewan Kim, Jin Mo Song, Jong Ju Kim

Abstract:

Image target detection and tracking methods based on target information such as intensity, shape model, histogram and target dynamics have been proven to be robust to target model variations and background clutters as shown by recent researches. However, no definitive answer has been given to occluded target by counter measure or limited field of view(FOV). In this paper, we will present a novel tracking method using filtering and computational geometry. This paper has two central goals: 1) to deal with vulnerable target measurements; and 2) to maintain target tracking out of FOV using non-target-originated information. The experimental results, obtained with airborne images, show a robust tracking ability with respect to the existing approaches. In exploring the questions of target tracking, this paper will be limited to consideration of airborne image.

Keywords: Tracking, Computational geometry, Homography, Filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1763
1476 New Adaptive Linear Discriminante Analysis for Face Recognition with SVM

Authors: Mehdi Ghayoumi

Abstract:

We have applied new accelerated algorithm for linear discriminate analysis (LDA) in face recognition with support vector machine. The new algorithm has the advantage of optimal selection of the step size. The gradient descent method and new algorithm has been implemented in software and evaluated on the Yale face database B. The eigenfaces of these approaches have been used to training a KNN. Recognition rate with new algorithm is compared with gradient.

Keywords: lda, adaptive, svm, face recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1400
1475 Recognition-based Segmentation in Persian Character Recognition

Authors: Mohsen Zand, Ahmadreza Naghsh Nilchi, S. Amirhassan Monadjemi

Abstract:

Optical character recognition of cursive scripts presents a number of challenging problems in both segmentation and recognition processes in different languages, including Persian. In order to overcome these problems, we use a newly developed Persian word segmentation method and a recognition-based segmentation technique to overcome its segmentation problems. This method is robust as well as flexible. It also increases the system-s tolerances to font variations. The implementation results of this method on a comprehensive database show a high degree of accuracy which meets the requirements for commercial use. Extended with a suitable pre and post-processing, the method offers a simple and fast framework to develop a full OCR system.

Keywords: OCR, Persian, Recognition, Segmentation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
1474 Learning to Recognize Faces by Local Feature Design and Selection

Authors: Yanwei Pang, Lei Zhang, Zhengkai Liu

Abstract:

Studies in neuroscience suggest that both global and local feature information are crucial for perception and recognition of faces. It is widely believed that local feature is less sensitive to variations caused by illumination, expression and illumination. In this paper, we target at designing and learning local features for face recognition. We designed three types of local features. They are semi-global feature, local patch feature and tangent shape feature. The designing of semi-global feature aims at taking advantage of global-like feature and meanwhile avoiding suppressing AdaBoost algorithm in boosting weak classifies established from small local patches. The designing of local patch feature targets at automatically selecting discriminative features, and is thus different with traditional ways, in which local patches are usually selected manually to cover the salient facial components. Also, shape feature is considered in this paper for frontal view face recognition. These features are selected and combined under the framework of boosting algorithm and cascade structure. The experimental results demonstrate that the proposed approach outperforms the standard eigenface method and Bayesian method. Moreover, the selected local features and observations in the experiments are enlightening to researches in local feature design in face recognition.

Keywords: Face recognition, local feature, AdaBoost, subspace analysis.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1570
1473 Offline Handwritten Signature Recognition

Authors: Gulzar A. Khuwaja, Mohammad S. Laghari

Abstract:

Biometrics, which refers to identifying an individual based on his or her physiological or behavioral characteristics, has the capability to reliably distinguish between an authorized person and an imposter. Signature verification systems can be categorized as offline (static) and online (dynamic). This paper presents a neural network based recognition of offline handwritten signatures system that is trained with low-resolution scanned signature images.

Keywords: Pattern Recognition, Computer Vision, AdaptiveClassification, Handwritten Signature Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2879
1472 Minimizing of Target Localization Error using Multi-robot System and Particle Filters

Authors: Jana Puchyova

Abstract:

In recent years a number of applications with multirobot systems (MRS) is growing in various areas. But their design is in practice often difficult and algorithms are proposed for the theoretical background and do not consider errors and noise in real conditions, so they are not usable in real environment. These errors are visible also in task of target localization enough, when robots try to find and estimate the position of the target by the sensors. Localization of target is possible also with one robot but as it was examined target finding and localization with group of mobile robots can estimate the target position more accurately and faster. The accuracy of target position estimation is made by cooperation of MRS and particle filtering. Advantage of usage the MRS with particle filtering was tested on task of fixed target localization by group of mobile robots.

Keywords: Multi-robot system, particle filter, position estimation, target localization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1543
1471 A New Approach to Face Recognition Using Dual Dimension Reduction

Authors: M. Almas Anjum, M. Younus Javed, A. Basit

Abstract:

In this paper a new approach to face recognition is presented that achieves double dimension reduction, making the system computationally efficient with better recognition results and out perform common DCT technique of face recognition. In pattern recognition techniques, discriminative information of image increases with increase in resolution to a certain extent, consequently face recognition results change with change in face image resolution and provide optimal results when arriving at a certain resolution level. In the proposed model of face recognition, initially image decimation algorithm is applied on face image for dimension reduction to a certain resolution level which provides best recognition results. Due to increased computational speed and feature extraction potential of Discrete Cosine Transform (DCT), it is applied on face image. A subset of coefficients of DCT from low to mid frequencies that represent the face adequately and provides best recognition results is retained. A tradeoff between decimation factor, number of DCT coefficients retained and recognition rate with minimum computation is obtained. Preprocessing of the image is carried out to increase its robustness against variations in poses and illumination level. This new model has been tested on different databases which include ORL , Yale and EME color database.

Keywords: Biometrics, DCT, Face Recognition, Illumination, Computation, Feature extraction.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1663
1470 Comparing Emotion Recognition from Voice and Facial Data Using Time Invariant Features

Authors: Vesna Kirandziska, Nevena Ackovska, Ana Madevska Bogdanova

Abstract:

The problem of emotion recognition is a challenging problem. It is still an open problem from the aspect of both intelligent systems and psychology. In this paper, both voice features and facial features are used for building an emotion recognition system. A Support Vector Machine classifiers are built by using raw data from video recordings. In this paper, the results obtained for the emotion recognition are given, and a discussion about the validity and the expressiveness of different emotions is presented. A comparison between the classifiers build from facial data only, voice data only and from the combination of both data is made here. The need for a better combination of the information from facial expression and voice data is argued.

Keywords: Emotion recognition, facial recognition, signal processing, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1985
1469 A Novel Approach to Persian Online Hand Writing Recognition

Authors: Ramin Halavati, Mansour Jamzad, Mahdieh Soleymani

Abstract:

Persian (Farsi) script is totally cursive and each character is written in several different forms depending on its former and later characters in the word. These complexities make automatic handwriting recognition of Persian a very hard problem and there are few contributions trying to work it out. This paper presents a novel practical approach to online recognition of Persian handwriting which is based on representation of inputs and patterns with very simple visual features and comparison of these simple terms. This recognition approach is tested over a set of Persian words and the results have been quite acceptable when the possible words where unknown and they were almost all correct in cases that the words where chosen from a prespecified list.

Keywords: Image Processing, Pattern Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1296
1468 Off-Line Signature Recognition Based On Angle Features and GRNN Neural Networks

Authors: Laila Y. Fannas, Ahmed Y. Ben Sasi

Abstract:

This research presents a handwritten signature recognition based on angle feature vector using Artificial Neural Network (ANN). Each signature image will be represented by an Angle vector. The feature vector will constitute the input to the ANN. The collection of signature images will be divided into two sets. One set will be used for training the ANN in a supervised fashion. The other set which is never seen by the ANN will be used for testing. After training, the ANN will be tested for recognition of the signature. When the signature is classified correctly, it is considered correct recognition otherwise it is a failure.

Keywords: Signature Recognition, Artificial Neural Network, Angle Features.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2476
1467 Possibilities, Challenges and the State of the Art of Automatic Speech Recognition in Air Traffic Control

Authors: Van Nhan Nguyen, Harald Holone

Abstract:

Over the past few years, a lot of research has been conducted to bring Automatic Speech Recognition (ASR) into various areas of Air Traffic Control (ATC), such as air traffic control simulation and training, monitoring live operators for with the aim of safety improvements, air traffic controller workload measurement and conducting analysis on large quantities controller-pilot speech. Due to the high accuracy requirements of the ATC context and its unique challenges, automatic speech recognition has not been widely adopted in this field. With the aim of providing a good starting point for researchers who are interested bringing automatic speech recognition into ATC, this paper gives an overview of possibilities and challenges of applying automatic speech recognition in air traffic control. To provide this overview, we present an updated literature review of speech recognition technologies in general, as well as specific approaches relevant to the ATC context. Based on this literature review, criteria for selecting speech recognition approaches for the ATC domain are presented, and remaining challenges and possible solutions are discussed.

Keywords: Automatic Speech Recognition, ASR, Air Traffic Control, ATC.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4016
1466 Analysis of Combined Use of NN and MFCC for Speech Recognition

Authors: Safdar Tanweer, Abdul Mobin, Afshar Alam

Abstract:

The performance and analysis of speech recognition system is illustrated in this paper. An approach to recognize the English word corresponding to digit (0-9) spoken by 2 different speakers is captured in noise free environment. For feature extraction, speech Mel frequency cepstral coefficients (MFCC) has been used which gives a set of feature vectors from recorded speech samples. Neural network model is used to enhance the recognition performance. Feed forward neural network with back propagation algorithm model is used. However other speech recognition techniques such as HMM, DTW exist. All experiments are carried out on Matlab.

Keywords: Speech Recognition, MFCC, Neural Network, classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3242