Search results for: Parallel Machine
1468 Balancing Strategies for Parallel Content-based Data Retrieval Algorithms in a k-tree Structured Database
Authors: Radu Dobrescu, Matei Dobrescu, Daniela Hossu
Abstract:
The paper proposes a unified model for multimedia data retrieval which includes data representatives, content representatives, index structure, and search algorithms. The multimedia data are defined as k-dimensional signals indexed in a multidimensional k-tree structure. The benefits of using the k-tree unified model were demonstrated by running the data retrieval application on a six networked nodes test bed cluster. The tests were performed with two retrieval algorithms, one that allows parallel searching using a single feature, the second that performs a weighted cascade search for multiple features querying. The experiments show a significant reduction of retrieval time while maintaining the quality of results.
Keywords: balancing strategies, multimedia databases, parallelprocessing, retrieval algorithms
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14241467 DeClEx-Processing Pipeline for Tumor Classification
Authors: Gaurav Shinde, Sai Charan Gongiguntla, Prajwal Shirur, Ahmed Hambaba
Abstract:
Health issues are significantly increasing, putting a substantial strain on healthcare services. This has accelerated the integration of machine learning in healthcare, particularly following the COVID-19 pandemic. The utilization of machine learning in healthcare has grown significantly. We introduce DeClEx, a pipeline which ensures that data mirrors real-world settings by incorporating gaussian noise and blur and employing autoencoders to learn intermediate feature representations. Subsequently, our convolutional neural network, paired with spatial attention, provides comparable accuracy to state-of-the-art pre-trained models while achieving a threefold improvement in training speed. Furthermore, we provide interpretable results using explainable AI techniques. We integrate denoising and deblurring, classification and explainability in a single pipeline called DeClEx.
Keywords: Machine learning, healthcare, classification, explainability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 661466 Uplink Throughput Prediction in Cellular Mobile Networks
Authors: Engin Eyceyurt, Josko Zec
Abstract:
The current and future cellular mobile communication networks generate enormous amounts of data. Networks have become extremely complex with extensive space of parameters, features and counters. These networks are unmanageable with legacy methods and an enhanced design and optimization approach is necessary that is increasingly reliant on machine learning. This paper proposes that machine learning as a viable approach for uplink throughput prediction. LTE radio metric, such as Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), and Signal to Noise Ratio (SNR) are used to train models to estimate expected uplink throughput. The prediction accuracy with high determination coefficient of 91.2% is obtained from measurements collected with a simple smartphone application.Keywords: Drive test, LTE, machine learning, uplink throughput prediction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8951465 Movie Genre Preference Prediction Using Machine Learning for Customer-Based Information
Authors: Haifeng Wang, Haili Zhang
Abstract:
Most movie recommendation systems have been developed for customers to find items of interest. This work introduces a predictive model usable by small and medium-sized enterprises (SMEs) who are in need of a data-based and analytical approach to stock proper movies for local audiences and retain more customers. We used classification models to extract features from thousands of customers’ demographic, behavioral and social information to predict their movie genre preference. In the implementation, a Gaussian kernel support vector machine (SVM) classification model and a logistic regression model were established to extract features from sample data and their test error-in-sample were compared. Comparison of error-out-sample was also made under different Vapnik–Chervonenkis (VC) dimensions in the machine learning algorithm to find and prevent overfitting. Gaussian kernel SVM prediction model can correctly predict movie genre preferences in 85% of positive cases. The accuracy of the algorithm increased to 93% with a smaller VC dimension and less overfitting. These findings advance our understanding of how to use machine learning approach to predict customers’ preferences with a small data set and design prediction tools for these enterprises.Keywords: Computational social science, movie preference, machine learning, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16501464 Analysis of Partially Shaded PV Modules Using Piecewise Linear Parallel Branches Model
Authors: Yaw-Juen Wang, Po-Chun Hsu
Abstract:
This paper presents an equivalent circuit model based on piecewise linear parallel branches (PLPB) to study solar cell modules which are partially shaded. The PLPB model can easily be used in circuit simulation software such as the ElectroMagnetic Transients Program (EMTP). This PLPB model allows the user to simulate several different configurations of solar cells, the influence of partial shadowing on a single or multiple cells, the influence of the number of solar cells protected by a bypass diode and the effect of the cell connection configuration on partial shadowing.
Keywords: Cell Connection Configurations, EMTP, Equivalent Circuit, Partial Shading, Photovoltaic Module
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29351463 Fault Classification of a Doubly FED Induction Machine Using Neural Network
Authors: A. Ourici
Abstract:
Rapid progress in process automation and tightening quality standards result in a growing demand being placed on fault detection and diagnostics methods to provide both speed and reliability of motor quality testing. Doubly fed induction generators are used mainly for wind energy conversion in MW power plants. This paper presents a detection of an inter turn stator and an open phase faults, in a doubly fed induction machine whose stator and rotor are supplied by two pulse width modulation (PWM) inverters. The method used in this article to detect these faults, is based on Park-s Vector Approach, using a neural network.Keywords: Doubly fed induction machine, inter turn stator fault, neural network, open phase fault, Park's vector approach, PWMinverter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16461462 Design and Implementation of TMS320C31 DSP and FPGA for Conventional Direct Torque Control (DTC) of Induction Machines
Authors: C. L. Toh, N. R. N. Idris, A. H. M. Yatim
Abstract:
This paper introduces a new digital logic design, which combines the DSP and FPGA to implement the conventional DTC of induction machine. The DSP will be used for floating point calculation whereas the FPGA main task is to implement the hysteresis-based controller. The emphasis is on FPGA digital logic design. The simulation and experimental results are presented and summarized.Keywords: DTC, DSP, FPGA, induction machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19831461 Support Vector Machine for Persian Font Recognition
Abstract:
In this paper we examine the use of global texture analysis based approaches for the purpose of Persian font recognition in machine-printed document images. Most existing methods for font recognition make use of local typographical features and connected component analysis. However derivation of such features is not an easy task. Gabor filters are appropriate tools for texture analysis and are motivated by human visual system. Here we consider document images as textures and use Gabor filter responses for identifying the fonts. The method is content independent and involves no local feature analysis. Two different classifiers Weighted Euclidean Distance and SVM are used for the purpose of classification. Experiments on seven different type faces and four font styles show average accuracy of 85% with WED and 82% with SVM classifier over typefacesKeywords: Persian font recognition, support vector machine, gabor filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17101460 Comparison of Three Meta Heuristics to Optimize Hybrid Flow Shop Scheduling Problem with Parallel Machines
Authors: Wahyudin P. Syam, Ibrahim M. Al-Harkan
Abstract:
This study compares three meta heuristics to minimize makespan (Cmax) for Hybrid Flow Shop (HFS) Scheduling Problem with Parallel Machines. This problem is known to be NP-Hard. This study proposes three algorithms among improvement heuristic searches which are: Genetic Algorithm (GA), Simulated Annealing (SA), and Tabu Search (TS). SA and TS are known as deterministic improvement heuristic search. GA is known as stochastic improvement heuristic search. A comprehensive comparison from these three improvement heuristic searches is presented. The results for the experiments conducted show that TS is effective and efficient to solve HFS scheduling problems.
Keywords: Flow shop, genetic algorithm, simulated annealing, tabu search.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20661459 An Ontology Abstract Machine
Authors: Leong Lee, Jennifer Leopold, Julia Albath, Alton Coalter
Abstract:
As more people from non-technical backgrounds are becoming directly involved with large-scale ontology development, the focal point of ontology research has shifted from the more theoretical ontology issues to problems associated with the actual use of ontologies in real-world, large-scale collaborative applications. Recently the National Science Foundation funded a large collaborative ontology development project for which a new formal ontology model, the Ontology Abstract Machine (OAM), was developed to satisfy some unique functional and data representation requirements. This paper introduces the OAM model and the related algorithms that enable maintenance of an ontology that supports node-based user access. The successful software implementation of the OAM model and its subsequent acceptance by a large research community proves its validity and its real-world application value.Keywords: Ontology, Abstract Machine, Ontology Editor, WebbasedOntology Management System.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14061458 Implementation of Response Surface Methodology using in Small Brown Rice Peeling Machine: Part I
Authors: S. Bangphan, P. Bangphan, T.Boonkang
Abstract:
Implementation of response surface methodology (RSM) was employed to study the effects of two factor (rubber clearance and round per minute) in brown rice peeling machine of The optimal BROKENS yield (19.02, average of three repeats),.The optimized composition derived from RSM regression was analyzed using Regression analysis and Analysis of Variance (ANOVA). At a significant level α = 0.05, the values of Regression coefficient, R 2 (adj)were 97.35 % and standard deviation were 1.09513. The independent variables are initial rubber clearance, and round per minute parameters namely. The investigating responses are final rubber clearance, and round per minute (RPM). The restriction of the optimization is the designated.
Keywords: Brown rice, Response surface methodology(RSM), Rubber clearance, Round per minute (RPM), Peeling machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19701457 Indonesian News Classification using Support Vector Machine
Authors: Dewi Y. Liliana, Agung Hardianto, M. Ridok
Abstract:
Digital news with a variety topics is abundant on the internet. The problem is to classify news based on its appropriate category to facilitate user to find relevant news rapidly. Classifier engine is used to split any news automatically into the respective category. This research employs Support Vector Machine (SVM) to classify Indonesian news. SVM is a robust method to classify binary classes. The core processing of SVM is in the formation of an optimum separating plane to separate the different classes. For multiclass problem, a mechanism called one against one is used to combine the binary classification result. Documents were taken from the Indonesian digital news site, www.kompas.com. The experiment showed a promising result with the accuracy rate of 85%. This system is feasible to be implemented on Indonesian news classification.Keywords: classification, Indonesian news, text processing, support vector machine
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 34881456 Modeling and Simulations of Complex Low- Dimensional systems: Testing the Efficiency of Parallelization
Authors: Ryszard Matysiak, Grzegorz Kamieniarz
Abstract:
The deterministic quantum transfer-matrix (QTM) technique and its mathematical background are presented. This important tool in computational physics can be applied to a class of the real physical low-dimensional magnetic systems described by the Heisenberg hamiltonian which includes the macroscopic molecularbased spin chains, small size magnetic clusters embedded in some supramolecules and other interesting compounds. Using QTM, the spin degrees of freedom are accurately taken into account, yielding the thermodynamical functions at finite temperatures. In order to test the application for the susceptibility calculations to run in the parallel environment, the speed-up and efficiency of parallelization are analyzed on our platform SGI Origin 3800 with p = 128 processor units. Using Message Parallel Interface (MPI) system libraries we find the efficiency of the code of 94% for p = 128 that makes our application highly scalable.Keywords: Deterministic simulations, low-dimensional magnets, modeling of complex systems, parallelization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16131455 Graphical Programming of Programmable Logic Controllers -Case Study for a Punching Machine-
Authors: Vasile Marinescu, Ionut Clementin Constantin, Alexandru Epureanu, Virgil Teodor
Abstract:
The Programmable Logic Controller (PLC) plays a vital role in automation and process control. Grafcet is used for representing the control logic, and traditional programming languages are used for describing the pure algorithms. Grafcet is used for dividing the process to be automated in elementary sequences that can be easily implemented. Each sequence represent a step that has associated actions programmed using textual or graphical languages after case. The programming task is simplified by using a set of subroutines that are used in several steps. The paper presents an example of implementation for a punching machine for sheets and plates. The use the graphical languages the programming of a complex sequential process is a necessary solution. The state of Grafcet can be used for debugging and malfunction determination. The use of the method combined with a set of knowledge acquisition for process application reduces the downtime of the machine and improve the productivity.Keywords: Grafcet, Petrinet, PLC, punching.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21171454 Robust Integrated Design for a Mechatronic Feed Drive System of Machine Tools
Authors: Chin-Yin Chen, Chi-Cheng Cheng
Abstract:
This paper aims at to develop a robust optimization methodology for the mechatronic modules of machine tools by considering all important characteristics from all structural and control domains in one single process. The relationship between these two domains is strongly coupled. In order to reduce the disturbance caused by parameters in either one, the mechanical and controller design domains need to be integrated. Therefore, the concurrent integrated design method Design For Control (DFC), will be employed in this paper. In this connect, it is not only applied to achieve minimal power consumption but also enhance structural performance and system response at same time. To investigate the method for integrated optimization, a mechatronic feed drive system of the machine tools is used as a design platform. Pro/Engineer and AnSys are first used to build the 3D model to analyze and design structure parameters such as elastic deformation, nature frequency and component size, based on their effects and sensitivities to the structure. In addition, the robust controller,based on Quantitative Feedback Theory (QFT), will be applied to determine proper control parameters for the controller. Therefore, overall physical properties of the machine tool will be obtained in the initial stage. Finally, the technology of design for control will be carried out to modify the structural and control parameters to achieve overall system performance. Hence, the corresponding productivity is expected to be greatly improved.
Keywords: Machine tools, integrated structure and control design, design for control, multilevel decomposition, quantitative feedback theory.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19481453 Optimal Location of the I/O Point in the Parking System
Authors: Jing Zhang, Jie Chen
Abstract:
In this paper, we deal with the optimal I/O point location in an automated parking system. In this system, the S/R machine (storage and retrieve machine) travels independently in vertical and horizontal directions. Based on the characteristics of the parking system and the basic principle of AS/RS system (Automated Storage and Retrieval System), we obtain the continuous model in units of time. For the single command cycle using the randomized storage policy, we calculate the probability density function for the system travel time and thus we develop the travel time model. And we confirm that the travel time model shows a good performance by comparing with discrete case. Finally in this part, we establish the optimal model by minimizing the expected travel time model and it is shown that the optimal location of the I/O point is located at the middle of the left-hand above corner.
Keywords: Parking system, optimal location, response time, S/R machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6771452 Design and Analysis of a Novel 8-DOF Hybrid Manipulator
Authors: H. Mohammadipanah, H. Zohoor
Abstract:
This paper presents kinematic and dynamic analysis of a novel 8-DOF hybrid robot manipulator. The hybrid robot manipulator under consideration consists of a parallel robot which is followed by a serial mechanism. The parallel mechanism has three translational DOF, and the serial mechanism has five DOF so that the overall degree of freedom is eight. The introduced manipulator has a wide workspace and a high capability to reduce the actuating energy. The inverse and forward kinematic solutions are described in closed form. The theoretical results are verified by a numerical example. Inverse dynamic analysis of the robot is presented by utilizing the Iterative Newton-Euler and Lagrange dynamic formulation methods. Finally, for performing a multi-step arc welding process, results have indicated that the introduced manipulator is highly capable of reducing the actuating energy.Keywords: hybrid robot, closed form, inverse dynamic, actuating energy, arc welding
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20021451 A Robust STATCOM Controller for a Multi-Machine Power System Using Particle Swarm Optimization and Loop-Shaping
Authors: S.F. Faisal, A.H.M.A. Rahim, J.M. Bakhashwain
Abstract:
Design of a fixed parameter robust STATCOM controller for a multi-machine power system through an H-? based loop-shaping procedure is presented. The trial and error part of the graphical loop-shaping procedure has been eliminated by embedding a particle swarm optimization (PSO) technique in the design loop. Robust controllers were designed considering the detailed dynamics of the multi-machine system and results were compared with reduced order models. The robust strategy employing loop-shaping and PSO algorithms was observed to provide very good damping profile for a wide range of operation and for various disturbance conditions.
Keywords: STATCOM, Robust control, Power system damping, Particle Swarm Optimization, Loop-shaping.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18811450 A Text Classification Approach Based on Natural Language Processing and Machine Learning Techniques
Authors: Rim Messaoudi, Nogaye-Gueye Gning, François Azelart
Abstract:
Automatic text classification applies mostly natural language processing (NLP) and other artificial intelligence (AI)-guided techniques to automatically classify text in a faster and more accurate manner. This paper discusses the subject of using predictive maintenance to manage incident tickets inside the sociality. It focuses on proposing a tool that treats and analyses comments and notes written by administrators after resolving an incident ticket. The goal here is to increase the quality of these comments. Additionally, this tool is based on NLP and machine learning techniques to realize the textual analytics of the extracted data. This approach was tested using real data taken from the French National Railways (SNCF) company and was given a high-quality result.
Keywords: Machine learning, text classification, NLP techniques, semantic representation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2401449 k-Neighborhood Template A-Type Three-Dimensional Bounded Cellular Acceptor
Authors: Makoto Nagatomo, Yasuo Uchida, Makoto Sakamoto, Tuo Zhang, Tatsuma Kurogi, Takao Ito, Tsunehiro Yoshinaga, Satoshi Ikeda, Masahiro Yokomichi, Hiroshi Furutani
Abstract:
This paper presents a four-dimensional computational model, k-neighborhood template A-type three-dimensional bounded cellular acceptor (abbreviated as A-3BCA(k)), and discusses the hierarchical properties. An A-3BCA(k) is a four-dimensional automaton which consists of a pair of a converter and a configuration-reader. The former converts the given four-dimensional tape to the three- and two- dimensional configuration and the latter determines the acceptance or nonacceptance of given four-dimensional tape whether or not the derived two-dimensional configuration is accepted. We mainly investigate the difference of the accepting power based on the difference of the configuration-reader. It is shown that the difference of the accepting power of the configuration-reader tends to affect directly that of the A-3BCA(k) for the case when the converter is deterministic. On the other hand, results are not analogous for the nondeterministic case.Keywords: Cellular acceptor, configuration-reader, converter, finite automaton, four-dimension, on-line tessellation acceptor, parallel/sequential array acceptor, turing machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15101448 Support Vector Machine based Intelligent Watermark Decoding for Anticipated Attack
Authors: Syed Fahad Tahir, Asifullah Khan, Abdul Majid, Anwar M. Mirza
Abstract:
In this paper, we present an innovative scheme of blindly extracting message bits from an image distorted by an attack. Support Vector Machine (SVM) is used to nonlinearly classify the bits of the embedded message. Traditionally, a hard decoder is used with the assumption that the underlying modeling of the Discrete Cosine Transform (DCT) coefficients does not appreciably change. In case of an attack, the distribution of the image coefficients is heavily altered. The distribution of the sufficient statistics at the receiving end corresponding to the antipodal signals overlap and a simple hard decoder fails to classify them properly. We are considering message retrieval of antipodal signal as a binary classification problem. Machine learning techniques like SVM is used to retrieve the message, when certain specific class of attacks is most probable. In order to validate SVM based decoding scheme, we have taken Gaussian noise as a test case. We generate a data set using 125 images and 25 different keys. Polynomial kernel of SVM has achieved 100 percent accuracy on test data.Keywords: Bit Correct Ratio (BCR), Grid Search, Intelligent Decoding, Jackknife Technique, Support Vector Machine (SVM), Watermarking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16701447 Impact of the Decoder Connection Schemes on Iterative Decoding of GPCB Codes
Authors: Fouad Ayoub, Mohammed Lahmer, Mostafa Belkasmi, El Houssine Bouyakhf
Abstract:
In this paper we present a study of the impact of connection schemes on the performance of iterative decoding of Generalized Parallel Concatenated block (GPCB) constructed from one step majority logic decodable (OSMLD) codes and we propose a new connection scheme for decoding them. All iterative decoding connection schemes use a soft-input soft-output threshold decoding algorithm as a component decoder. Numerical result for GPCB codes transmitted over Additive White Gaussian Noise (AWGN) channel are provided. It will show that the proposed scheme is better than Hagenauer-s scheme and Lucas-s scheme [1] and slightly better than the Pyndiah-s scheme.
Keywords: Generalized parallel concatenated block codes, OSMLD codes, threshold decoding, iterative decoding scheme, and performance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17461446 Multilevel Activation Functions For True Color Image Segmentation Using a Self Supervised Parallel Self Organizing Neural Network (PSONN) Architecture: A Comparative Study
Authors: Siddhartha Bhattacharyya, Paramartha Dutta, Ujjwal Maulik, Prashanta Kumar Nandi
Abstract:
The paper describes a self supervised parallel self organizing neural network (PSONN) architecture for true color image segmentation. The proposed architecture is a parallel extension of the standard single self organizing neural network architecture (SONN) and comprises an input (source) layer of image information, three single self organizing neural network architectures for segmentation of the different primary color components in a color image scene and one final output (sink) layer for fusion of the segmented color component images. Responses to the different shades of color components are induced in each of the three single network architectures (meant for component level processing) by applying a multilevel version of the characteristic activation function, which maps the input color information into different shades of color components, thereby yielding a processed component color image segmented on the basis of the different shades of component colors. The number of target classes in the segmented image corresponds to the number of levels in the multilevel activation function. Since the multilevel version of the activation function exhibits several subnormal responses to the input color image scene information, the system errors of the three component network architectures are computed from some subnormal linear index of fuzziness of the component color image scenes at the individual level. Several multilevel activation functions are employed for segmentation of the input color image scene using the proposed network architecture. Results of the application of the multilevel activation functions to the PSONN architecture are reported on three real life true color images. The results are substantiated empirically with the correlation coefficients between the segmented images and the original images.
Keywords: Colour image segmentation, fuzzy set theory, multi-level activation functions, parallel self-organizing neural network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20221445 Analysis of the Result for the Accelerated Life Cycle Test of the Motor for Washing Machine by Using Acceleration Factor
Authors: Youn-Sung Kim, Jin-Ho Jo, Mi-Sung Kim, Jae-Kun Lee
Abstract:
Accelerated life cycle test is applied to various products or components in order to reduce the time of life cycle test in industry. It must be considered for many test conditions according to the product characteristics for the test and the selection of acceleration parameter is especially very important. We have carried out the general life cycle test and the accelerated life cycle test by applying the acceleration factor (AF) considering the characteristics of brushless DC (BLDC) motor for washing machine. The final purpose of this study is to verify the validity by analyzing the results of the general life cycle test and the accelerated life cycle test. It will make it possible to reduce the life test time through the reasonable accelerated life cycle test.Keywords: Accelerated life cycle test, reliability test, motor for washing machine, brushless dc motor test.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18841444 Calculation of the Forces Acting on the Knee Joint When Rising from Kneeling Positions (Effects of the Leg Alignment and the Arm Assistance on the Knee Joint Forces)
Authors: S. Hirokawa, M. Fukunaga, M. Mawatari
Abstract:
Knee joint forces are available by in vivo measurement using an instrumented knee prosthesis for small to moderate knee flexion but not for high flexion yet. We created a 2D mathematical model of the lower limb incorporating several new features such as a patello-femoral mechanism, a thigh-calf contact at high knee flexion and co-contracting muscles' force ratio, then used it to determine knee joint forces arising from high knee flexions in four kneeling conditions: rising with legs in parallel, with one foot forward, with or without arm use. With arms used, the maximum values of knee joint force decreased to about 60% of those with arms not used. When rising with one foot forward, if arms are not used, the forward leg sustains a force as large as that sustained when rising with legs parallel.Keywords: Knee joint force, kneeling, mathematical model, biomechanics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 41901443 Deriving Generic Transformation Matrices for Multi-Axis Milling Machine
Authors: Alan C. Lin, Tzu-Kuan Lin, Tsong Der Lin
Abstract:
This paper proposes a new method to find the equations of transformation matrix for the rotation angles of the two rotational axes and the coordinates of the three linear axes of an orthogonal multi-axis milling machine. This approach provides intuitive physical meanings for rotation angles of multi-axis machines, which can be used to evaluate the accuracy of the conversion from CL data to NC data.
Keywords: CAM, multi-axis milling machining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35811442 Consumer Product Demand Forecasting based on Artificial Neural Network and Support Vector Machine
Authors: Karin Kandananond
Abstract:
The nature of consumer products causes the difficulty in forecasting the future demands and the accuracy of the forecasts significantly affects the overall performance of the supply chain system. In this study, two data mining methods, artificial neural network (ANN) and support vector machine (SVM), were utilized to predict the demand of consumer products. The training data used was the actual demand of six different products from a consumer product company in Thailand. The results indicated that SVM had a better forecast quality (in term of MAPE) than ANN in every category of products. Moreover, another important finding was the margin difference of MAPE from these two methods was significantly high when the data was highly correlated.Keywords: Artificial neural network (ANN), Bullwhip effect, Consumer products, Demand forecasting, Supply chain, Support vector machine (SVM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30091441 An Automated Stock Investment System Using Machine Learning Techniques: An Application in Australia
Authors: Carol Anne Hargreaves
Abstract:
A key issue in stock investment is how to select representative features for stock selection. The objective of this paper is to firstly determine whether an automated stock investment system, using machine learning techniques, may be used to identify a portfolio of growth stocks that are highly likely to provide returns better than the stock market index. The second objective is to identify the technical features that best characterize whether a stock’s price is likely to go up and to identify the most important factors and their contribution to predicting the likelihood of the stock price going up. Unsupervised machine learning techniques, such as cluster analysis, were applied to the stock data to identify a cluster of stocks that was likely to go up in price – portfolio 1. Next, the principal component analysis technique was used to select stocks that were rated high on component one and component two – portfolio 2. Thirdly, a supervised machine learning technique, the logistic regression method, was used to select stocks with a high probability of their price going up – portfolio 3. The predictive models were validated with metrics such as, sensitivity (recall), specificity and overall accuracy for all models. All accuracy measures were above 70%. All portfolios outperformed the market by more than eight times. The top three stocks were selected for each of the three stock portfolios and traded in the market for one month. After one month the return for each stock portfolio was computed and compared with the stock market index returns. The returns for all three stock portfolios was 23.87% for the principal component analysis stock portfolio, 11.65% for the logistic regression portfolio and 8.88% for the K-means cluster portfolio while the stock market performance was 0.38%. This study confirms that an automated stock investment system using machine learning techniques can identify top performing stock portfolios that outperform the stock market.
Keywords: Machine learning, stock market trading, logistic principal component analysis, automated stock investment system.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 10991440 Machining Stability of a Milling Machine with Different Preloaded Spindle
Authors: Jui-Pin Hung, Qiao-Wen Chang, Kung-Da Wu, Yong-Run Chen
Abstract:
This study was aimed to investigate the machining stability of a spindle tool with different preloaded amount. To this end, the vibration tests were conducted on the spindle unit with different preload to assess the dynamic characteristics and machining stability of the milling machine. Current results demonstrate that the tool tip frequency response characteristics and the machining stabilities in X and Y direction are affected to change due to the different preload of spindle bearings. As found from the results, a high preloaded spindle tool shows higher limited cutting depth at mid position, while a spindle with low preload shows a higher limited depth. This indicates that the machining stability of a milling machine is affected to vary by the spindle unit when it was assembled with different bearing preload.Keywords: Dynamic compliance, Bearing preload, Machining stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21571439 Nonlinear Thermal Hydraulic Model to Analyze Parallel Channel Density Wave Instabilities in Natural Circulation Boiling Water Reactor with Asymmetric Power Distribution
Authors: Sachin Kumar, Vivek Tiwari, Goutam Dutta
Abstract:
The paper investigates parallel channel instabilities of natural circulation boiling water reactor. A thermal-hydraulic model is developed to simulate two-phase flow behavior in the natural circulation boiling water reactor (NCBWR) with the incorporation of ex-core components and recirculation loop such as steam separator, down-comer, lower-horizontal section and upper-horizontal section and then, numerical analysis is carried out for parallel channel instabilities of the reactor undergoing both in-phase and out-of-phase modes of oscillations. To analyze the relative effect on stability of the reactor due to inclusion of various ex-core components and recirculation loop, marginal stable point is obtained at a particular inlet enthalpy of the reactor core without the inclusion of ex-core components and recirculation loop and then with the inclusion of the same. Numerical simulations are also conducted to determine the relative dominance between two modes of oscillations i.e. in-phase and out-of-phase. Simulations are also carried out when the channels are subjected to asymmetric power distribution keeping the inlet enthalpy same.Keywords: Asymmetric power distribution, Density wave oscillations, In-phase and out-of-phase modes of instabilities, Natural circulation boiling water reactor
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2260