Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 31105
Impact of the Decoder Connection Schemes on Iterative Decoding of GPCB Codes

Authors: Fouad Ayoub, Mohammed Lahmer, Mostafa Belkasmi, El Houssine Bouyakhf


In this paper we present a study of the impact of connection schemes on the performance of iterative decoding of Generalized Parallel Concatenated block (GPCB) constructed from one step majority logic decodable (OSMLD) codes and we propose a new connection scheme for decoding them. All iterative decoding connection schemes use a soft-input soft-output threshold decoding algorithm as a component decoder. Numerical result for GPCB codes transmitted over Additive White Gaussian Noise (AWGN) channel are provided. It will show that the proposed scheme is better than Hagenauer-s scheme and Lucas-s scheme [1] and slightly better than the Pyndiah-s scheme.

Keywords: and Performance, Generalized parallel concatenated block codes, OSMLD codes, threshold decoding, iterative decoding scheme

Digital Object Identifier (DOI):

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1459


[1] F. Ayoub, M. Belkasmi and I. Channa, Iterative Decoding of Generalized Parallel Concatenated OSMLD Codes,Applied Mathematical Sciences journal,Vol.4,no. 41, pp. 2021-2038,2010
[2] C. Berrou, A. Glavieux and P. Thitimajshima,Near Shannonlimit errorcorrecting coding and decoding : Turbo-codes,IEEE Int. Conf. on Comm. ICC-93, 1993,pp. 1064-1071.
[3] P. Robertson, Illuminating the structure of code and decoder of parallel concatenated recursive systematic (turbo) codes, in Proc. IEEE Global Commun. Conf. (GLOBCOM94), San Francisco, CA,Dec. 1994, pp. 1298-1303.
[4] R. Pyndiah, Near-Optimum Decoding of Product Codes: Block Turbo Codes,IEEE Trans. Commun., Aug. 1998, Vol. 46, N 8, pp. 1003-1010.
[5] R. Lucas, M. Bossert and M. Breitbach, On Iterative Soft-Decision Decoding of Linear Binary Block Codes andProduct Codes,IEEE Journal on selected areas in communications. February 1998, Vol. 16, N 2, pp. 276-296.
[6] J. Hagenauer, E. Offer, and L. Papke, Iterative decoding of binary block and convolutional codes,IEEE Trans.Inform. Theory. Mar. 1996, Vol. 42, pp. 429-446.
[7] M. Belkasmi, M. Lahmer and M. Benchrifa, Iterative Threshold Decoding of Parallel Concatenated Block Codes. Turbo Coding Conf, Munich, 2006.
[8] Martin Tomlinson, Cen Jung Tjhai, Marcel A. Ambroze and Mohammed Z. Ahmed, Binary Cyclic Difference Set Codes Derived from Idempotents Based on Cyclotomic Cosets,submitted to IEEE Transations on inforamtion theory.May 2004
[9] J. Nilsson, R Kotter, Iterative decoding of product code constructions, Proceedings of ISIT-94, Sydney, Australia,November 1994, pp.1059-1064
[10] S. Benedetto and G. Montorsi, Average Performance of Parallel Concatenated Block Codes,Electronics Letters, vol. 31, no. 3, pp. 156-158, February 1995.
[11] J.L Massey, Threshold Decoding,Cambridge Ma, M.I.T. Press, 1963
[12] C. Clark and B. Cain, Error-Correction Coding for digital communications, Plenum Press,1981
[13] Yuri V. Svirid and Sven Riedel, Threshold Decoding of Turbo-Codes, IEEE Int. Symposium on Information Theory, 1995, pp. 39.
[14] S. Lin and D. J. Costello, Error Control Coding, Fundamentals and Applications, Englewood Cliffs, NJ: Prentice-Hall, 1983.