Search results for: Gaborwavelet networks
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1850

Search results for: Gaborwavelet networks

1550 An Energy-Efficient Distributed Unequal Clustering Protocol for Wireless Sensor Networks

Authors: Sungju Lee, Jangsoo Lee , Hongjoong Sin, Seunghwan Yoo, Sanghyuck Lee, Jaesik Lee, Yongjun Lee, Sungchun Kim

Abstract:

The wireless sensor networks have been extensively deployed and researched. One of the major issues in wireless sensor networks is a developing energy-efficient clustering protocol. Clustering algorithm provides an effective way to prolong the lifetime of a wireless sensor networks. In the paper, we compare several clustering protocols which significantly affect a balancing of energy consumption. And we propose an Energy-Efficient Distributed Unequal Clustering (EEDUC) algorithm which provides a new way of creating distributed clusters. In EEDUC, each sensor node sets the waiting time. This waiting time is considered as a function of residual energy, number of neighborhood nodes. EEDUC uses waiting time to distribute cluster heads. We also propose an unequal clustering mechanism to solve the hot-spot problem. Simulation results show that EEDUC distributes the cluster heads, balances the energy consumption well among the cluster heads and increases the network lifetime.

Keywords: Wireless Sensor Network, Distributed UnequalClustering, Multi-hop, Lifetime.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2494
1549 Greedy Geographical Void Routing for Wireless Sensor Networks

Authors: Chiang Tzu-Chiang, Chang Jia-Lin, Tsai Yue-Fu, Li Sha-Pai

Abstract:

With the advantage of wireless network technology, there are a variety of mobile applications which make the issue of wireless sensor networks as a popular research area in recent years. As the wireless sensor network nodes move arbitrarily with the topology fast change feature, mobile nodes are often confronted with the void issue which will initiate packet losing, retransmitting, rerouting, additional transmission cost and power consumption. When transmitting packets, we would not predict void problem occurring in advance. Thus, how to improve geographic routing with void avoidance in wireless networks becomes an important issue. In this paper, we proposed a greedy geographical void routing algorithm to solve the void problem for wireless sensor networks. We use the information of source node and void area to draw two tangents to form a fan range of the existence void which can announce voidavoiding message. Then we use source and destination nodes to draw a line with an angle of the fan range to select the next forwarding neighbor node for routing. In a dynamic wireless sensor network environment, the proposed greedy void avoiding algorithm can be more time-saving and more efficient to forward packets, and improve current geographical void problem of wireless sensor networks.

Keywords: Wireless sensor network, internet routing, wireless network, greedy void avoiding algorithm, bypassing void.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3574
1548 Existence and Globally Exponential Stability of Equilibrium for BAM Neural Networks with Mixed Delays and Impulses

Authors: Xiaomei Wang, Shouming Zhong

Abstract:

In this paper, a class of generalized bi-directional associative memory (BAM) neural networks with mixed delays is investigated. On the basis of Lyapunov stability theory and contraction mapping theorem, some new sufficient conditions are established for the existence and uniqueness and globally exponential stability of equilibrium, which generalize and improve the previously known results. One example is given to show the feasibility and effectiveness of our results.

Keywords: Bi-directional associative memory (BAM) neural networks, mixed delays, Lyapunov stability theory, contraction mapping theorem, existence, equilibrium, globally exponential stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1489
1547 Integrated Energy-Aware Mechanism for MANETs using On-demand Routing

Authors: M. Tamilarasi, T.G. Palanivelu

Abstract:

Mobile Ad Hoc Networks (MANETs) are multi-hop wireless networks in which all nodes cooperatively maintain network connectivity. In such a multi-hop wireless network, every node may be required to perform routing in order to achieve end-to-end communication among nodes. These networks are energy constrained as most ad hoc mobile nodes today operate with limited battery power. Hence, it is important to minimize the energy consumption of the entire network in order to maximize the lifetime of ad hoc networks. In this paper, a mechanism involving the integration of load balancing approach and transmission power control approach is introduced to maximize the life-span of MANETs. The mechanism is applied on Ad hoc On-demand Vector (AODV) protocol to make it as energy aware AODV (EA_AODV). The simulation is carried out using GloMoSim2.03 simulator. The results show that the proposed mechanism reduces the average required transmission energy per packet compared to the standard AODV.

Keywords: energy aware routing, load balance, Mobile Ad HocNetworks, MANETs , on demand routing, transmission power control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1967
1546 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks

Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian

Abstract:

Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.

Keywords: Lateral bearing capacity, short pile, clayey soil, artificial neural network, Imperialist competition algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 948
1545 Churn Prediction: Does Technology Matter?

Authors: John Hadden, Ashutosh Tiwari, Rajkumar Roy, Dymitr Ruta

Abstract:

The aim of this paper is to identify the most suitable model for churn prediction based on three different techniques. The paper identifies the variables that affect churn in reverence of customer complaints data and provides a comparative analysis of neural networks, regression trees and regression in their capabilities of predicting customer churn.

Keywords: Churn, Decision Trees, Neural Networks, Regression.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3311
1544 60 GHz Multi-Sector Antenna Array with Switchable Radiation-Beams for Small Cell 5G Networks

Authors: N. Ojaroudi Parchin, H. Jahanbakhsh Basherlou, Y. Al-Yasir, A. M. Abdulkhaleq, R. A. Abd-Alhameed, P. S. Excell

Abstract:

A compact design of multi-sector patch antenna array for 60 GHz applications is presented and discussed in details. The proposed design combines five 1x8 linear patch antenna arrays, referred to as sectors, in a multi-sector configuration. The coaxial-fed radiation elements of the multi-sector array are designed on 0.2 mm Rogers RT5880 dielectrics. The array operates in the frequency range of 58-62 GHz and provides switchable directional/omnidirectional radiation beams with high gain and high directivity characteristics. The designed multi-sector array exhibits good performances and could be used in the fifth generation (5G) cellular networks.

Keywords: MM-wave communications, multi-sector array, patch antenna, small cell networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 988
1543 Application New Approach with Two Networks Slow and Fast on the Asynchronous Machine

Authors: Samia Salah, M’hamed Hadj Sadok, Abderrezak Guessoum

Abstract:

In this paper, we propose a new modular approach called neuroglial consisting of two neural networks slow and fast which emulates a biological reality recently discovered. The implementation is based on complex multi-time scale systems; validation is performed on the model of the asynchronous machine. We applied the geometric approach based on the Gerschgorin circles for the decoupling of fast and slow variables, and the method of singular perturbations for the development of reductions models.

This new architecture allows for smaller networks with less complexity and better performance in terms of mean square error and convergence than the single network model.

Keywords: Gerschgorin’s Circles, Neuroglial Network, Multi time scales systems, Singular perturbation method.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1612
1542 A Survey of Access Control Schemes in Wireless Sensor Networks

Authors: Youssou Faye, Ibrahima Niang, Thomas Noel

Abstract:

Access control is a critical security service in Wire- less Sensor Networks (WSNs). To prevent malicious nodes from joining the sensor network, access control is required. On one hand, WSN must be able to authorize and grant users the right to access to the network. On the other hand, WSN must organize data collected by sensors in such a way that an unauthorized entity (the adversary) cannot make arbitrary queries. This restricts the network access only to eligible users and sensor nodes, while queries from outsiders will not be answered or forwarded by nodes. In this paper we presentee different access control schemes so as to ?nd out their objectives, provision, communication complexity, limits, etc. Using the node density parameter, we also provide a comparison of these proposed access control algorithms based on the network topology which can be flat or hierarchical.

Keywords: Access Control, Authentication, Key Management, Wireless Sensor Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2661
1541 Advanced Travel Information System in Heterogeneous Networks

Authors: Hsu-Yung Cheng, Victor Gau, Chih-Wei Huang, Jenq-Neng Hwang, Chih-Chang Yu

Abstract:

In order to achieve better road utilization and traffic efficiency, there is an urgent need for a travel information delivery mechanism to assist the drivers in making better decisions in the emerging intelligent transportation system applications. In this paper, we propose a relayed multicast scheme under heterogeneous networks for this purpose. In the proposed system, travel information consisting of summarized traffic conditions, important events, real-time traffic videos, and local information service contents is formed into layers and multicasted through an integration of WiMAX infrastructure and Vehicular Ad hoc Networks (VANET). By the support of adaptive modulation and coding in WiMAX, the radio resources can be optimally allocated when performing multicast so as to dynamically adjust the number of data layers received by the users. In addition to multicast supported by WiMAX, a knowledge propagation and information relay scheme by VANET is designed. The experimental results validate the feasibility and effectiveness of the proposed scheme.

Keywords: Intelligent Transportation Systems, RelayedMulticast, WiMAX, Vehicular Ad hoc Networks (VANET).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
1540 Rough Neural Networks in Adapting Cellular Automata Rule for Reducing Image Noise

Authors: Yasser F. Hassan

Abstract:

The reduction or removal of noise in a color image is an essential part of image processing, whether the final information is used for human perception or for an automatic inspection and analysis. This paper describes the modeling system based on the rough neural network model to adaptive cellular automata for various image processing tasks and noise remover. In this paper, we consider the problem of object processing in colored image using rough neural networks to help deriving the rules which will be used in cellular automata for noise image. The proposed method is compared with some classical and recent methods. The results demonstrate that the new model is capable of being trained to perform many different tasks, and that the quality of these results is comparable or better than established specialized algorithms.

Keywords: Rough Sets, Rough Neural Networks, Cellular Automata, Image Processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1957
1539 Applications of Cascade Correlation Neural Networks for Cipher System Identification

Authors: B. Chandra, P. Paul Varghese

Abstract:

Crypto System Identification is one of the challenging tasks in Crypt analysis. The paper discusses the possibility of employing Neural Networks for identification of Cipher Systems from cipher texts. Cascade Correlation Neural Network and Back Propagation Network have been employed for identification of Cipher Systems. Very large collection of cipher texts were generated using a Block Cipher (Enhanced RC6) and a Stream Cipher (SEAL). Promising results were obtained in terms of accuracy using both the Neural Network models but it was observed that the Cascade Correlation Neural Network Model performed better compared to Back Propagation Network.

Keywords: Back Propagation Neural Networks, CascadeCorrelation Neural Network, Crypto systems, Block Cipher, StreamCipher.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2451
1538 Advanced Neural Network Learning Applied to Pulping Modeling

Authors: Z. Zainuddin, W. D. Wan Rosli, R. Lanouette, S. Sathasivam

Abstract:

This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of pulping problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified odified problem M-1 Ax= M-1b where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.

Keywords: Convergence, pulping modeling, neural networks, preconditioned conjugate gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1415
1537 Exponential Stability of Periodic Solutions in Inertial Neural Networks with Unbounded Delay

Authors: Yunquan Ke, Chunfang Miao

Abstract:

In this paper, the exponential stability of periodic solutions in inertial neural networks with unbounded delay are investigated. First, using variable substitution the system is transformed to first order differential equation. Second, by the fixed-point theorem and constructing suitable Lyapunov function, some sufficient conditions guaranteeing the existence and exponential stability of periodic solutions of the system are obtained. Finally, two examples are given to illustrate the effectiveness of the results.

Keywords: Inertial neural networks, unbounded delay, fixed-point theorem, Lyapunov function, periodic solutions, exponential stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1536
1536 Simplified Models to Determine Nodal Voltagesin Problems of Optimal Allocation of Capacitor Banks in Power Distribution Networks

Authors: A. Pereira, S. Haffner, L. V. Gasperin

Abstract:

This paper presents two simplified models to determine nodal voltages in power distribution networks. These models allow estimating the impact of the installation of reactive power compensations equipments like fixed or switched capacitor banks. The procedure used to develop the models is similar to the procedure used to develop linear power flow models of transmission lines, which have been widely used in optimization problems of operation planning and system expansion. The steady state non-linear load flow equations are approximated by linear equations relating the voltage amplitude and currents. The approximations of the linear equations are based on the high relationship between line resistance and line reactance (ratio R/X), which is valid for power distribution networks. The performance and accuracy of the models are evaluated through comparisons with the exact results obtained from the solution of the load flow using two test networks: a hypothetical network with 23 nodes and a real network with 217 nodes.

Keywords: Distribution network models, distribution systems, optimization, power system planning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1567
1535 Improving Co-integration Trading Rule Profitability with Forecasts from an Artificial Neural Network

Authors: Paul Lajbcygier, Seng Lee

Abstract:

Co-integration models the long-term, equilibrium relationship of two or more related financial variables. Even if cointegration is found, in the short run, there may be deviations from the long run equilibrium relationship. The aim of this work is to forecast these deviations using neural networks and create a trading strategy based on them. A case study is used: co-integration residuals from Australian Bank Bill futures are forecast and traded using various exogenous input variables combined with neural networks. The choice of the optimal exogenous input variables chosen for each neural network, undertaken in previous work [1], is validated by comparing the forecasts and corresponding profitability of each, using a trading strategy.

Keywords: Artificial neural networks, co-integration, forecasting, trading rule.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1252
1534 The Ability of Forecasting the Term Structure of Interest Rates Based On Nelson-Siegel and Svensson Model

Authors: Tea Poklepović, Zdravka Aljinović, Branka Marasović

Abstract:

Due to the importance of yield curve and its estimation it is inevitable to have valid methods for yield curve forecasting in cases when there are scarce issues of securities and/or week trade on a secondary market. Therefore in this paper, after the estimation of weekly yield curves on Croatian financial market from October 2011 to August 2012 using Nelson-Siegel and Svensson models, yield curves are forecasted using Vector autoregressive model and Neural networks. In general, it can be concluded that both forecasting methods have good prediction abilities where forecasting of yield curves based on Nelson Siegel estimation model give better results in sense of lower Mean Squared Error than forecasting based on Svensson model Also, in this case Neural networks provide slightly better results. Finally, it can be concluded that most appropriate way of yield curve prediction is Neural networks using Nelson-Siegel estimation of yield curves.

Keywords: Nelson-Siegel model, Neural networks, Svensson model, Vector autoregressive model, Yield curve.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3256
1533 Design and Implementation a New Energy Efficient Clustering Algorithm using Genetic Algorithm for Wireless Sensor Networks

Authors: Moslem Afrashteh Mehr

Abstract:

Wireless Sensor Networks consist of small battery powered devices with limited energy resources. once deployed, the small sensor nodes are usually inaccessible to the user, and thus replacement of the energy source is not feasible. Hence, One of the most important issues that needs to be enhanced in order to improve the life span of the network is energy efficiency. to overcome this demerit many research have been done. The clustering is the one of the representative approaches. in the clustering, the cluster heads gather data from nodes and sending them to the base station. In this paper, we introduce a dynamic clustering algorithm using genetic algorithm. This algorithm takes different parameters into consideration to increase the network lifetime. To prove efficiency of proposed algorithm, we simulated the proposed algorithm compared with LEACH algorithm using the matlab

Keywords: Wireless Sensor Networks, Clustering, Geneticalgorithm, Energy Consumption

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2888
1532 Cooperative Data Caching in WSN

Authors: Narottam Chand

Abstract:

Wireless sensor networks (WSNs) have gained tremendous attention in recent years due to their numerous applications. Due to the limited energy resource, energy efficient operation of sensor nodes is a key issue in wireless sensor networks. Cooperative caching which ensures sharing of data among various nodes reduces the number of communications over the wireless channels and thus enhances the overall lifetime of a wireless sensor network. In this paper, we propose a cooperative caching scheme called ZCS (Zone Cooperation at Sensors) for wireless sensor networks. In ZCS scheme, one-hop neighbors of a sensor node form a cooperative cache zone and share the cached data with each other. Simulation experiments show that the ZCS caching scheme achieves significant improvements in byte hit ratio and average query latency in comparison with other caching strategies.

Keywords: Admission control, cache replacement, cooperative caching, WSN, zone cooperation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2764
1531 Exploiting Kinetic and Kinematic Data to Plot Cyclograms for Managing the Rehabilitation Process of BKAs by Applying Neural Networks

Authors: L. Parisi

Abstract:

Kinematic data wisely correlate vector quantities in space to scalar parameters in time to assess the degree of symmetry between the intact limb and the amputated limb with respect to a normal model derived from the gait of control group participants. Furthermore, these particular data allow a doctor to preliminarily evaluate the usefulness of a certain rehabilitation therapy. Kinetic curves allow the analysis of ground reaction forces (GRFs) to assess the appropriateness of human motion. Electromyography (EMG) allows the analysis of the fundamental lower limb force contributions to quantify the level of gait asymmetry. However, the use of this technological tool is expensive and requires patient’s hospitalization. This research work suggests overcoming the above limitations by applying artificial neural networks.

Keywords: Kinetics, kinematics, cyclograms, neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2094
1530 Modeling of Pulping of Sugar Maple Using Advanced Neural Network Learning

Authors: W. D. Wan Rosli, Z. Zainuddin, R. Lanouette, S. Sathasivam

Abstract:

This paper reports work done to improve the modeling of complex processes when only small experimental data sets are available. Neural networks are used to capture the nonlinear underlying phenomena contained in the data set and to partly eliminate the burden of having to specify completely the structure of the model. Two different types of neural networks were used for the application of Pulping of Sugar Maple problem. A three layer feed forward neural networks, using the Preconditioned Conjugate Gradient (PCG) methods were used in this investigation. Preconditioning is a method to improve convergence by lowering the condition number and increasing the eigenvalues clustering. The idea is to solve the modified problem where M is a positive-definite preconditioner that is closely related to A. We mainly focused on Preconditioned Conjugate Gradient- based training methods which originated from optimization theory, namely Preconditioned Conjugate Gradient with Fletcher-Reeves Update (PCGF), Preconditioned Conjugate Gradient with Polak-Ribiere Update (PCGP) and Preconditioned Conjugate Gradient with Powell-Beale Restarts (PCGB). The behavior of the PCG methods in the simulations proved to be robust against phenomenon such as oscillations due to large step size.

Keywords: Convergence, Modeling, Neural Networks, Preconditioned Conjugate Gradient.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1690
1529 Neural Network Imputation in Complex Survey Design

Authors: Safaa R. Amer

Abstract:

Missing data yields many analysis challenges. In case of complex survey design, in addition to dealing with missing data, researchers need to account for the sampling design to achieve useful inferences. Methods for incorporating sampling weights in neural network imputation were investigated to account for complex survey designs. An estimate of variance to account for the imputation uncertainty as well as the sampling design using neural networks will be provided. A simulation study was conducted to compare estimation results based on complete case analysis, multiple imputation using a Markov Chain Monte Carlo, and neural network imputation. Furthermore, a public-use dataset was used as an example to illustrate neural networks imputation under a complex survey design

Keywords: Complex survey, estimate, imputation, neural networks, variance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1980
1528 Impact of MAC Layer on the Performance of Routing Protocols in Mobile Ad hoc Networks

Authors: T.G. Basavaraju, Subir Kumar Sarkar, C Puttamadappa

Abstract:

Mobile Ad hoc Networks is an autonomous system of mobile nodes connected by multi-hop wireless links without centralized infrastructure support. As mobile communication gains popularity, the need for suitable ad hoc routing protocols will continue to grow. Efficient dynamic routing is an important research challenge in such a network. Bandwidth constrained mobile devices use on-demand approach in their routing protocols because of its effectiveness and efficiency. Many researchers have conducted numerous simulations for comparing the performance of these protocols under varying conditions and constraints. Most of them are not aware of MAC Protocols, which will impact the relative performance of routing protocols considered in different network scenarios. In this paper we investigate the choice of MAC protocols affects the relative performance of ad hoc routing protocols under different scenarios. We have evaluated the performance of these protocols using NS2 simulations. Our results show that the performance of routing protocols of ad hoc networks will suffer when run over different MAC Layer protocols.

Keywords: AODV, DSR, DSDV, MAC, MANETs, relativeperformance

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2685
1527 Improved Wavelet Neural Networks for Early Cancer Diagnosis Using Clustering Algorithms

Authors: Zarita Zainuddin, Ong Pauline

Abstract:

Wavelet neural networks (WNNs) have emerged as a vital alternative to the vastly studied multilayer perceptrons (MLPs) since its first implementation. In this paper, we applied various clustering algorithms, namely, K-means (KM), Fuzzy C-means (FCM), symmetry-based K-means (SBKM), symmetry-based Fuzzy C-means (SBFCM) and modified point symmetry-based K-means (MPKM) clustering algorithms in choosing the translation parameter of a WNN. These modified WNNs are further applied to the heterogeneous cancer classification using benchmark microarray data and were compared against the conventional WNN with random initialization method. Experimental results showed that a WNN classifier with the MPKM algorithm is more precise than the conventional WNN as well as the WNNs with other clustering algorithms.

Keywords: Clustering, microarray, symmetry, wavelet neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1625
1526 An Investigation into the Application of Artificial Neural Networks to the Prediction of Injuries in Sport

Authors: J. McCullagh, T. Whitfort

Abstract:

Artificial Neural Networks (ANNs) have been used successfully in many scientific, industrial and business domains as a method for extracting knowledge from vast amounts of data. However the use of ANN techniques in the sporting domain has been limited. In professional sport, data is stored on many aspects of teams, games, training and players. Sporting organisations have begun to realise that there is a wealth of untapped knowledge contained in the data and there is great interest in techniques to utilise this data. This study will use player data from the elite Australian Football League (AFL) competition to train and test ANNs with the aim to predict the onset of injuries. The results demonstrate that an accuracy of 82.9% was achieved by the ANNs’ predictions across all examples with 94.5% of all injuries correctly predicted. These initial findings suggest that ANNs may have the potential to assist sporting clubs in the prediction of injuries.

Keywords: Artificial Neural Networks, data, injuries, sport

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2905
1525 Securing Message in Wireless Sensor Network by using New Method of Code Conversions

Authors: Ahmed Chalak Shakir, GuXuemai, Jia Min

Abstract:

Recently, wireless sensor networks have been paid more interest, are widely used in a lot of commercial and military applications, and may be deployed in critical scenarios (e.g. when a malfunctioning network results in danger to human life or great financial loss). Such networks must be protected against human intrusion by using the secret keys to encrypt the exchange messages between communicating nodes. Both the symmetric and asymmetric methods have their own drawbacks for use in key management. Thus, we avoid the weakness of these two cryptosystems and make use of their advantages to establish a secure environment by developing the new method for encryption depending on the idea of code conversion. The code conversion-s equations are used as the key for designing the proposed system based on the basics of logic gate-s principals. Using our security architecture, we show how to reduce significant attacks on wireless sensor networks.

Keywords: logic gates, code conversions, Gray-code, and clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1664
1524 Data-organization Before Learning Multi-Entity Bayesian Networks Structure

Authors: H. Bouhamed, A. Rebai, T. Lecroq, M. Jaoua

Abstract:

The objective of our work is to develop a new approach for discovering knowledge from a large mass of data, the result of applying this approach will be an expert system that will serve as diagnostic tools of a phenomenon related to a huge information system. We first recall the general problem of learning Bayesian network structure from data and suggest a solution for optimizing the complexity by using organizational and optimization methods of data. Afterward we proposed a new heuristic of learning a Multi-Entities Bayesian Networks structures. We have applied our approach to biological facts concerning hereditary complex illnesses where the literatures in biology identify the responsible variables for those diseases. Finally we conclude on the limits arched by this work.

Keywords: Data-organization, data-optimization, automatic knowledge discovery, Multi-Entities Bayesian networks, score merging.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1618
1523 Optimized Energy Scheduling Algorithm for Energy Efficient Wireless Sensor Networks

Authors: S. Arun Rajan, S. Bhavani

Abstract:

Wireless sensor networks can be tiny, low cost, intelligent sensors connected with advanced communication systems. WSNs have pulled in significant consideration as a matter of fact that, industrial as well as medical solicitations employ these in monitoring targets, conservational observation, obstacle exposure, movement regulator etc. In these applications, sensor hubs are thickly sent in the unattended environment with little non-rechargeable batteries. This constraint requires energy-efficient systems to drag out the system lifetime. There are redundancies in data sent over the network. To overcome this, multiple virtual spine scheduling has been presented. Such networks problems are called Maximum Lifetime Backbone Scheduling (MLBS) problems. Though this sleep wake cycle reduces radio usage, improvement can be made in the path in which the group heads stay selected. Cluster head selection with emphasis on geometrical relation of the system will enhance the load sharing among the nodes. Also the data are analyzed to reduce redundant transmission. Multi-hop communication will facilitate lighter loads on the network.

Keywords: WSN, wireless sensor networks, MLBS, maximum lifetime backbone scheduling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 882
1522 Bandwidth Allocation for ABR Service in Cellular Networks

Authors: Khaja Kamaluddin, Muhammed Yousoof

Abstract:

Available Bit Rate Service (ABR) is the lower priority service and the better service for the transmission of data. On wireline ATM networks ABR source is always getting the feedback from switches about increase or decrease of bandwidth according to the changing network conditions and minimum bandwidth is guaranteed. In wireless networks guaranteeing the minimum bandwidth is really a challenging task as the source is always in mobile and traveling from one cell to another cell. Re establishment of virtual circuits from start to end every time causes the delay in transmission. In our proposed solution we proposed the mechanism to provide more available bandwidth to the ABR source by re-usage of part of old Virtual Channels and establishing the new ones. We want the ABR source to transmit the data continuously (non-stop) inorderto avoid the delay. In worst case scenario at least minimum bandwidth is to be allocated. In order to keep the data flow continuously, priority is given to the handoff ABR call against new ABR call.

Keywords: Bandwidth allocation, Virtual Channel (VC), CBR, ABR, MCR and QOS.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1605
1521 Effects of Distributed Generation on Voltage Profile for Reconfiguration of Distribution Networks

Authors: Mahdi Hayatdavudi, Ali Reza Rajabi, Mohammad Hassan Raouf, Mojtaba Saeedimoghadam, Amir Habibi

Abstract:

Generally, distributed generation units refer to small-scale electric power generators that produce electricity at a site close to the customer or an electric distribution system (in parallel mode). From the customers’ point of view, a potentially lower cost, higher service reliability, high power quality, increased energy efficiency, and energy independence can be the key points of a proper DG unit. Moreover, the use of renewable types of distributed generations such as wind, photovoltaic, geothermal or hydroelectric power can also provide significant environmental benefits. Therefore, it is of crucial importance to study their impacts on the distribution networks. A marked increase in Distributed Generation (DG), associated with medium voltage distribution networks, may be expected. Nowadays, distribution networks are planned for unidirectional power flows that are peculiar to passive systems, and voltage control is carried out exclusively by varying the tap position of the HV/MV transformer. This paper will compare different DG control methods and possible network reconfiguration aimed at assessing their effect on voltage profiles.

Keywords: Distribution Feeder Reconfiguration (DFR), Distributed Generator (DG), Voltage Profile, Control.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1961