Search results for: Functions of random variables.
2448 Comparison of Multivariate Adaptive Regression Splines and Random Forest Regression in Predicting Forced Expiratory Volume in One Second
Authors: P. V. Pramila, V. Mahesh
Abstract:
Pulmonary Function Tests are important non-invasive diagnostic tests to assess respiratory impairments and provides quantifiable measures of lung function. Spirometry is the most frequently used measure of lung function and plays an essential role in the diagnosis and management of pulmonary diseases. However, the test requires considerable patient effort and cooperation, markedly related to the age of patients resulting in incomplete data sets. This paper presents, a nonlinear model built using Multivariate adaptive regression splines and Random forest regression model to predict the missing spirometric features. Random forest based feature selection is used to enhance both the generalization capability and the model interpretability. In the present study, flow-volume data are recorded for N= 198 subjects. The ranked order of feature importance index calculated by the random forests model shows that the spirometric features FVC, FEF25, PEF, FEF25-75, FEF50 and the demographic parameter height are the important descriptors. A comparison of performance assessment of both models prove that, the prediction ability of MARS with the `top two ranked features namely the FVC and FEF25 is higher, yielding a model fit of R2= 0.96 and R2= 0.99 for normal and abnormal subjects. The Root Mean Square Error analysis of the RF model and the MARS model also shows that the latter is capable of predicting the missing values of FEV1 with a notably lower error value of 0.0191 (normal subjects) and 0.0106 (abnormal subjects) with the aforementioned input features. It is concluded that combining feature selection with a prediction model provides a minimum subset of predominant features to train the model, as well as yielding better prediction performance. This analysis can assist clinicians with a intelligence support system in the medical diagnosis and improvement of clinical care.
Keywords: FEV1, Multivariate Adaptive Regression Splines Pulmonary Function Test, Random Forest.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 37372447 Implementation of the SIP Express Router with Mediaproxy Method on VoIP
Authors: Heru Nurwarsito, R. Arief Setyawan, Rakhmadhany Primananda
Abstract:
Voice Over IP (VoIP) is a technology that could pass the voice traffic and data packet form over an IP network. Network can be used for intranet or Internet. Phone calls using VoIP has advantages in terms of cheaper cost of PSTN phone to more than half, because the cost is calculated by the cost of the global nature of the Internet. Session Initiation Protocol (SIP) is a signaling protocol at the application layer which serves to establish, modify, and terminate a multimedia session involving one or more users. This SIP signaling has SIP message in text form that is used for session management by the SIP components, such as User Agent, Registrar, Redirect Server, and Proxy Server. To build a SIP communication is required SIP Express Router (SER) to be able to receive SIP messages, for handling the basic functions of SIP messages. Problems occur when the NAT through which affects the voice communication will be blocked starting from the sound that is not sent or one side of the sound are sent (half duplex). How that could be used to penetrate NAT is to use a given mediaproxy random RTP port to penetrate NAT.Keywords: VoIP, SIP, SIP Express Router, NAT, Mediaproxy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25582446 Optimization of Lean Methodologies in the Textile Industry Using Design of Experiments
Authors: Ahmad Yame, Ahad Ali, Badih Jawad, Daw Al-Werfalli Mohamed Nasser, Sabah Abro
Abstract:
Industries in general have a lot of waste. Wool textile company, Baniwalid, Libya has many complex problems that led to enormous waste generated due to the lack of lean strategies, expertise, technical support and commitment. To successfully address waste at wool textile company, this study will attempt to develop a methodical approach that integrates lean manufacturing tools to optimize performance characteristics such as lead time and delivery. This methodology will utilize Value Stream Mapping (VSM) techniques to identify the process variables that affect production. Once these variables are identified, Design of Experiments (DOE) Methodology will be used to determine the significantly influential process variables, these variables are then controlled and set at their optimal to achieve optimal levels of productivity, quality, agility, efficiency and delivery to analyze the outputs of the simulation model for different lean configurations. The goal of this research is to investigate how the tools of lean manufacturing can be adapted from the discrete to the continuous manufacturing environment and to evaluate their benefits at a specific industrial.Keywords: Lean manufacturing, DOE, value stream mapping, textiles.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19402445 Visual Cryptography by Random Grids with Identifiable Shares
Authors: Ran-Zan Wang, Yao-Ting Lee
Abstract:
This paper proposes a visual cryptography by random grids scheme with identifiable shares. The method encodes an image O in two shares that exhibits the following features: (1) each generated share has the same scale as O, (2) any share singly has noise-like appearance that reveals no secret information on O, (3) the secrets can be revealed by superimposing the two shares, (4) folding a share up can disclose some identification patterns, and (5) both of the secret information and the designated identification patterns are recognized by naked eye without any computation. The property to show up identification patterns on folded shares establishes a simple and friendly interface for users to manage the numerous shares created by VC schemes.Keywords: Image Encryption, Image Sharing, Secret Sharing, Visual Cryptography.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17622444 Optimization of Doubly Fed Induction Generator Equivalent Circuit Parameters by Direct Search Method
Authors: Mamidi Ramakrishna Rao
Abstract:
Doubly-fed induction generator (DFIG) is currently the choice for many wind turbines. These generators, when connected to the grid through a converter, is subjected to varied power system conditions like voltage variation, frequency variation, short circuit fault conditions, etc. Further, many countries like Canada, Germany, UK, Scotland, etc. have distinct grid codes relating to wind turbines. Accordingly, following the network faults, wind turbines have to supply a definite reactive current. To satisfy the requirements including reactive current capability, an optimum electrical design becomes a mandate for DFIG to function. This paper intends to optimize the equivalent circuit parameters of an electrical design for satisfactory DFIG performance. Direct search method has been used for optimization of the parameters. The variables selected include electromagnetic core dimensions (diameters and stack length), slot dimensions, radial air gap between stator and rotor and winding copper cross section area. Optimization for 2 MW DFIG has been executed separately for three objective functions - maximum reactive power capability (Case I), maximum efficiency (Case II) and minimum weight (Case III). In the optimization analysis program, voltage variations (10%), power factor- leading and lagging (0.95), speeds for corresponding to slips (-0.3 to +0.3) have been considered. The optimum designs obtained for objective functions were compared. It can be concluded that direct search method of optimization helps in determining an optimum electrical design for each objective function like efficiency or reactive power capability or weight minimization.
Keywords: Direct search, DFIG, equivalent circuit parameters, optimization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9052443 Causal Relationship between Macro-Economic Indicators and Funds Unit Prices Behavior: Evidence from Malaysian Islamic Equity Unit Trust Funds Industry
Authors: Anwar Hasan Abdullah Othman, Ahamed Kameel, Hasanuddeen Abdul Aziz
Abstract:
In this study, attempt has been made to investigate the relationship specifically the causal relation between fund unit prices of Islamic equity unit trust fund which measure by fund NAV and the selected macro-economic variables of Malaysian economy by using VECM causality test and Granger causality test. Monthly data has been used from Jan, 2006 to Dec, 2012 for all the variables. The findings of the study showed that industrial production index, political election and financial crisis are the only variables having unidirectional causal relationship with fund unit price. However the global oil price is having bidirectional causality with fund NAV. Thus, it is concluded that the equity unit trust fund industry in Malaysia is an inefficient market with respect to the industrial production index, global oil prices, political election and financial crisis. However the market is approaching towards informational efficiency at least with respect to four macroeconomic variables, treasury bill rate, money supply, foreign exchange rate, and corruption index.
Keywords: Fund unit price, unit trust industry, Malaysia, macroeconomic variables, causality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36022442 Predominance of Teaching Models Used by Math Teachers in Secondary Education
Authors: Verónica Diaz Quezada
Abstract:
This research examines the teaching models used by secondary math teachers when teaching logarithmic, quadratic and exponential functions. For this, descriptive case studies have been carried out on 5 secondary teachers. These teachers have been chosen from 3 scientific-humanistic and technical schools, in Chile. Data have been obtained through non-participant class observation and the application of a questionnaire and a rubric to teachers. According to the results, the didactic model that prevails is the one that starts with an interactive strategy, moves to a more content-based structure, and ends with a reinforcement stage. Nonetheless, there is always influence from teachers, their methods, and the group of students.Keywords: Teaching models, math teachers, functions, secondary education.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8042441 Schmitt Trigger Based SRAM Using Finfet Technology- Shorted Gate Mode
Authors: Vasundara Patel K. S., Harsha N. Bhushan, Kiran G. Gadag, Nischal Prasad B. N., Mohmmed Haroon
Abstract:
The most widely used semiconductor memory types are the Dynamic Random Access Memory (DRAM) and Static Random Access memory (SRAM). Competition among memory manufacturers drives the need to decrease power consumption and reduce the probability of read failure. A technology that is relatively new and has not been explored is the FinFET technology. In this paper, a single cell Schmitt Trigger Based Static RAM using FinFET technology is proposed and analyzed. The accuracy of the result is validated by means of HSPICE simulations with 32nm FinFET technology and the results are then compared with 6T SRAM using the same technology.
Keywords: Schmitt trigger based SRAM, FinFET, and Static Noise Margin.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28502440 Evaluation of a Surrogate Based Method for Global Optimization
Authors: David Lindström
Abstract:
We evaluate the performance of a numerical method for global optimization of expensive functions. The method is using a response surface to guide the search for the global optimum. This metamodel could be based on radial basis functions, kriging, or a combination of different models. We discuss how to set the cyclic parameters of the optimization method to get a balance between local and global search. We also discuss the eventual problem with Runge oscillations in the response surface.Keywords: Expensive function, infill sampling criterion, kriging, global optimization, response surface, Runge phenomenon.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23812439 Using Pattern Search Methods for Minimizing Clustering Problems
Authors: Parvaneh Shabanzadeh, Malik Hj Abu Hassan, Leong Wah June, Maryam Mohagheghtabar
Abstract:
Clustering is one of an interesting data mining topics that can be applied in many fields. Recently, the problem of cluster analysis is formulated as a problem of nonsmooth, nonconvex optimization, and an algorithm for solving the cluster analysis problem based on nonsmooth optimization techniques is developed. This optimization problem has a number of characteristics that make it challenging: it has many local minimum, the optimization variables can be either continuous or categorical, and there are no exact analytical derivatives. In this study we show how to apply a particular class of optimization methods known as pattern search methods to address these challenges. These methods do not explicitly use derivatives, an important feature that has not been addressed in previous studies. Results of numerical experiments are presented which demonstrate the effectiveness of the proposed method.Keywords: Clustering functions, Non-smooth Optimization, Nonconvex Optimization, Pattern Search Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16402438 A Novel Approach to Handle Uncertainty in Health System Variables for Hospital Admissions
Authors: Manisha Rathi, Thierry Chaussalet
Abstract:
Hospital staff and managers are under pressure and concerned for effective use and management of scarce resources. The hospital admissions require many decisions that have complex and uncertain consequences for hospital resource utilization and patient flow. It is challenging to predict risk of admissions and length of stay of a patient due to their vague nature. There is no method to capture the vague definition of admission of a patient. Also, current methods and tools used to predict patients at risk of admission fail to deal with uncertainty in unplanned admission, LOS, patients- characteristics. The main objective of this paper is to deal with uncertainty in health system variables, and handles uncertain relationship among variables. An introduction of machine learning techniques along with statistical methods like Regression methods can be a proposed solution approach to handle uncertainty in health system variables. A model that adapts fuzzy methods to handle uncertain data and uncertain relationships can be an efficient solution to capture the vague definition of admission of a patient.Keywords: Admission, Fuzzy, Regression, Uncertainty
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14202437 Auto Tuning of PID Controller for MIMO Processes
Authors: M. J. Lengare, R. H. Chile, L. M. Waghmare, Bhavesh Parmar
Abstract:
One of the most basic functions of control engineers is tuning of controllers. There are always several process loops in the plant necessitate of tuning. The auto tuned Proportional Integral Derivative (PID) Controllers are designed for applications where large load changes are expected or the need for extreme accuracy and fast response time exists. The algorithm presented in this paper is used for the tuning PID controller to obtain its parameters with a minimum computing complexity. It requires continuous analysis of variation in few parameters, and let the program to do the plant test and calculate the controller parameters to adjust and optimize the variables for the best performance. The algorithm developed needs less time as compared to a normal step response test for continuous tuning of the PID through gain scheduling.Keywords: Auto tuning; gain scheduling; MIMO Processes; Optimization; PID controller; Process Control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 30092436 Improving Co-integration Trading Rule Profitability with Forecasts from an Artificial Neural Network
Authors: Paul Lajbcygier, Seng Lee
Abstract:
Co-integration models the long-term, equilibrium relationship of two or more related financial variables. Even if cointegration is found, in the short run, there may be deviations from the long run equilibrium relationship. The aim of this work is to forecast these deviations using neural networks and create a trading strategy based on them. A case study is used: co-integration residuals from Australian Bank Bill futures are forecast and traded using various exogenous input variables combined with neural networks. The choice of the optimal exogenous input variables chosen for each neural network, undertaken in previous work [1], is validated by comparing the forecasts and corresponding profitability of each, using a trading strategy.
Keywords: Artificial neural networks, co-integration, forecasting, trading rule.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12462435 Simple Procedure for Probability Calculation of Tensile Crack Occurring in Rigid Pavement – Case Study
Authors: Aleš Florian, Lenka Ševelová, Jaroslav Žák
Abstract:
Formation of tensile cracks in concrete slabs of rigid pavement can be (among others) the initiation point of the other, more serious failures which can ultimately lead to complete degradation of the concrete slab and thus the whole pavement. Two measures can be used for reliability assessment of this phenomenon - the probability of failure and/or the reliability index. Different methods can be used for their calculation. The simple ones are called moment methods and simulation techniques. Two methods - FOSM Method and Simple Random Sampling Method - are verified and their comparison is performed. The influence of information about the probability distribution and the statistical parameters of input variables as well as of the limit state function on the calculated reliability index and failure probability are studied in three points on the lower surface of concrete slabs of the older type of rigid pavement formerly used in the Czech Republic.
Keywords: Failure, pavement, probability, reliability index, simulation, tensile crack.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23052434 Monitoring and Fault-Recovery Capacity with Waveguide Grating-based Optical Switch over WDM/OCDMA-PON
Authors: Yao-Tang Chang, Chuen-Ching Wang, Shu-Han Hu
Abstract:
In order to implement flexibility as well as survivable capacities over passive optical network (PON), a new automatic random fault-recovery mechanism with array-waveguide-grating based (AWG-based) optical switch (OSW) is presented. Firstly, wavelength-division-multiplexing and optical code-division multiple-access (WDM/OCDMA) scheme are configured to meet the various geographical locations requirement between optical network unit (ONU) and optical line terminal (OLT). The AWG-base optical switch is designed and viewed as central star-mesh topology to prohibit/decrease the duplicated redundant elements such as fiber and transceiver as well. Hence, by simple monitoring and routing switch algorithm, random fault-recovery capacity is achieved over bi-directional (up/downstream) WDM/OCDMA scheme. When error of distribution fiber (DF) takes place or bit-error-rate (BER) is higher than 10-9 requirement, the primary/slave AWG-based OSW are adjusted and controlled dynamically to restore the affected ONU groups via the other working DFs immediately.Keywords: Random fault recovery mechanism, Array-waveguide-grating based optical switch (AWG- based OSW), wavelength-division-multiplexing and optical code-divisionmultiple-access (WDM/ OCDMA)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16402433 State Estimation Based on Unscented Kalman Filter for Burgers’ Equation
Authors: Takashi Shimizu, Tomoaki Hashimoto
Abstract:
Controlling the flow of fluids is a challenging problem that arises in many fields. Burgers’ equation is a fundamental equation for several flow phenomena such as traffic, shock waves, and turbulence. The optimal feedback control method, so-called model predictive control, has been proposed for Burgers’ equation. However, the model predictive control method is inapplicable to systems whose all state variables are not exactly known. In practical point of view, it is unusual that all the state variables of systems are exactly known, because the state variables of systems are measured through output sensors and limited parts of them can be only available. In fact, it is usual that flow velocities of fluid systems cannot be measured for all spatial domains. Hence, any practical feedback controller for fluid systems must incorporate some type of state estimator. To apply the model predictive control to the fluid systems described by Burgers’ equation, it is needed to establish a state estimation method for Burgers’ equation with limited measurable state variables. To this purpose, we apply unscented Kalman filter for estimating the state variables of fluid systems described by Burgers’ equation. The objective of this study is to establish a state estimation method based on unscented Kalman filter for Burgers’ equation. The effectiveness of the proposed method is verified by numerical simulations.Keywords: State estimation, fluid systems, observer systems, unscented Kalman filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 7422432 A Study of Factors Affecting the Elapsed Time of Housing Renewal Project Implementation in Seoul
Authors: In Su Na, Gunwon Lee, Seiyong Kim
Abstract:
This study analyzed the effect of area variables and economic variables on the length of each period of the project in order to analyze the effect of agreement rate on project implementation in housing renewal projects. In conclusion, as can be seen from these results, a low agreement rate may not translate into project promotion, and a higher agreement rate may not translate into project delay. The expectation of the policy is that the lower the agreement rate, the more projects would be promoted, but that is not the actual effect. From a policy consistency viewpoint, changing the agreement rate frequently, depending on the decision of the public, is not reasonable. The policy of using agreement rate as a necessary condition for project implementation should be reconsidered.Keywords: Area and Economic Variables, Elapsed time, Housing Renewal Project.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16242431 Bandwidth, Area Efficient and Target Device Independent DDR SDRAM Controller
Authors: T. Mladenov, F. Mujahid, E. Jung, D. Har
Abstract:
The application of the synchronous dynamic random access memory (SDRAM) has gone beyond the scope of personal computers for quite a long time. It comes into hand whenever a big amount of low price and still high speed memory is needed. Most of the newly developed stand alone embedded devices in the field of image, video and sound processing take more and more use of it. The big amount of low price memory has its trade off – the speed. In order to take use of the full potential of the memory, an efficient controller is needed. Efficient stands for maximum random accesses to the memory both for reading and writing and less area after implementation. This paper proposes a target device independent DDR SDRAM pipelined controller and provides performance comparison with available solutions.Keywords: DDR SDRAM, controller, effective implementation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15542430 3D Human Reconstruction over Cloud Based Image Data via AI and Machine Learning
Authors: Kaushik Sathupadi, Sandesh Achar
Abstract:
Human action recognition (HAR) modeling is a critical task in machine learning. These systems require better techniques for recognizing body parts and selecting optimal features based on vision sensors to identify complex action patterns efficiently. Still, there is a considerable gap and challenges between images and videos, such as brightness, motion variation, and random clutters. This paper proposes a robust approach for classifying human actions over cloud-based image data. First, we apply pre-processing and detection, human and outer shape detection techniques. Next, we extract valuable information in terms of cues. We extract two distinct features: fuzzy local binary patterns and sequence representation. Then, we applied a greedy, randomized adaptive search procedure for data optimization and dimension reduction, and for classification, we used a random forest. We tested our model on two benchmark datasets, AAMAZ and the KTH Multi-view Football datasets. Our HAR framework significantly outperforms the other state-of-the-art approaches and achieves a better recognition rate of 91% and 89.6% over the AAMAZ and KTH Multi-view Football datasets, respectively.
Keywords: Computer vision, human motion analysis, random forest, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 342429 Ensembling Adaptively Constructed Polynomial Regression Models
Authors: Gints Jekabsons
Abstract:
The approach of subset selection in polynomial regression model building assumes that the chosen fixed full set of predefined basis functions contains a subset that is sufficient to describe the target relation sufficiently well. However, in most cases the necessary set of basis functions is not known and needs to be guessed – a potentially non-trivial (and long) trial and error process. In our research we consider a potentially more efficient approach – Adaptive Basis Function Construction (ABFC). It lets the model building method itself construct the basis functions necessary for creating a model of arbitrary complexity with adequate predictive performance. However, there are two issues that to some extent plague the methods of both the subset selection and the ABFC, especially when working with relatively small data samples: the selection bias and the selection instability. We try to correct these issues by model post-evaluation using Cross-Validation and model ensembling. To evaluate the proposed method, we empirically compare it to ABFC methods without ensembling, to a widely used method of subset selection, as well as to some other well-known regression modeling methods, using publicly available data sets.Keywords: Basis function construction, heuristic search, modelensembles, polynomial regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16732428 Optimized Fuzzy Control by Particle Swarm Optimization Technique for Control of CSTR
Authors: Saeed Vaneshani, Hooshang Jazayeri-Rad
Abstract:
Fuzzy logic control (FLC) systems have been tested in many technical and industrial applications as a useful modeling tool that can handle the uncertainties and nonlinearities of modern control systems. The main drawback of the FLC methodologies in the industrial environment is challenging for selecting the number of optimum tuning parameters. In this paper, a method has been proposed for finding the optimum membership functions of a fuzzy system using particle swarm optimization (PSO) algorithm. A synthetic algorithm combined from fuzzy logic control and PSO algorithm is used to design a controller for a continuous stirred tank reactor (CSTR) with the aim of achieving the accurate and acceptable desired results. To exhibit the effectiveness of proposed algorithm, it is used to optimize the Gaussian membership functions of the fuzzy model of a nonlinear CSTR system as a case study. It is clearly proved that the optimized membership functions (MFs) provided better performance than a fuzzy model for the same system, when the MFs were heuristically defined.Keywords: continuous stirred tank reactor (CSTR), fuzzy logiccontrol (FLC), membership function(MF), particle swarmoptimization (PSO)
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32012427 Fatigue Life Prediction on Steel Beam Bridges under Variable Amplitude Loading
Authors: M. F. V. Montezuma, E. P. Deus, M. C. Carvalho
Abstract:
Steel bridges are normally subjected to random loads with different traffic frequencies. They are structures with dynamic behavior and are subject to fatigue failure process, where the nucleation of a crack, growth and failure can occur. After locating and determining the size of an existing fault, it is important to predict the crack propagation and the convenient time for repair. Therefore, fracture mechanics and fatigue concepts are essential to the right approach to the problem. To study the fatigue crack growth, a computational code was developed by using the root mean square (RMS) and the cycle-by-cycle models. One observes the variable amplitude loading influence on the life structural prediction. Different loads histories and initial crack length were considered as input variables. Thus, it was evaluated the dispersion of results of the expected structural life choosing different initial parameters.
Keywords: Fatigue crack propagation, life prediction, variable loadings, steel bridges.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5282426 A Study of Classification Models to Predict Drill-Bit Breakage Using Degradation Signals
Authors: Bharatendra Rai
Abstract:
Cutting tools are widely used in manufacturing processes and drilling is the most commonly used machining process. Although drill-bits used in drilling may not be expensive, their breakage can cause damage to expensive work piece being drilled and at the same time has major impact on productivity. Predicting drill-bit breakage, therefore, is important in reducing cost and improving productivity. This study uses twenty features extracted from two degradation signals viz., thrust force and torque. The methodology used involves developing and comparing decision tree, random forest, and multinomial logistic regression models for classifying and predicting drill-bit breakage using degradation signals.
Keywords: Degradation signal, drill-bit breakage, random forest, multinomial logistic regression.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22422425 The Application of Hybrid Orthonomal Bernstein and Block-Pulse Functions in Finding Numerical Solution of Fredholm Fuzzy Integral Equations
Authors: Mahmoud Zarrini, Sanaz Torkaman
Abstract:
In this paper, we have proposed a numerical method for solving fuzzy Fredholm integral equation of the second kind. In this method a combination of orthonormal Bernstein and Block-Pulse functions are used. In most cases, the proposed method leads to the exact solution. The advantages of this method are shown by an example and calculate the error analysis.
Keywords: Fuzzy Fredholm Integral Equation, Bernstein, Block-Pulse, Orthonormal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20292424 The Influences of Marketing Mix on Customer Purchasing Behavior at Chatuchak Plaza Market
Authors: Bundit Pungnirund
Abstract:
The objective of this research was to study the influence of marketing mix on customers purchasing behavior. A total of 397 respondents were collected from customers who were the patronages of the Chatuchak Plaza market. A questionnaire was utilized as a tool to collect data. Statistics utilized in this research included frequency, percentage, mean, standard deviation, and multiple regression analysis. Data were analyzed by using Statistical Package for the Social Sciences. The findings revealed that the majority of respondents were male with the age between 25-34 years old, hold undergraduate degree, married and stay together. The average income of respondents was between 10,001-20,000 baht. In terms of occupation, the majority worked for private companies. The research analysis disclosed that there were three variables of marketing mix which included price (X2), place (X3), and product (X1) which had an influence on the frequency of customer purchasing. These three variables can predict a purchase about 30 percent of the time by using the equation; Y1 = 6.851 + .921(X2) + .949(X3) + .591(X1). It also found that in terms of marketing mixed, there were two variables had an influence on the amount of customer purchasing which were physical characteristic (X6), and the process (X7). These two variables are 17 percent predictive of a purchasing by using the equation: Y2 = 2276.88 + 2980.97(X6) + 2188.09(X7).
Keywords: Influences, Marketing Mixed, Purchasing Behavior.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 115382423 Ratio Type Estimators of the Population Mean Based on Ranked Set Sampling
Authors: Said Ali Al-Hadhrami
Abstract:
Ranked set sampling (RSS) was first suggested to increase the efficiency of the population mean. It has been shown that this method is highly beneficial to the estimation based on simple random sampling (SRS). There has been considerable development and many modifications were done on this method. When a concomitant variable is available, ratio estimation based on ranked set sampling was proposed. This ratio estimator is more efficient than that based on SRS. In this paper some ratio type estimators of the population mean based on RSS are suggested. These estimators are found to be more efficient than the estimators of similar form using simple random sample.
Keywords: Bias, Efficiency, Ranked Set Sampling, Ratio Type Estimator
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13742422 Discriminant Analysis as a Function of Predictive Learning to Select Evolutionary Algorithms in Intelligent Transportation System
Authors: Jorge A. Ruiz-Vanoye, Ocotlán Díaz-Parra, Alejandro Fuentes-Penna, Daniel Vélez-Díaz, Edith Olaco García
Abstract:
In this paper, we present the use of the discriminant analysis to select evolutionary algorithms that better solve instances of the vehicle routing problem with time windows. We use indicators as independent variables to obtain the classification criteria, and the best algorithm from the generic genetic algorithm (GA), random search (RS), steady-state genetic algorithm (SSGA), and sexual genetic algorithm (SXGA) as the dependent variable for the classification. The discriminant classification was trained with classic instances of the vehicle routing problem with time windows obtained from the Solomon benchmark. We obtained a classification of the discriminant analysis of 66.7%.
Keywords: Intelligent transportation systems, data-mining techniques, evolutionary algorithms, discriminant analysis, machine learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15472421 Evaluating and Selecting Optimization Software Packages: A Framework for Business Applications
Authors: Waleed Abohamad, Amr Arisha
Abstract:
Owing the fact that optimization of business process is a crucial requirement to navigate, survive and even thrive in today-s volatile business environment, this paper presents a framework for selecting a best-fit optimization package for solving complex business problems. Complexity level of the problem and/or using incorrect optimization software can lead to biased solutions of the optimization problem. Accordingly, the proposed framework identifies a number of relevant factors (e.g. decision variables, objective functions, and modeling approach) to be considered during the evaluation and selection process. Application domain, problem specifications, and available accredited optimization approaches are also to be regarded. A recommendation of one or two optimization software is the output of the framework which is believed to provide the best results of the underlying problem. In addition to a set of guidelines and recommendations on how managers can conduct an effective optimization exercise is discussed.Keywords: Complex Business Problems, Optimization, Selection Criteria, Software Evaluation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29102420 Internal Loading Distribution in Statically Loaded Ball Bearings Subjected to a Centric Thrust Load: Numerical Aspects
Authors: Mário C. Ricci
Abstract:
A known iterative computational procedure is used for internal normal ball loads calculation in statically loaded single-row, angular-contact ball bearings, subjected to a known thrust load, which is applied in the inner ring at the geometric bearing center line. Numerical aspects of the iterative procedure are discussed. Numerical examples results for a 218 angular-contact ball bearing have been compared with those from the literature. Twenty figures are presented showing the geometrical features, the behavior of the convergence variables and the following parameters as functions of the thrust load: normal ball loads, contact angle, distance between curvature centers, and normal ball and axial deflections between the raceways.Keywords: Ball, Bearing, Static, Load, Iterative, Numerical, Method.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18742419 Data and Spatial Analysis for Economy and Education of 28 E.U. Member-States for 2014
Authors: Alexiou Dimitra, Fragkaki Maria
Abstract:
The objective of the paper is the study of geographic, economic and educational variables and their contribution to determine the position of each member-state among the EU-28 countries based on the values of seven variables as given by Eurostat. The Data Analysis methods of Multiple Factorial Correspondence Analysis (MFCA) Principal Component Analysis and Factor Analysis have been used. The cross tabulation tables of data consist of the values of seven variables for the 28 countries for 2014. The data are manipulated using the CHIC Analysis V 1.1 software package. The results of this program using MFCA and Ascending Hierarchical Classification are given in arithmetic and graphical form. For comparison reasons with the same data the Factor procedure of Statistical package IBM SPSS 20 has been used. The numerical and graphical results presented with tables and graphs, demonstrate the agreement between the two methods. The most important result is the study of the relation between the 28 countries and the position of each country in groups or clouds, which are formed according to the values of the corresponding variables.
Keywords: Multiple factorial correspondence analysis, principal component analysis, factor analysis, E.U.-28 countries, statistical package IBM SPSS 20, CHIC Analysis V 1.1 Software, Eurostat.eu statistics.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1085