
 

 

  
Abstract—Cutting tools are widely used in manufacturing 

processes and drilling is the most commonly used machining process. 
Although drill-bits used in drilling may not be expensive, their 
breakage can cause damage to expensive work piece being drilled 
and at the same time has major impact on productivity. Predicting 
drill-bit breakage, therefore, is important in reducing cost and 
improving productivity. This study uses twenty features extracted 
from two degradation signals viz., thrust force and torque. The 
methodology used involves developing and comparing decision tree, 
random forest, and multinomial logistic regression models for 
classifying and predicting drill-bit breakage using degradation 
signals.  
 

Keywords—Degradation signal, drill-bit breakage, random 
forest, multinomial logistic regression. 

I. INTRODUCTION 
MONG various machining processes used in 
manufacturing companies, drilling is a widely using 

cutting process. A reliable and non-intrusive method for 
predicting drill-bit breakage is highly desirable to reduce cost 
and improve productivity. Researchers have proposed several 
prediction models based on non-intrusive degradation signals 
extracted from the drilling process using appropriate sensors. 
These models are helpful for making suitable decisions about 
whether or not to continue drilling considering the severity 
level of the tool-breakage in different applications. When 
impact of tool-breakage is not severe on overall cost and 
productivity, the decision about the tool replacement can take 
into account extraction of maximum life from the cutting tool 
used. However, in situations where the impact of tool-
breakage is severe on the overall cost and productivity, tool-
life utilization may have a lower importance. 

Reference [1] applied Mahalanobis-Taguchi System to 
monitor and predict drill-bit breakage using degradation 
signals. Reference [2] found monitoring of the kurtosis value 
obtained from the traverse and thrust vibrations to be effective 
for online detection of the drill-bit breakage. Reference [3] 
applied multi-layer perceptron neural network for tool-state 
classification using online data on the cutting forces and 
vibration, and reported achieving approximately 90% accuracy 
in tool-state classification. References [4]-[9] also developed 
models based on neural networks for online tool-condition 
monitoring. References [10], [11] proposed use of hidden 
Markov models for tool wear condition monitoring in drilling 
operations. Reference [12] provides a summary of various 
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signal analysis methods for tool condition monitoring used in 
literature and reports statistical parameters to be one of the 
most frequently used with varying level of success. 

This paper provides a study of the three methods viz., 
decision trees, random forest, and multinomial logistic 
regression for classifying degradation signals and predicting 
drill-bit breakage.  

II. TWO DRILL-BIT DEGRADATION SIGNALS AND TWENTY 
EXTRACTED FEATURES 

A. Data for the Study 
The data used for the study is based on two degradation 

signals viz., thrust force and torque that were collected using 
an experimental setup consisting of a HAAS VF-1 CNC 
milling machine, a workstation with LabVIEW software for 
signal processing, a Kistler 9257B piezo-dynamometer and a 
National Instruments PCI-MIO-16XE-10 card for data 
acquisition [13]. Data on twelve drill-bits were collected at 
250 Hz until their breakage. The recorded data consist of 380 
to 460 data points per hole that were condensed to 24 root-
mean-square (RMS) values per hole. The degradation signals 
in the form of RMS values provide a means for non-intrusive 
online tool condition monitoring with the help of suitably 
extracted features and aid in timely tool replacement before its 
breakage. 

B. Features Extracted from the Degradation Signals 
The RMS values of the two degradation signals, thrust force 

and torque are numerically summarized into ten features each 
viz., maximum, average, standard deviation, coefficient of 
variation, third quartile, kurtosis, skewness, mean-1 (25% low 
values trimmed), mean-2 (50% low values trimmed) and 
mean-3 (75% low values trimmed). The twenty features 
considered in this study are shown in Table I. 

The dataset consists of degradation signals obtained from 
holes drilled using a total of twelve drill-bits. In all, data 
consists of 161 holes drilled by the twelve drill-bits under 
study. The number of holes successfully drilled using each 
drill-bit before their breakage are shown in Fig. 1. 
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TABLE I 
TWENTY FEATURES FROM THE DRILL-BIT DEGRADATION SIGNALS  

No. Degradation Signal Feature Notation 
1 thrust force maximum A 
2 thrust force average B 
3 thrust force standard deviation C 
4 thrust force coefficient of variation D 
5 thrust force third quartile E 
6 thrust force kurtosis F 
7 thrust force skewness G 
8 thrust force mean-1 (25% low trim) H 
9 thrust force mean-2 (50% low trim) J 
10 thrust force mean-3 (75% low trim) K 
11 torque maximum L 
12 torque average M 
13 torque standard deviation N 
14 torque coefficient of variation O 
15 torque third quartile P 
16 torque kurtosis Q 
17 torque skewness R 
18 torque mean-1 (25% low trim) S 
19 torque mean-2 (50% low trim) T 
20 torque mean-3 (75% low trim) U 

 

 
Fig. 1 Number of holes drilled per drill-bit 

C. Coding of the Response  
The response used for analyzing the data is that grouped 

into three categories viz., green, yellow, and red. A prediction 
involving response code red would indicate that the drill-bit is 
very likely to break and should be replaced immediately. 
Similarly, a prediction involving response code yellow would 
indicate that the drill-bit may break after drilling of two or 
three holes. And a prediction involving response code green 
would indicate that the drill-bit can continue to be used for 
drilling holes. For this study, response for data representing 
the last hole drilled before drill-bit breakage is coded as red. 
Data representing two drilled holes prior to the last hole 
drilled before drill-bit breakage are represented by response 
code yellow. Reponses for all remaining data are coded as 
green.  

III. THREE CLASSIFICATION AND PREDICTION MODELS 
In this study, three classification and prediction models are 

developed viz., decision trees, random forest, and multinomial 
logistic regression. The models are developed using R 
software. For developing the models, data are divided into 
training dataset (75%) and testing dataset (25%).Out of data 
on 161 drilled holes, 126 are used in the training dataset and 
remaining 35 are used in the testing dataset. Number of 
responses with green, yellow, and red in the training dataset 
are 98, 20, and 8 respectively. Similarly, number of responses 
with green, yellow, and red in the testing dataset are 27, 4, and 
4 respectively. Performances of the three models are compared 
by calculating classification error percentage. 

A. Decision Tree  
A decision tree is constructed using party package in R 

software [14]. Level of significance for a variable to be added 
is specified at 0.05 and a minimum sample of five is specified 
for a split to take place. The decision tree obtained based on 
the training dataset is shown in Fig. 2. 

 

 
Fig. 2 Decision Tree 

 
The decision tree includes features coded as ‘O’, ‘L’, and 

‘Q’ representing coefficient of variation for torque, maximum 
torque, and kurtosis torque respectively. One of the 
advantages of using decision trees lies in the ease of 
interpretation of the if-then decision rules. For example, if 
coefficient of variation for torque is more than 4.879, then 
response code yellow is predicted with probability 0.889. This 
indicates that high amount of caution is needed to continue 
drilling holes as the drill-bit may not last more than 2 or 3 
holes. Similarly, if coefficient of variation for torque is less 
than 4.879, and maximum torque is more than 3.156, then 
predicted response code is red with probability 0.684. This 
indicates that the drill-bit should be replaced immediately as 
the drill-bit is likely to break.  

To assess the performance of the decision tree, 
classification errors are calculated for both training and testing 
datasets by comparing actual responses with the predicted 
responses. Table II provides the classification error 
percentages. 
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TABLE II 
CLASSIFICATION ERROR RATES FOR DECISION TREE 

Dataset Predicted Response 
Code 

Actual Classification 
Error % Green Yellow Red 

training green 92 6 0 6.1% 
  yellow 6 13 0 31.6% 
  red 0 1 8 11.1% 

testing  green 23 1 0 4.2% 
  yellow 3 3 0 50.0% 
  red 1 0 4 20.0% 

 
It is observed that the classification errors are lowest for 

green response codes and highest for yellow response codes. 
Lower classification error for green suggests that the decision 
tree model would support decisions to continue drilling holes 
with high confidence. For yellow response code, it should be 
noted that the misclassification for both training and testing 
datasets mostly occurs in predicting yellow response code 
when in reality the response should be green. In other words, 
when model predicts yellow, the actual response code is 
unlikely to be red. This could help in fine-tuning the decision 
making process for situations that have different levels of tool-
breakage severity. 

B. Random Forest  
Random forests are extension of the idea of decision trees 

[15]. Unlike a single tree that is constructed in decision tree, 
multiple decision trees are constructed leading to a random 
forest. The output from all trees is combined to obtain a better 
model than what could be obtained from a single tree. The 
model is developed using randomForest package available 
from R software. A random forest model was constructed 
based on the training dataset by specifying number of trees 
grown to 5000 and number of predictors sampled for splitting 
at each node to 5. To assess the performance of the random 
forest, classification errors are calculated for both training and 
testing datasets by comparing actual responses with the 
predicted responses. Table III summarizes the classification 
error percentages for the random forest. 

 
TABLE III 

CLASSIFICATION ERROR RATES FOR RANDOM FOREST 

Dataset 
Predicted 
Response 

Code 

Actual Classification  
Error % Green Yellow Red 

training green 92 8 0 8.0% 
  yellow 6 9 2 47.1% 
  red 0 3 6 33.3% 

testing  green 24 0 0 0.0% 
  yellow 3 4 0 42.9% 
  red 0 0 4 0.0% 

 
The classification errors for response code yellow are the 

highest for both training and testing datasets. Similarly, 
classification errors for response code green are the lowest for 
both training and testing datasets.  

C. Multinomial Logistic Regression  
In this study the response has three ordinal classes viz., 

green, yellow, and red indicating worsening levels of 
degradation signal. This study, with three ordinal classes, is 
well suited for a multinomial logistic regression model that is 
constructed using multinom function from package nnet in R 
software. Before running the model, response code red is 
specified as the baseline. The final multinomial logistic 
regression model is based on features coded as A, K, L, O, and 
R. This selection of features is based on two-tailed z-test with 
0.05 level of significance. The three noncumulative 
probabilities of class membership are used for predicting the 
response code and subsequently arriving at classification 
errors. Table IV provides the classification error percentages 
for the multinomial logistic regression model.  

 
TABLE IV 

CLASSIFICATION ERROR RATES FOR MULTINOMIAL LOGISTIC REGRESSION 

Dataset Predicted 
Response Code 

Actual Classification 
Error % Green Yellow Red 

training green 95 5 0 5.0% 
  yellow 3 15 0 16.7% 
  red 0 0 8 0.0% 

testing  green 24 0 0 0.0% 
  yellow 2 4 0 33.3% 
  red 1 0 4 20.0% 

 
The classification errors for response code yellow are the 

highest for both training and testing datasets which is similar 
to what was observed for earlier two models. It can also be 
observed that the response code yellow is often misclassified 
as green. However, it is interesting to note that there are no 
situations where a red response code is misclassified as green 
or yellow for both training and testing datasets. 

IV. DISCUSSION OF THE THREE MODELS 
Decision tree, random forest, and multinomial logistic 

regression models developed using the training dataset yielded 
overall classification errors of 10.3%, 15.1%, and 6.3% 
respectively. Similarly, overall classification errors for the 
three models using the testing dataset were 14.3%, 8.6%, and 
8.6% respectively. Random forest and multinomial logistic 
regression models show lower overall classification errors for 
testing dataset compared to the decision tree model. However, 
all three models show high classification errors for response 
code yellow. The reason for such high error could lie in the 
way responses are coded. Number of data points before 
response code red that can be labeled as yellow can have a 
significant impact on the classification error. This choice can 
be influenced by the severity of the impact of a tool breakage.  

Three models that were used for classification and 
prediction of drill-bit performance have certain advantages 
and weaknesses. Decision tree provides ease of interpretation 
of the model and prediction of results using if-then rules. 
Importance of the predictor variables can be judged by their 
higher position in the tree with the most important predictor 
variable placed at the top of the tree. For example, for the data 
used in this study coefficient of variation for torque is found to 
be the most important predictor variable and is shown in a 
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node at the top of the decision tree. Decision tree models are 
nonlinear and non-parametric. Use of specified levels of 
significance and minimum sample size for the split to take 
place to grow a tree, help avoid over fitting that causes the tree 
to grow too large without improving predictive performance 
of the model. A weakness of decision tree approach is that it 
requires large sample size. 

An extension of decision tree modeling is random forest. 
Random forest models also help to obtain variable importance. 
However, a large number of trees are needed to obtain a stable 
estimate of variable importance. In this study we have used 
5000 trees where each tree is a based on bootstrap sample 
from the training dataset.  

Compared to decision tree and random forest models, 
multinomial logistic regression models are more challenging 
to interpret. In addition, when dealing with several continuous 
predictors, correlation between variables can lead to an 
inappropriate model for application. In situations where 
number of classes are large, usually more than five, the 
response may be treated as continuous and multiple linear 
regression model may be used.  

V. CONCLUSIONS 
In this study classification and predictive models were 

developed to assist in making decision about whether or not to 
replace a tool in a drilling process. Twenty features were 
extracted from two degradation signals thrust force and torque. 
Data were divided into training (75%) and testing (25%) 
datasets. Three classification and prediction models viz., 
decision tree, random forest, and multinomial logistic 
regression were developed using the training dataset yielding 
overall classification errors 10.3%, 15.1%, and 6.3% 
respectively. Overall classification errors for the three models 
using testing dataset were 14.3%, 8.6%, and 8.6% 
respectively. Out of the three models studies, multinomial 
logistic regression yielded lower classification errors for both 
training and testing datasets. 
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