Search results for: Electromagnetic Band Gap
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 622

Search results for: Electromagnetic Band Gap

322 Analytical Solutions for Geodesic Acoustic Eigenmodes in Tokamak Plasmas

Authors: Victor I. Ilgisonis, Ludmila V. Konovaltseva, Vladimir P. Lakhin, Ekaterina A. Sorokina

Abstract:

The analytical solutions for geodesic acoustic eigenmodes in tokamak plasmas with circular concentric magnetic surfaces are found. In the frame of ideal magnetohydrodynamics the dispersion relation taking into account the toroidal coupling between electrostatic perturbations and electromagnetic perturbations with poloidal mode number |m| = 2 is derived. In the absence of such a coupling the dispersion relation gives the standard continuous spectrum of geodesic acoustic modes. The analysis of the existence of global eigenmodes for plasma equilibria with both off-axis and on-axis maximum of the local geodesic acoustic frequency is performed.

Keywords: Tokamak, MHD, geodesic acoustic mode, eigenmode.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1954
321 Design and Development of Ferroelectric Material for Microstrip Patch Array Antenna

Authors: F.H.Wee, F. Malek

Abstract:

This paper presents the utilizing of ferroelectric material on antenna application. There are two different ferroelectric had been used on the proposed antennas which include of Barium Strontium Titanate (BST) and Bismuth Titanate (BiT), suitable for Access Points operating in the WLAN IEEE 802.11 b/g and WiMAX IEEE 802.16 within the range of 2.3 GHz to 2.5 GHz application. BST, which had been tested to own a dielectric constant of εr = 15 while BiT has a dielectric constant that higher than BST which is εr = 21 and both materials are in rectangular shaped. The influence of various parameters on antenna characteristics were investigated extensively using commercial electromagnetic simulations software by Communication Simulation Technology (CST). From theoretical analysis and simulation results, it was demonstrated that ferroelectric material used have not only improved the directive emission but also enhanced the radiation efficiency.

Keywords: Ferroelectric material, WLAN, WiMAX, dielectric constant

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2011
320 A Literature Assessment of Multi-Level Inverters

Authors: P. Kiruthika, K. Ramani

Abstract:

Multi-Level Inverter technology has been developed in the area of high-power medium-voltage energy scheme, because of their advantages such as devices of lower rating can be used thereby enabling the schemes to be used for high voltage applications. Reduced Total Harmonic Distortion (THD).Since the dv/dt is low; the Electromagnetic Interference from the scheme is low. To avoid the switching losses Lower switching frequencies can be used. In this paper present a survey of various topologies, control strategy and modulation techniques used by these inverters. Here the regenerative and superior topologies are also discussed.

Keywords: Cascaded H-bridge Multi-Level Inverter, Diode Clamped Multi-Level Inverter, Flying Capacitors Multi- Level Inverter, Multi-Level Inverter, Total Harmonic Distortion.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3648
319 LTE Performance Analysis in the City of Bogota Northern Zone for Two Different Mobile Broadband Operators over Qualipoc

Authors: Víctor D. Rodríguez, Edith P. Estupiñán, Juan C. Martínez

Abstract:

The evolution in mobile broadband technologies has allowed to increase the download rates in users considering the current services. The evaluation of technical parameters at the link level is of vital importance to validate the quality and veracity of the connection, thus avoiding large losses of data, time and productivity. Some of these failures may occur between the eNodeB (Evolved Node B) and the user equipment (UE), so the link between the end device and the base station can be observed. LTE (Long Term Evolution) is considered one of the IP-oriented mobile broadband technologies that work stably for data and VoIP (Voice Over IP) for those devices that have that feature. This research presents a technical analysis of the connection and channeling processes between UE and eNodeB with the TAC (Tracking Area Code) variables, and analysis of performance variables (Throughput, Signal to Interference and Noise Ratio (SINR)). Three measurement scenarios were proposed in the city of Bogotá using QualiPoc, where two operators were evaluated (Operator 1 and Operator 2). Once the data were obtained, an analysis of the variables was performed determining that the data obtained in transmission modes vary depending on the parameters BLER (Block Error Rate), performance and SNR (Signal-to-Noise Ratio). In the case of both operators, differences in transmission modes are detected and this is reflected in the quality of the signal. In addition, due to the fact that both operators work in different frequencies, it can be seen that Operator 1, despite having spectrum in Band 7 (2600 MHz), together with Operator 2, is reassigning to another frequency, a lower band, which is AWS (1700 MHz), but the difference in signal quality with respect to the establishment with data by the provider Operator 2 and the difference found in the transmission modes determined by the eNodeB in Operator 1 is remarkable.

Keywords: BLER, LTE, Network, Qualipoc, SNR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 535
318 Detection of Leaks in Water Mains Using Ground Penetrating Radar

Authors: Alaa Al Hawari, Mohammad Khader, Tarek Zayed, Osama Moselhi

Abstract:

Ground Penetrating Radar (GPR) is one of the most effective electromagnetic techniques for non-destructive non-invasive subsurface features investigation. Water leak from pipelines is the most common undesirable reason of potable water losses. Rapid detection of such losses is going to enhance the use of the Water Distribution Networks (WDN) and decrease threatens associated with water mains leaks. In this study, GPR approach was developed to detect leaks by implementing an appropriate imaging analyzing strategy based on image refinement, reflection polarity and reflection amplitude that would ease the process of interpreting the collected raw radargram image.

Keywords: Water Networks, Leakage, Water pipelines, Ground Penetrating Radar.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2318
317 ATR-IR Study of the Mechanism of Aluminum Chloride Induced Alzheimer’s Disease; Curative and Protective Effect of Lipidium sativum Water Extract on Hippocampus Rats Brain Tissue

Authors: Maha Jameal Balgoon, Gehan A. Raouf, Safaa Y. Qusti, Soad Shaker Ali

Abstract:

The main cause of Alzheimer disease (AD) was believed to be mainly due to the accumulation of free radicals owing to oxidative stress (OS) in brain tissue. The mechanism of the neurotoxicity of Aluminum chloride (AlCl3) induced AD in hippocampus Albino wister rat brain tissue, the curative & the protective effects of Lipidium sativum group (LS) water extract were assessed after 8 weeks by attenuated total reflection spectroscopy ATR-IR and histologically by light microscope. ATR-IR results revealed that the membrane phospholipid undergo free radical attacks, mediated by AlCl3, primary affects the polyunsaturated fatty acids indicated by the increased of the olefinic -C=CH sub-band area around 3012 cm-1 from the curve fitting analysis. The narrowing in the half band width (HBW) of the sνCH2 sub-band around 2852 cm-1 due to Al intoxication indicates the presence of trans form fatty acids rather than gauch rotomer. The degradation of hydrocarbon chain to shorter chain length, increasing in membrane fluidity, disorder, and decreasing in lipid polarity in AlCl3 group indicated by the detected changes in certain calculated area ratios compared to the control. Administration of LS was greatly improved these parameters compared to the AlCl3 group. Al influences the Aβ aggregation and plaque formation, which in turn interferes to and disrupts the membrane structure. The results also showed a marked increase in the β-parallel and antiparallel structure, that characterize the Aβ formation in Al-induced AD hippocampal brain tissue, indicated by the detected increase in both amide I sub-bands around 1674, 1692 cm-1. This drastic increase in Aβ formation was greatly reduced in the curative and protective groups compared to the AlCl3 group and approached nearly the control values. These results supported too by the light microscope. AlCl3 group showed significant marked degenerative changes in hippocampal neurons. Most cells appeared small, shrieked and deformed. Interestingly, the administration of LS in curative and protective groups markedly decreases the amount of degenerated cells compared to the non-treated group. In addition, the intensity of congo red stained cells was decreased. Hippocampal neurons looked more/or less similar to those of control. This study showed a promising therapeutic effect of Lipidium sativum group (LS) on AD rat model that seriously overcome the signs of oxidative stress on membrane lipid and restore the protein misfolding.

Keywords: Aluminum chloride, Alzheimer’s disease, ATR-IR, Lipidium sativum.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2811
316 Accelerating Side Channel Analysis with Distributed and Parallelized Processing

Authors: Kyunghee Oh, Dooho Choi

Abstract:

Although there is no theoretical weakness in a cryptographic algorithm, Side Channel Analysis can find out some secret data from the physical implementation of a cryptosystem. The analysis is based on extra information such as timing information, power consumption, electromagnetic leaks or even sound which can be exploited to break the system. Differential Power Analysis is one of the most popular analyses, as computing the statistical correlations of the secret keys and power consumptions. It is usually necessary to calculate huge data and takes a long time. It may take several weeks for some devices with countermeasures. We suggest and evaluate the methods to shorten the time to analyze cryptosystems. Our methods include distributed computing and parallelized processing.

Keywords: DPA, distributed computing, parallelized processing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1904
315 Low Power Consuming Electromagnetic Actuators for Pulsed Pilot Stages

Authors: M. Honarpardaz, Z. Zhang, J. Derkx, A. Trangärd, J. Larsson

Abstract:

Pilot stages are one of the most common positioners and regulators in industry. In this paper, we present two novel concepts for pilot stages with low power consumption to regulate a pneumatic device. Pilot 1, first concept, is designed based on a conventional frame core electro-magnetic actuator and a leaf spring to control the air flow and pilot 2 has an axisymmetric actuator and spring made of non-oriented electrical steel. Concepts are simulated in a system modeling tool to study their dynamic behavior. Both concepts are prototyped and tested. Experimental results are comprehensively analyzed and compared. The most promising concept that consumes less than 8 mW is highlighted and presented.

Keywords: Electro-magnetic actuator, multidisciplinary system, low power consumption, pilot stage.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 967
314 Multiscale Modelization of Multilayered Bi-Dimensional Soils

Authors: I. Hosni, L. Bennaceur Farah, N. Saber, R Bennaceur

Abstract:

Soil moisture content is a key variable in many environmental sciences. Even though it represents a small proportion of the liquid freshwater on Earth, it modulates interactions between the land surface and the atmosphere, thereby influencing climate and weather. Accurate modeling of the above processes depends on the ability to provide a proper spatial characterization of soil moisture. The measurement of soil moisture content allows assessment of soil water resources in the field of hydrology and agronomy. The second parameter in interaction with the radar signal is the geometric structure of the soil. Most traditional electromagnetic models consider natural surfaces as single scale zero mean stationary Gaussian random processes. Roughness behavior is characterized by statistical parameters like the Root Mean Square (RMS) height and the correlation length. Then, the main problem is that the agreement between experimental measurements and theoretical values is usually poor due to the large variability of the correlation function, and as a consequence, backscattering models have often failed to predict correctly backscattering. In this study, surfaces are considered as band-limited fractal random processes corresponding to a superposition of a finite number of one-dimensional Gaussian process each one having a spatial scale. Multiscale roughness is characterized by two parameters, the first one is proportional to the RMS height, and the other one is related to the fractal dimension. Soil moisture is related to the complex dielectric constant. This multiscale description has been adapted to two-dimensional profiles using the bi-dimensional wavelet transform and the Mallat algorithm to describe more correctly natural surfaces. We characterize the soil surfaces and sub-surfaces by a three layers geo-electrical model. The upper layer is described by its dielectric constant, thickness, a multiscale bi-dimensional surface roughness model by using the wavelet transform and the Mallat algorithm, and volume scattering parameters. The lower layer is divided into three fictive layers separated by an assumed plane interface. These three layers were modeled by an effective medium characterized by an apparent effective dielectric constant taking into account the presence of air pockets in the soil. We have adopted the 2D multiscale three layers small perturbations model including, firstly air pockets in the soil sub-structure, and then a vegetable canopy in the soil surface structure, that is to simulate the radar backscattering. A sensitivity analysis of backscattering coefficient dependence on multiscale roughness and new soil moisture has been performed. Later, we proposed to change the dielectric constant of the multilayer medium because it takes into account the different moisture values of each layer in the soil. A sensitivity analysis of the backscattering coefficient, including the air pockets in the volume structure with respect to the multiscale roughness parameters and the apparent dielectric constant, was carried out. Finally, we proposed to study the behavior of the backscattering coefficient of the radar on a soil having a vegetable layer in its surface structure.

Keywords: Multiscale, bi-dimensional, wavelets, SPM, backscattering, multilayer, air pockets, vegetable.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 608
313 Pulse Skipping Modulated DC to DC Step Down Converter Under Discontinuous Conduction Mode

Authors: Ramamurthy S, Ranjan P V, Raghavendiran T A

Abstract:

Reduced switching loss favours Pulse Skipping Modulation mode of switching dc-to-dc converters at light loads. Under certain conditions the converter operates in discontinuous conduction mode (DCM). Inductor current starts from zero in each switching cycle as the switching frequency is constant and not adequately high. A DC-to-DC buck converter is modelled and simulated in this paper under DCM. Effect of ESR of the filter capacitor in input current frequency components is studied. The converter is studied for its operation under input voltage and load variation. The operating frequency is selected to be close to and above audio range.

Keywords: Buck converter, Discontinuous conduction mode, Electromagnetic Interference, Pulse Skipping Modulation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4930
312 Rolling Element Bearing Diagnosis by Improved Envelope Spectrum: Optimal Frequency Band Selection

Authors: Juan David Arango, Alejandro Restrepo-Martinez

Abstract:

The Rolling Element Bearing (REB) vibration diagnosis is worth of special interest by the variety of REB and the wide necessity of those elements in industrial applications. The presence of a localized fault in a REB gives rise to a vibrational response, characterized by the modulation of a carrier signal. Frequency content of carrier signal (Spectral Frequency –f) is mainly related to resonance frequencies of the REB. This carrier signal is modulated by another signal, governed by the periodicity of the fault impact (Cyclic Frequency –α). In this sense, REB fault vibration response gives rise to a second-order cyclostationary signal. Second order cyclostationary signals could be represented in a bi-spectral map, where Spectral Coherence –SCoh are plotted against f and α. The Improved Envelope Spectrum –IES, is a useful approach to execute REB fault diagnosis. IES could be applied by the integration of SCoh over a predefined bandwidth on the f axis. Approaches to select f-bandwidth have been recently exposed by the definition of a metric which intends to evaluate the magnitude of the IES at the fault characteristics frequencies. This metric is represented in a 1/3-binary tree as a function of the frequency bandwidth and centre. Based on this binary tree the optimal frequency band is selected. However, some advantages have been seen if the metric is changed, which in fact tends to dictate different optimal f-bandwidth and so improve the IES representation. This paper evaluates the behaviour of the IES from a different metric optimization. This metric is based on the sample correlation coefficient, detecting high peaks in the selected frequencies while penalizing high peaks in the neighbours of the selected frequencies. Prior results indicate an improvement on the signal-noise ratio (SNR) on around 86% of samples analysed, which belong to IMS database.

Keywords: Sample Correlation IESFOgram, cyclostationary analysis, improved envelope spectrum, IES, rolling element bearing diagnosis, spectral coherence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 742
311 Generalized Maximum Entropy Method for Cosmic Source Localization

Authors: Youssef Khmou, Said Safi, Miloud Frikel

Abstract:

The Maximum entropy principle in spectral analysis was used as an estimator of Direction of Arrival (DoA) of electromagnetic or acoustic sources impinging on an array of sensors, indeed the maximum entropy operator is very efficient when the signals of the radiating sources are ergodic and complex zero mean random processes which is the case for cosmic sources. In this paper, we present basic review of the maximum entropy method (MEM) which consists of rank one operator but not a projector, and we elaborate a new operator which is full rank and sum of all possible projectors. Two dimensional Simulation results based on Monte Carlo trials prove the resolution power of the new operator where the MEM presents some erroneous fluctuations.

Keywords: Maximum entropy, Cosmic source, Localization, operator, projector, azimuth, elevation, DoA, circular array.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2134
310 Modeling and Simulation of PSM DC-DC Buck Converter

Authors: Ramamurthy S, Vanaja Ranjan P

Abstract:

A DC-to-DC converter for applications involving a source with widely varying voltage conditions with loads requiring constant voltage from full load down to no load is presented. The switching regulator considered is a Buck converter with Pulse Skipping Modulation control whereby pulses applied to the switch are blocked or released on output voltage crossing a predetermined value. Results of the study on the performance of regulator circuit are presented. The regulator regulates over a wide input voltage range with slightly higher ripple content and good transient response. Input current spectrum indicates a good EMI performance with crowding of components at low frequency range.

Keywords: DC/DC Converter, Pulse Skipping Modulation, Buckregulator, Modulation Factor, Electromagnetic Interference

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2419
309 Angle of Arrival Detection with Fifth Order Phase Operators

Authors: Youssef Khmou, Said Safi

Abstract:

In this paper, a fifth order propagator operators are proposed for estimating the Angles Of Arrival (AOA) of narrowband electromagnetic waves impinging on antenna array when its number of sensors is larger than the number of radiating sources.

The array response matrix is partitioned into five linearly dependent phases to construct the noise projector using five different propagators from non diagonal blocks of the spectral matrice of the received data; hence, five different estimators are proposed to estimate the angles of the sources. The simulation results proved the performance of the proposed estimators in the presence of white noise comparatively to high resolution eigen based spectra.

Keywords: DOA, narrowband, antenna, propagator, high resolution. Array, operator, angular, spectrum, goniometry.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1503
308 Radio Regulation Development and Radio Spectrum Analysis of Earth Station in Motion Service

Authors: Fei Peng, Jun Yuan, Chen Fan, Fan Jiang, Qian Sun, Yudi Liu

Abstract:

Although Earth Station in Motion (ESIM) services are widely used and there is a huge market demand around the world, International Telecommunication Union (ITU) does not have unified conclusion for the use of ESIM yet. ESIM are Mobile Satellite Services (MSS) due to its mobile-based attributes, while multiple administrations want to use ESIM in Fixed Satellite Service (FSS). However, Radio Regulations (RR) have strict distinction between MSS and FSS. In this case, ITU has been very controversial because this kind of application will violate the RR Article and the conflict will bring risks to the global deployment. Thus, this paper illustrates the development of rules, regulations, standards concerning ESIM and the radio spectrum usage of ESIM in different regions around the world. Firstly, the basic rules, standard and definition of ITU’s Radiocommunication Sector (ITU-R) is introduced. Secondly, the World Radiocommunication Conference (WRC) agenda item on radio spectrum allocation for ESIM, e.g. in C/Ku/Ka band, is introduced and multi-view on the radio spectrum allocation is elaborated, especially on 19.7-20.2 GHz & 29.5-30.0 GHz. Then, some ITU-R Recommendations and Reports are analyzed on the specific technique to enable these ESIM to communicate with Geostationary Earth Orbit Satellite (GSO) space stations in the FSS without causing interference at levels in excess of that caused by conventional FSS earth stations. Meanwhile, the opposite opinion on not allocating EISM service in FSS frequency band is also elaborated. Finally, based on the ESIM’s future application, the ITU-R standards development trend is forecasted. In conclusion, using radio spectrum resource in an equitable, rational and efficient manner is the basic guideline of ITU. Although it is not a good approach to obstruct the revise of RR when there is a large demand for radio spectrum resource in satellite industry, still the propulsion and global demand of the whole industry may face difficulties on the unclear application in modify rules of RR.

Keywords: Earth Station in motion, ITU standards, radio regulations, radio spectrum, satellite communication.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1171
307 The Environmental Impact of Wireless Technologies in Nigeria: An Overview of the IoT and 5G Network

Authors: Powei Happiness Kerry

Abstract:

Introducing wireless technologies in Nigeria have improved the quality of lives of Nigerians, however, not everyone sees it in that light. The paper on the environmental impact of wireless technologies in Nigeria summarizes the scholarly views on the impact of wireless technologies on the environment, beaming its searchlight on 5G and internet of things in Nigeria while also exploring the theory of the Technology Acceptance Model (TAM). The study used a qualitative research method to gather important data from relevant sources and contextually draws inference from the derived data. The study concludes that the Federal Government of Nigeria, before agreeing to any latest development in the world of wireless technologies, should weigh the implications and deliberate extensively with all stalk holders putting into consideration the confirmation it will receive from the National Assembly.  

Keywords: IoT, 5G, ICT, electromagnetic radiation, wave, field, radiofrequency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 786
306 H-Infinity Controller Design for the Switched Reluctance Machine

Authors: Siwar Fadhel, Imen Bahri, Man Zhang

Abstract:

The switched reluctance machine (SRM) has undeniable qualities in terms of low cost and mechanical robustness. However, its highly nonlinear character and its uncertain parameters justify the development of complicated controls. In this paper, authors present the design of a robust H-infinity current controller for an 8/6 SRM with taking into account the nonlinearity of the SRM and with rejection of disturbances. The electromagnetic torque is indirectly regulated through the current controller. To show the performances of this control, a robustness analysis is performed by comparing the H-infinity and PI controller simulation results. This comparison demonstrates better performances for the presented controller. The effectiveness and robustness of the presented controller are also demonstrated by experimental tests.

Keywords: Current regulation, experimentation, robust H-infinity control, switched reluctance machine.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1319
305 Qualitative Modelling for Ferromagnetic Hysteresis Cycle

Authors: M. Mordjaoui, B. Boudjema, M. Chabane, R. Daira

Abstract:

In determining the electromagnetic properties of magnetic materials, hysteresis modeling is of high importance. Many models are available to investigate those characteristics but they tend to be complex and difficult to implement. In this paper a new qualitative hysteresis model for ferromagnetic core is presented, based on the function approximation capabilities of adaptive neuro fuzzy inference system (ANFIS). The proposed ANFIS model combined the neural network adaptive capabilities and the fuzzy logic qualitative approach can restored the hysteresis curve with a little RMS error. The model accuracy is good and can be easily adapted to the requirements of the application by extending or reducing the network training set and thus the required amount of measurement data.

Keywords: ANFIS modeling technique, magnetic hysteresis, Jiles-Atherton model, ferromagnetic core.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1587
304 A Sub-mW Low Noise Amplifier for Wireless Sensor Networks

Authors: Gianluca Cornetta, David J. Santos, Balwant Godara

Abstract:

A 1.2 V, 0.61 mA bias current, low noise amplifier (LNA) suitable for low-power applications in the 2.4 GHz band is presented. Circuit has been implemented, laid out and simulated using a UMC 130 nm RF-CMOS process. The amplifier provides a 13.3 dB power gain a noise figure NF< 2.28 dB and a 1-dB compression point of -15.69 dBm, while dissipating 0.74 mW. Such performance make this design suitable for wireless sensor networks applications such as ZigBee.

Keywords: Current Reuse, IEEE 802.15.4 (ZigBee), Low NoiseAmplifiers, Wireless Sensor Networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1813
303 Implementation and Simulation of Half-Bridge Series Resonant Inverter in Zero Voltage Switching

Authors: Buket Turan Azizoğlu

Abstract:

In switch mode power inverters, small sized inverters can be obtained by increasing the switching frequency. Switching frequency increment causes high driver losses. Also, high dt di and dt dv produced by the switching action creates high Electromagnetic Interference (EMI) and Radio Frequency Interference (RFI). In this paper, a series half bridge series resonant inverter circuit is simulated and evaluated practically to demonstrate the turn-on and turn-off conditions during zero or close to zero voltage switching. Also, the reverse recovery current effects of the body diode of the MOSFETs were investigated by operating above and below resonant frequency.

Keywords: Driver losses, Half Bridge series resonant inverter, Zero Voltage Switching

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3770
302 Takagi-Sugeno Fuzzy Control of Induction Motor

Authors: Allouche Moez, Souissi Mansour, Chaabane Mohamed, Mehdi Driss

Abstract:

This paper deals with the synthesis of fuzzy state feedback controller of induction motor with optimal performance. First, the Takagi-Sugeno (T-S) fuzzy model is employed to approximate a non linear system in the synchronous d-q frame rotating with electromagnetic field-oriented. Next, a fuzzy controller is designed to stabilise the induction motor and guaranteed a minimum disturbance attenuation level for the closed-loop system. The gains of fuzzy control are obtained by solving a set of Linear Matrix Inequality (LMI). Finally, simulation results are given to demonstrate the controller-s effectiveness.

Keywords: Rejection disturbance, fuzzy modelling, open-loop control, Fuzzy feedback controller, fuzzy observer, Linear Matrix Inequality (LMI)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1907
301 Photon Localization inside a Waveguide Modeled by Uncertainty Principle

Authors: Shilpa N. Kulkarni, Sujata R. Patrikar

Abstract:

In the present work, an attempt is made to understand electromagnetic field confinement in a subwavelength waveguide structure using concepts of quantum mechanics. Evanescent field in the waveguide is looked as inability of the photon to get confined in the waveguide core and uncertainty of position is assigned to it. The momentum uncertainty is calculated from position uncertainty. Schrödinger wave equation for the photon is written by incorporating position-momentum uncertainty. The equation is solved and field distribution in the waveguide is obtained. The field distribution and power confinement is compared with conventional waveguide theory. They were found in good agreement with each other.

Keywords: photon localization in waveguide, photon tunneling, quantum confinement of light, Schrödinger wave equation, uncertainty principle.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2918
300 Absorption Center of Photophoresis with in Micro-Sized and Spheroidal Particles in a Gaseous Medium

Authors: Wen-Ken Li, Pei-Yuan Tzeng, Chyi-Yeou Soong, Chung-Ho Liu

Abstract:

The present study is concerned with the absorption center of photophoresis within a micro-sized and spheroidal particle in a gaseous medium. A particle subjected to an intense light beam can absorb electromagnetic energy within the particle unevenly, which results in photophoretic force to drive the particle in motion. By evaluating the energy distribution systematically at various conditions, the study focuses on the effects of governing parameters, such as particle aspect ratio, size parameter, refractivity, and absorptivity, on the heat source function within the particle and their potential influences to the photophoresis.

Keywords: photophoresis, spheroidal particle, aspect ratio, refractivity, absorptivity, heat source function

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1395
299 Novel Design of Quantum Dot Arrays to Enhance Near-Fields Excitation Resonances

Authors: N. H. Ismail, A. A. A. Nassar, K. H. Baz

Abstract:

Semiconductor crystals smaller than about 10 nm, known as quantum dots, have properties that differ from large samples, including a band gap that becomes larger for smaller particles. These properties create several applications for quantum dots. In this paper new shapes of quantum dot arrays are used to enhance the photo physical properties of gold nano-particles. This paper presents a study of the effect of nano-particles shape, array, and size on their absorption characteristics.

Keywords: Quantum Dots, Nano-Particles, LSPR.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1802
298 Induction Heating Process Design Using Comsol® Multiphysics Software Version 4.2a

Authors: K. Djellabi, M. E. H. Latreche

Abstract:

Induction heating computer simulation is a powerful tool for process design and optimization, induction coil design, equipment selection, as well as education and business presentations. The authors share their vast experience in the practical use of computer simulation for different induction heating and heat treating processes. In this paper treated with mathematical modeling and numerical simulation of induction heating furnaces with axisymmetric geometries for the numerical solution, we propose finite element methods combined with boundary (FEM) for the electromagnetic model using COMSOL® Multiphysics Software. Some numerical results for an industrial furnace are shown with high frequency.

Keywords: Numerical methods, Induction furnaces, Induction Heating, Finite element method, Comsol Multiphysics software.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8056
297 RF Link Budget Analysis at 915 MHz band for Wireless Sensor Networks

Authors: Abdellah Chehri, Hussein Mouftah, Paul Fortier, Hasnaa Aniss

Abstract:

Wireless sensor network has recently emerged as enablers of several areas. Real applications of WSN are being explored and some of them are yet to come. While the potential of sensor networks has been only beginning to be realized, several challenges still remain. One of them is the experimental evaluation of WSN. Therefore, deploying and operating a testbed to study the real behavior of WSN become more and more important. The main contribution of this work is to analysis the RF link budget behavior of wireless sensor networks in underground mine gallery.

Keywords: Sensor networks, RF Link, path loss.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4348
296 Depressing Turbine-Generator Supersynchronous Torsional Torques by Using Virtual Inertia

Authors: Jong-Ian Tsai, Chi-Chuan Chen, Tung-Sheng Zhan, Rong-Ching Wu

Abstract:

Single-pole switching scheme is widely used in the Extra High Voltage system. However, the substantial negativesequence current injected to the turbine-generators imposes the electromagnetic (E/M) torque of double system- frequency components during the dead time (between single-pole clearing and line reclosing). This would induce supersynchronous resonance (SPSR) torque amplifications on low pressure turbine generator blades and even lead to fatigue damage. This paper proposes the design of a mechanical filter (MF) with natural frequency close to double-system frequency. From the simulation results, it is found that such a filter not only successfully damps the resonant effect, but also has the characteristics of feasibility and compact.

Keywords: Single-pole, Supersynchronous, Blade, Unbalance, filter

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1749
295 Detection of Power Quality Disturbances using Wavelet Transform

Authors: Sudipta Nath, Arindam Dey, Abhijit Chakrabarti

Abstract:

This paper presents features that characterize power quality disturbances from recorded voltage waveforms using wavelet transform. The discrete wavelet transform has been used to detect and analyze power quality disturbances. The disturbances of interest include sag, swell, outage and transient. A power system network has been simulated by Electromagnetic Transients Program. Voltage waveforms at strategic points have been obtained for analysis, which includes different power quality disturbances. Then wavelet has been chosen to perform feature extraction. The outputs of the feature extraction are the wavelet coefficients representing the power quality disturbance signal. Wavelet coefficients at different levels reveal the time localizing information about the variation of the signal.

Keywords: Power quality, detection of disturbance, wavelet transform, multiresolution signal decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3425
294 Non Destructive Testing for Evaluation of Defects and Interfaces in Metal Carbon Fiber Reinforced Polymer Hybrids

Authors: H.-G. Herrmann, M. Schwarz, J. Summa, F. Grossmann

Abstract:

In this work, different non-destructive testing methods for the characterization of defects and interfaces are presented. It is shown that, by means of active thermography, defects in the interface and in the carbon fiber reinforced polymer (CFRP) itself can be detected and determined. The bonding of metal and thermoplastic can be characterized very well by ultrasonic testing with electromagnetic acoustic transducers (EMAT). Mechanical testing is combined with passive thermography to correlate mechanical values with the defect-size. There is also a comparison between active and passive thermography. Mechanical testing shows the influence of different defects. Furthermore, a correlation of defect-size and loading to rupture was performed.

 

Keywords: Defect evaluation, EMAT, mechanical testing, thermography.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1518
293 Analytical and Experimental Study on the Effect of Air-Core Coil Parameters on Magnetic Force Used in a Linear Optical Scanner

Authors: Loke Kean Koay, Horizon Gitano-Briggs, Mani Maran Ratnam

Abstract:

Today air-core coils (ACC) are a viable alternative to ferrite-core coils in a range of applications due to their low induction effect. An analytical study was carried out and the results were used as a guide to understand the relationship between the magnet-coil distance and the resulting attractive magnetic force. Four different ACC models were fabricated for experimental study. The variation in the models included the dimensions, the number of coil turns and the current supply to the coil. Comparison between the analytical and experimental results for all the models shows an average discrepancy of less than 10%. An optimized ACC design was selected for the scanner which can provide maximum magnetic force.

Keywords: Air-Core Coils, Electromagnetic, Linear Optical Scanner

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1380