Search results for: trajectory optimization
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 2049

Search results for: trajectory optimization

1779 Bandwidth Optimization through Dynamic Routing in ATM Networks: Genetic Algorithm and Tabu Search Approach

Authors: Susmi Routray, A. M. Sherry, B. V. R. Reddy

Abstract:

Asynchronous Transfer Mode (ATM) is widely used in telecommunications systems to send data, video and voice at a very high speed. In ATM network optimizing the bandwidth through dynamic routing is an important consideration. Previous research work shows that traditional optimization heuristics result in suboptimal solution. In this paper we have explored non-traditional optimization technique. We propose comparison of two such algorithms - Genetic Algorithm (GA) and Tabu search (TS), based on non-traditional Optimization approach, for solving the dynamic routing problem in ATM networks which in return will optimize the bandwidth. The optimized bandwidth could mean that some attractive business applications would become feasible such as high speed LAN interconnection, teleconferencing etc. We have also performed a comparative study of the selection mechanisms in GA and listed the best selection mechanism and a new initialization technique which improves the efficiency of the GA.

Keywords: Asynchronous Transfer Mode(ATM), GeneticAlgorithm(GA), Tabu Search(TS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769
1778 Transmit Sub-aperture Optimization in MSTA Ultrasound Imaging Method

Authors: YuriyTasinkevych, Ihor Trots, AndrzejNowicki, Marcin Lewandowski

Abstract:

The paper presents the optimization problem for the multi-element synthetic transmit aperture method (MSTA) in ultrasound imaging applications. The optimal choice of the transmit aperture size is performed as a trade-off between the lateral resolution, penetration depth and the frame rate. Results of the analysis obtained by a developed optimization algorithm are presented. Maximum penetration depth and the best lateral resolution at given depths are chosen as the optimization criteria. The optimization algorithm was tested using synthetic aperture data of point reflectors simulated by Filed II program for Matlab® for the case of 5MHz 128-element linear transducer array with 0.48 mm pitch are presented. The visualization of experimentally obtained synthetic aperture data of a tissue mimicking phantom and in vitro measurements of the beef liver are also shown. The data were obtained using the SonixTOUCH Research systemequipped with a linear 4MHz 128 element transducerwith 0.3 mm element pitch, 0.28 mm element width and 70% fractional bandwidth was excited by one sine cycle pulse burst of transducer's center frequency.

Keywords: synthetic aperture method, ultrasound imaging, beamforming.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1885
1777 IIR Filter design with Craziness based Particle Swarm Optimization Technique

Authors: Suman Kumar Saha, Rajib Kar, Durbadal Mandal, S. P. Ghoshal

Abstract:

This paper demonstrates the application of craziness based particle swarm optimization (CRPSO) technique for designing the 8th order low pass Infinite Impulse Response (IIR) filter. CRPSO, the much improved version of PSO, is a population based global heuristic search algorithm which finds near optimal solution in terms of a set of filter coefficients. Effectiveness of this algorithm is justified with a comparative study of some well established algorithms, namely, real coded genetic algorithm (RGA) and particle swarm optimization (PSO). Simulation results affirm that the proposed algorithm CRPSO, outperforms over its counterparts not only in terms of quality output i.e. sharpness at cut-off, pass band ripple, stop band ripple, and stop band attenuation but also in convergence speed with assured stability.

Keywords: IIR Filter, RGA, PSO, CRPSO, Evolutionary Optimization Techniques, Low Pass (LP) Filter, Magnitude Response, Pole-Zero Plot, Stability.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2576
1776 Investigation on Bio-Inspired Population Based Metaheuristic Algorithms for Optimization Problems in Ad Hoc Networks

Authors: C. Rajan, K. Geetha, C. Rasi Priya, R. Sasikala

Abstract:

Nature is a great source of inspiration for solving complex problems in networks. It helps to find the optimal solution. Metaheuristic algorithm is one of the nature-inspired algorithm which helps in solving routing problem in networks. The dynamic features, changing of topology frequently and limited bandwidth make the routing, challenging in MANET. Implementation of appropriate routing algorithms leads to the efficient transmission of data in mobile ad hoc networks. The algorithms that are inspired by the principles of naturally-distributed/collective behavior of social colonies have shown excellence in dealing with complex optimization problems. Thus some of the bio-inspired metaheuristic algorithms help to increase the efficiency of routing in ad hoc networks. This survey work presents the overview of bio-inspired metaheuristic algorithms which support the efficiency of routing in mobile ad hoc networks.

Keywords: Ant colony optimization algorithm, Genetic algorithm, naturally inspired algorithms and particle swarm optimization algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3610
1775 In Search of Robustness and Efficiency via l1− and l2− Regularized Optimization for Physiological Motion Compensation

Authors: Angelica I. Aviles, Pilar Sobrevilla, Alicia Casals

Abstract:

Compensating physiological motion in the context of minimally invasive cardiac surgery has become an attractive issue since it outperforms traditional cardiac procedures offering remarkable benefits. Owing to space restrictions, computer vision techniques have proven to be the most practical and suitable solution. However, the lack of robustness and efficiency of existing methods make physiological motion compensation an open and challenging problem. This work focusses on increasing robustness and efficiency via exploration of the classes of 1−and 2−regularized optimization, emphasizing the use of explicit regularization. Both approaches are based on natural features of the heart using intensity information. Results pointed out the 1−regularized optimization class as the best since it offered the shortest computational cost, the smallest average error and it proved to work even under complex deformations.

Keywords: Motion Compensation, Optimization, Regularization, Beating Heart Surgery, Ill-posed problem.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2027
1774 Optimization of Gentamicin Production: Comparison of ANN and RSM Techniques

Authors: M.Rajasimman, S.Subathra

Abstract:

In this work, statistical experimental design was applied for the optimization of medium constituents for Gentamicin production by Micromsonospora echinospora subs pallida (MTCC 708) in a batch reactor and the results are compared with the ANN predicted values. By central composite design, 50 experiments are carried out for five test variables: Starch, Soya bean meal, K2HPO4, CaCO3 and FeSO4. The optimum condition was found to be: Starch (8.9,g/L), Soya bean meal (3.3 g/L), K2HPO4 (0.8 g/L), CaCO3 (4 g/L) and FeSO4 (0.03 g/L). At these optimized conditions, the yield of gentamicin was found to be 1020 mg/L. The R2 values were found to be 1 for ANN training set, 0.9953 for ANN test set, and 0.9286 for RSM.

Keywords: Gentamicin, optimization, Micromonospora echinospora, ANN, RSM

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1787
1773 Robust Coordinated Design of Multiple Power System Stabilizers Using Particle Swarm Optimization Technique

Authors: Sidhartha Panda, C. Ardil

Abstract:

Power system stabilizers (PSS) are now routinely used in the industry to damp out power system oscillations. In this paper, particle swarm optimization (PSO) technique is applied to coordinately design multiple power system stabilizers (PSS) in a multi-machine power system. The design problem of the proposed controllers is formulated as an optimization problem and PSO is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. The non-linear simulation results are presented for various severe disturbances and small disturbance at different locations as well as for various fault clearing sequences to show the effectiveness and robustness of the proposed controller and their ability to provide efficient damping of low frequency oscillations.

Keywords: Low frequency oscillations, Particle swarm optimization, power system stability, power system stabilizer, multimachine power system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 868
1772 A Multi-Objective Optimization Model to the Integrating Flexible Process Planning And Scheduling Based on Modified Particle Swarm Optimization Algorithm (MPSO)

Authors: R. Sahraian, A. Karampour Haghighi, E. Ghasemi

Abstract:

Process planning and production scheduling play important roles in manufacturing systems. In this paper a multiobjective mixed integer linear programming model is presented for the integrated planning and scheduling of multi-product. The aim is to find a set of high-quality trade-off solutions. This is a combinatorial optimization problem with substantially large solution space, suggesting that it is highly difficult to find the best solutions with the exact search method. To account for it, a PSO-based algorithm is proposed by fully utilizing the capability of the exploration search and fast convergence. To fit the continuous PSO in the discrete modeled problem, a solution representation is used in the algorithm. The numerical experiments have been performed to demonstrate the effectiveness of the proposed algorithm.

Keywords: Integrated process planning and scheduling, multi objective, MILP, Particle swarm optimization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
1771 Dynamic Optimization of Industrial Servomechanisms using Motion Laws Based On Bezier Curves

Authors: Giovanni Incerti

Abstract:

The motion planning procedure described in this paper has been developed in order to eliminate or reduce the residual vibrations of electromechanical positioning systems, without augmenting the motion time (usually imposed by production requirements), nor introducing overtime for vibration damping. The proposed technique is based on a suitable choice of the motion law assigned to the servomotor that drives the mechanism. The reference profile is defined by a Bezier curve, whose shape can be easily changed by modifying some numerical parameters. By means of an optimization technique these parameters can be modified without altering the continuity conditions imposed on the displacement and on its time derivatives at the initial and final time instants.

Keywords: Servomechanism, residual vibrations, motion optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1413
1770 Preliminary Roadway Alignment Design: A Spatial-Data Optimization Approach

Authors: Y. Abdelrazig, R. Moses

Abstract:

Roadway planning and design is a very complex process involving five key phases before a project is completed; planning, project development, final design, right-of-way, and construction. The planning phase for a new roadway transportation project is a very critical phase as it greatly affects all latter phases of the project. A location study is usually performed during the preliminary planning phase in a new roadway project. The objective of the location study is to develop alignment alternatives that are cost efficient considering land acquisition and construction costs. This paper describes a methodology to develop optimal preliminary roadway alignments utilizing spatial-data. Four optimization criteria are taken into consideration; roadway length, land cost, land slope, and environmental impacts. The basic concept of the methodology is to convert the proposed project area into a grid, which represents the search space for an optimal alignment. The aforementioned optimization criteria are represented in each of the grid’s cells. A spatial-data optimization technique is utilized to find the optimal alignment in the search space based on the four optimization criteria. Two case studies for new roadway projects in Duval County in the State of Florida are presented to illustrate the methodology. The optimization output alignments are compared to the proposed Florida Department of Transportation (FDOT) alignments. The comparison is based on right-of-way costs for the alignments. For both case studies, the right-of-way costs for the developed optimal alignments were found to be significantly lower than the FDOT alignments.

Keywords: Optimization, planning, roadway alignment, FDOT.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2034
1769 Thermo-Exergy Optimization of Gas Turbine Cycle with Two Different Regenerator Designs

Authors: Saria Abed, Tahar Khir, Ammar Ben Brahim

Abstract:

A thermo-exergy optimization of a gas turbine cycle with two different regenerator designs is established. A comparison was made between the performance of the two regenerators and their roles in improving the cycle efficiencies. The effect of operational parameters (the pressure ratio of the compressor, the ambient temperature, excess of air, geometric parameters of the regenerators, etc.) on thermal efficiencies, the exergy efficiencies, and irreversibilities were studied using thermal balances and quantitative exegetic equilibrium for each component and for the whole system. The results are given graphically by using the EES software, and an appropriate discussion and conclusion was made.

Keywords: Exergy efficiency, gas turbine, heat transfer, irreversibility, optimization, regenerator, thermal efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1092
1768 Investigation on Novel Based Naturally-Inspired Swarm Intelligence Algorithms for Optimization Problems in Mobile Ad Hoc Networks

Authors: C. Rajan, K. Geetha, C. Rasi Priya, S. Geetha

Abstract:

Nature is the immense gifted source for solving complex problems. It always helps to find the optimal solution to solve the problem. Mobile Ad Hoc NETwork (MANET) is a wide research area of networks which has set of independent nodes. The characteristics involved in MANET’s are Dynamic, does not depend on any fixed infrastructure or centralized networks, High mobility. The Bio-Inspired algorithms are mimics the nature for solving optimization problems opening a new era in MANET. The typical Swarm Intelligence (SI) algorithms are Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Particle Swarm Optimization (PSO), Modified Termite Algorithm, Bat Algorithm (BA), Wolf Search Algorithm (WSA) and so on. This work mainly concentrated on nature of MANET and behavior of nodes. Also it analyses various performance metrics such as throughput, QoS and End-to-End delay etc.

Keywords: Ant Colony Algorithm, Artificial Bee Colony algorithm, Bio-Inspired algorithm, Modified Termite Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2471
1767 Solving Machine Loading Problem in Flexible Manufacturing Systems Using Particle Swarm Optimization

Authors: S. G. Ponnambalam, Low Seng Kiat

Abstract:

In this paper, a particle swarm optimization (PSO) algorithm is proposed to solve machine loading problem in flexible manufacturing system (FMS), with bicriterion objectives of minimizing system unbalance and maximizing system throughput in the occurrence of technological constraints such as available machining time and tool slots. A mathematical model is used to select machines, assign operations and the required tools. The performance of the PSO is tested by using 10 sample dataset and the results are compared with the heuristics reported in the literature. The results support that the proposed PSO is comparable with the algorithms reported in the literature.

Keywords: Machine loading problem, FMS, Particle Swarm Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2120
1766 Genetic Algorithm Optimization of a Small Scale Natural Gas Liquefaction Process

Authors: M. I. Abdelhamid, A. O. Ghallab, R. S. Ettouney, M. A. El-Rifai

Abstract:

An optimization scheme based on COM server is suggested for communication between Genetic Algorithm (GA) toolbox of MATLAB and Aspen HYSYS. The structure and details of the proposed framework are discussed. The power of the developed scheme is illustrated by its application to the optimization of a recently developed natural gas liquefaction process in which Aspen HYSYS was used for minimization of the power consumption by optimizing the values of five operating variables. In this work, optimization by coupling between the GA in MATLAB and Aspen HYSYS model of the same process using the same five decision variables enabled improvements in power consumption by 3.3%, when 77% of the natural gas feed is liquefied. Also on inclusion of the flow rates of both nitrogen and carbon dioxide refrigerants as two additional decision variables, the power consumption decreased by 6.5% for a 78% liquefaction of the natural gas feed.

Keywords: Stranded gas liquefaction, genetic algorithm, COM server, single nitrogen expansion, carbon dioxide pre-cooling.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1524
1765 Dynamic Economic Dispatch Using Glowworm Swarm Optimization Technique

Authors: K. C. Meher, R. K. Swain, C. K. Chanda

Abstract:

This paper gives an intuition regarding glowworm swarm optimization (GSO) technique to solve dynamic economic dispatch (DED) problems of thermal generating units. The objective of the problem is to schedule optimal power generation of dedicated thermal units over a specific time band. In this study, Glowworm swarm optimization technique enables a swarm of agents to split into subgroup, exhibit simultaneous taxis towards each other and rendezvous at multiple optima (not necessarily equal) of a given multimodal function. The feasibility of the GSO method has been tested on ten-unit-test systems where the power balance constraints, operating limits, valve point effects, and ramp rate limits are taken into account. The results obtained by the proposed technique are compared with other heuristic techniques. The results show that GSO technique is capable of producing better results.

Keywords: Dynamic economic dispatch, Glowworm swarm optimization, Luciferin, Valve–point loading effect, Ramp rate limits.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1315
1764 Optimization of Switched Reluctance Motor for Drive System in Automotive Applications

Authors: A. Peniak, J. Makarovič, P. Rafajdus, P. Dúbravka

Abstract:

The purpose of this work is to optimize a Switched Reluctance Motor (SRM) for an automotive application, specifically for a fully electric car. A new optimization approach is proposed. This unique approach transforms automotive customer requirements into an optimization problem, based on sound knowledge of a SRM theory. The approach combines an analytical and a finite element analysis of the motor to quantify static nonlinear and dynamic performance parameters, as phase currents and motor torque maps, an output power and power losses in order to find the optimal motor as close to the reality as possible, within reasonable time. The new approach yields the optimal motor which is competitive with other types of already proposed motors for automotive applications. This distinctive approach can also be used to optimize other types of electrical motors, when parts specifically related to the SRM are adjusted accordingly.

Keywords: Automotive, drive system, electric car, finite element method, hybrid car, optimization, switched reluctance motor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3272
1763 A Parametric Study of an Inverse Electrostatics Problem (IESP) Using Simulated Annealing, Hooke & Jeeves and Sequential Quadratic Programming in Conjunction with Finite Element and Boundary Element Methods

Authors: Ioannis N. Koukoulis, Clio G. Vossou, Christopher G. Provatidis

Abstract:

The aim of the current work is to present a comparison among three popular optimization methods in the inverse elastostatics problem (IESP) of flaw detection within a solid. In more details, the performance of a simulated annealing, a Hooke & Jeeves and a sequential quadratic programming algorithm was studied in the test case of one circular flaw in a plate solved by both the boundary element (BEM) and the finite element method (FEM). The proposed optimization methods use a cost function that utilizes the displacements of the static response. The methods were ranked according to the required number of iterations to converge and to their ability to locate the global optimum. Hence, a clear impression regarding the performance of the aforementioned algorithms in flaw identification problems was obtained. Furthermore, the coupling of BEM or FEM with these optimization methods was investigated in order to track differences in their performance.

Keywords: Elastostatic, inverse problem, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1874
1762 Simulation-Based Optimization of a Non-Uniform Piezoelectric Energy Harvester with Stack Boundary

Authors: Alireza Keshmiri, Shahriar Bagheri, Nan Wu

Abstract:

This research presents an analytical model for the development of an energy harvester with piezoelectric rings stacked at the boundary of the structure based on the Adomian decomposition method. The model is applied to geometrically non-uniform beams to derive the steady-state dynamic response of the structure subjected to base motion excitation and efficiently harvest the subsequent vibrational energy. The in-plane polarization of the piezoelectric rings is employed to enhance the electrical power output. A parametric study for the proposed energy harvester with various design parameters is done to prepare the dataset required for optimization. Finally, simulation-based optimization technique helps to find the optimum structural design with maximum efficiency. To solve the optimization problem, an artificial neural network is first trained to replace the simulation model, and then, a genetic algorithm is employed to find the optimized design variables. Higher geometrical non-uniformity and length of the beam lowers the structure natural frequency and generates a larger power output.

Keywords: Piezoelectricity, energy harvesting, simulation-based optimization, artificial neural network, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 845
1761 A Cost Optimization Model for the Construction of Bored Piles

Authors: Kenneth M. Oba

Abstract:

Adequate management, control, and optimization of cost is an essential element for a successful construction project. A multiple linear regression optimization model was formulated to address the problem of costs associated with pile construction operations. A total of 32 PVC-reinforced concrete piles with diameter of 300 mm, 5.4 m long, were studied during the construction. The soil upon which the piles were installed was mostly silty sand, and completely submerged in water at Bonny, Nigeria. The piles are friction piles installed by boring method, using a piling auger. The volumes of soil removed, the weight of reinforcement cage installed, and volumes of fresh concrete poured into the PVC void were determined. The cost of constructing each pile based on the calculated quantities was determined. A model was derived and subjected to statistical tests using Statistical Package for the Social Sciences (SPSS) software. The model turned out to be adequate, fit, and have a high predictive accuracy with an R2 value of 0.833.

Keywords: Cost optimization modelling, multiple linear models, pile construction, regression models.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176
1760 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures

Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad

Abstract:

This paper covers application of an elitist selfadaptive
step-size search (ESASS) to optimum design of steel
skeletal structures. In the ESASS two approaches are considered for
improving the convergence accuracy as well as the computational
efficiency of the original technique namely the so called selfadaptive
step-size search (SASS). Firstly, an additional randomness
is incorporated into the sampling step of the technique to preserve
exploration capability of the algorithm during the optimization.
Moreover, an adaptive sampling scheme is introduced to improve the
quality of final solutions. Secondly, computational efficiency of the
technique is accelerated via avoiding unnecessary analyses during the
optimization process using an upper bound strategy. The numerical
results demonstrate the usefulness of the ESASS in the sizing
optimization problems of steel truss and frame structures.

Keywords: Structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames.}

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1423
1759 Design of Gravity Dam by Genetic Algorithms

Authors: Farzin Salmasi

Abstract:

The design of a gravity dam is performed through an interactive process involving a preliminary layout of the structure followed by a stability and stress analysis. This study presents a method to define the optimal top width of gravity dam with genetic algorithm. To solve the optimization task (minimize the cost of the dam), an optimization routine based on genetic algorithms (GAs) was implemented into an Excel spreadsheet. It was found to perform well and GA parameters were optimized in a parametric study. Using the parameters found in the parametric study, the top width of gravity dam optimization was performed and compared to a gradient-based optimization method (classic method). The accuracy of the results was within close proximity. In optimum dam cross section, the ratio of is dam base to dam height is almost equal to 0.85, and ratio of dam top width to dam height is almost equal to 0.13. The computerized methodology may provide the help for computation of the optimal top width for a wide range of height of a gravity dam.

Keywords: Chromosomes, dam, genetic algorithm, globaloptimum, preliminary layout, stress analysis, theoretical profile.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4333
1758 Study on Optimization Design of Pressure Hull for Underwater Vehicle

Authors: Qasim Idrees, Gao Liangtian, Liu Bo, Miao Yiran

Abstract:

In order to improve the efficiency and accuracy of the pressure hull structure, optimization of underwater vehicle based on response surface methodology, a method for optimizing the design of pressure hull structure was studied. To determine the pressure shell of five dimensions as a design variable, the application of thin shell theory and the Chinese Classification Society (CCS) specification was carried on the preliminary design. In order to optimize variables of the feasible region, different methods were studied and implemented such as Opt LHD method (to determine the design test sample points in the feasible domain space), parametric ABAQUS solution for each sample point response, and the two-order polynomial response for the surface model of the limit load of structures. Based on the ultimate load of the structure and the quality of the shell, the two-generation genetic algorithm was used to solve the response surface, and the Pareto optimal solution set was obtained. The final optimization result was 41.68% higher than that of the initial design, and the shell quality was reduced by about 27.26%. The parametric method can ensure the accuracy of the test and improve the efficiency of optimization.

Keywords: Parameterization, response surface, structure optimization, pressure hull.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1162
1757 Evolutionary Search Techniques to Solve Set Covering Problems

Authors: Darwin Gouwanda, S. G. Ponnambalam

Abstract:

Set covering problem is a classical problem in computer science and complexity theory. It has many applications, such as airline crew scheduling problem, facilities location problem, vehicle routing, assignment problem, etc. In this paper, three different techniques are applied to solve set covering problem. Firstly, a mathematical model of set covering problem is introduced and solved by using optimization solver, LINGO. Secondly, the Genetic Algorithm Toolbox available in MATLAB is used to solve set covering problem. And lastly, an ant colony optimization method is programmed in MATLAB programming language. Results obtained from these methods are presented in tables. In order to assess the performance of the techniques used in this project, the benchmark problems available in open literature are used.

Keywords: Set covering problem, genetic algorithm, ant colony optimization, LINGO.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3629
1756 Solution Economic Power Dispatch Problems by an Ant Colony Optimization Approach

Authors: Navid Mehdizadeh Afroozi, Khodakhast Isapour, Mojtaba Hakimzadeh, Abdolmohammad Davodi

Abstract:

The objective of the Economic Dispatch(ED) Problems of electric power generation is to schedule the committed generating units outputs so as to meet the required load demand at minimum operating cost while satisfying all units and system equality and inequality constraints. This paper presents a new method of ED problems utilizing the Max-Min Ant System Optimization. Historically, traditional optimizations techniques have been used, such as linear and non-linear programming, but within the past decade the focus has shifted on the utilization of Evolutionary Algorithms, as an example Genetic Algorithms, Simulated Annealing and recently Ant Colony Optimization (ACO). In this paper we introduce the Max-Min Ant System based version of the Ant System. This algorithm encourages local searching around the best solution found in each iteration. To show its efficiency and effectiveness, the proposed Max-Min Ant System is applied to sample ED problems composed of 4 generators. Comparison to conventional genetic algorithms is presented.

Keywords: Economic Dispatch (ED), Ant Colony Optimization, Fuel Cost, Algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2581
1755 Fuzzy Optimization in Metabolic Systems

Authors: Feng-Sheng Wang, Wu-Hsiung Wu, Kai-Cheng Hsu

Abstract:

The optimization of biological systems, which is a branch of metabolic engineering, has generated a lot of industrial and academic interest for a long time. In the last decade, metabolic engineering approaches based on mathematical optimizations have been used extensively for the analysis and manipulation of metabolic networks. In practical optimization of metabolic reaction networks, designers have to manage the nature of uncertainty resulting from qualitative characters of metabolic reactions, e.g., the possibility of enzyme effects. A deterministic approach does not give an adequate representation for metabolic reaction networks with uncertain characters. Fuzzy optimization formulations can be applied to cope with this problem. A fuzzy multi-objective optimization problem can be introduced for finding the optimal engineering interventions on metabolic network systems considering the resilience phenomenon and cell viability constraints. The accuracy of optimization results depends heavily on the development of essential kinetic models of metabolic networks. Kinetic models can quantitatively capture the experimentally observed regulation data of metabolic systems and are often used to find the optimal manipulation of external inputs. To address the issues of optimizing the regulatory structure of metabolic networks, it is necessary to consider qualitative effects, e.g., the resilience phenomena and cell viability constraints. Combining the qualitative and quantitative descriptions for metabolic networks makes it possible to design a viable strain and accurately predict the maximum possible flux rates of desired products. Considering the resilience phenomena in metabolic networks can improve the predictions of gene intervention and maximum synthesis rates in metabolic engineering. Two case studies will present in the conference to illustrate the phenomena.

Keywords: Fuzzy multi-objective optimization problem, kinetic model, metabolic engineering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2018
1754 Noise Optimization Techniques for 1V 1GHz CMOS Low-Noise Amplifiers Design

Authors: M. Zamin Khan, Yanjie Wang, R. Raut

Abstract:

A 1V, 1GHz low noise amplifier (LNA) has been designed and simulated using Spectre simulator in a standard TSMC 0.18um CMOS technology.With low power and noise optimization techniques, the amplifier provides a gain of 24 dB, a noise figure of only 1.2 dB, power dissipation of 14 mW from a 1 V power supply.

Keywords:

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2456
1753 Optimization of Process Parameters in Wire Electrical Discharge Machining of Inconel X-750 for Dimensional Deviation Using Taguchi Technique

Authors: Mandeep Kumar, Hari Singh

Abstract:

The effective optimization of machining process parameters affects dramatically the cost and production time of machined components as well as the quality of the final products. This paper presents the optimization aspects of a Wire Electrical Discharge Machining operation using Inconel X-750 as work material. The objective considered in this study is minimization of the dimensional deviation. Six input process parameters of WEDM namely spark gap voltage, pulse-on time, pulse-off time, wire feed rate, peak current and wire tension, were chosen as variables to study the process performance. Taguchi's design of experiments methodology has been used for planning and designing the experiments. The analysis of variance was carried out for raw data as well as for signal to noise ratio. Four input parameters and one two-factor interaction have been found to be statistically significant for their effects on the response of interest. The confirmation experiments were also performed for validating the predicted results.

Keywords: ANOVA, DOE, inconel, machining, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1421
1752 On the Parameter Optimization of Fuzzy Inference Systems

Authors: Erika Martinez Ramirez, Rene V. Mayorga

Abstract:

Nowadays, more engineering systems are using some kind of Artificial Intelligence (AI) for the development of their processes. Some well-known AI techniques include artificial neural nets, fuzzy inference systems, and neuro-fuzzy inference systems among others. Furthermore, many decision-making applications base their intelligent processes on Fuzzy Logic; due to the Fuzzy Inference Systems (FIS) capability to deal with problems that are based on user knowledge and experience. Also, knowing that users have a wide variety of distinctiveness, and generally, provide uncertain data, this information can be used and properly processed by a FIS. To properly consider uncertainty and inexact system input values, FIS normally use Membership Functions (MF) that represent a degree of user satisfaction on certain conditions and/or constraints. In order to define the parameters of the MFs, the knowledge from experts in the field is very important. This knowledge defines the MF shape to process the user inputs and through fuzzy reasoning and inference mechanisms, the FIS can provide an “appropriate" output. However an important issue immediately arises: How can it be assured that the obtained output is the optimum solution? How can it be guaranteed that each MF has an optimum shape? A viable solution to these questions is through the MFs parameter optimization. In this Paper a novel parameter optimization process is presented. The process for FIS parameter optimization consists of the five simple steps that can be easily realized off-line. Here the proposed process of FIS parameter optimization it is demonstrated by its implementation on an Intelligent Interface section dealing with the on-line customization / personalization of internet portals applied to E-commerce.

Keywords: Artificial Intelligence, Fuzzy Logic, Fuzzy InferenceSystems, Nonlinear Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1984
1751 Optimization of the Input Layer Structure for Feed-Forward Narx Neural Networks

Authors: Zongyan Li, Matt Best

Abstract:

This paper presents an optimization method for reducing the number of input channels and the complexity of the feed-forward NARX neural network (NN) without compromising the accuracy of the NN model. By utilizing the correlation analysis method, the most significant regressors are selected to form the input layer of the NN structure. An application of vehicle dynamic model identification is also presented in this paper to demonstrate the optimization technique and the optimal input layer structure and the optimal number of neurons for the neural network is investigated.

Keywords: Correlation analysis, F-ratio, Levenberg-Marquardt, MSE, NARX, neural network, optimisation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188
1750 Experimental Investigation and Optimization of Nanoparticle Mass Concentration and Heat Input of Loop Heat Pipe

Authors: P. Gunnasegaran, M. Z. Abdullah, M. Z. Yusoff, Nur Irmawati

Abstract:

This study presents experimental and optimization of nanoparticle mass concentration and heat input based on the total thermal resistance (Rth) of loop heat pipe (LHP), employed for PCCPU cooling. In this study, silica nanoparticles (SiO2) in water with particle mass concentration ranged from 0% (pure water) to 1% is considered as the working fluid within the LHP. The experimental design and optimization is accomplished by the design of experimental tool, Response Surface Methodology (RSM). The results show that the nanoparticle mass concentration and the heat input have significant effect on the Rth of LHP. For a given heat input, the Rth is found to decrease with the increase of the nanoparticle mass concentration up to 0.5% and increased thereafter. It is also found that the Rth is decreased when the heat input is increased from 20W to 60W. The results are optimized with the objective of minimizing the Rth, using Design-Expert software, and the optimized nanoparticle mass concentration and heat input are 0.48% and 59.97W, respectively, the minimum thermal resistance being 2.66 (ºC/W).

Keywords: Loop heat pipe, nanofluid, optimization, thermal resistance.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1823