Search results for: binary classification tree
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1701

Search results for: binary classification tree

1431 Effect of Personality Traits on Classification of Political Orientation

Authors: Vesile Evrim, Aliyu Awwal

Abstract:

Today, there is a large number of political transcripts available on the Web to be mined and used for statistical analysis, and product recommendations. As the online political resources are used for various purposes, automatically determining the political orientation on these transcripts becomes crucial. The methodologies used by machine learning algorithms to do an automatic classification are based on different features that are classified under categories such as Linguistic, Personality etc. Considering the ideological differences between Liberals and Conservatives, in this paper, the effect of Personality traits on political orientation classification is studied. The experiments in this study were based on the correlation between LIWC features and the BIG Five Personality traits. Several experiments were conducted using Convote U.S. Congressional- Speech dataset with seven benchmark classification algorithms. The different methodologies were applied on several LIWC feature sets that constituted by 8 to 64 varying number of features that are correlated to five personality traits. As results of experiments, Neuroticism trait was obtained to be the most differentiating personality trait for classification of political orientation. At the same time, it was observed that the personality trait based classification methodology gives better and comparable results with the related work.

Keywords: Politics, personality traits, LIWC, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2162
1430 Lipschitz Classifiers Ensembles: Usage for Classification of Target Events in C-OTDR Monitoring Systems

Authors: Andrey V. Timofeev

Abstract:

This paper introduces an original method for guaranteed estimation of the accuracy for an ensemble of Lipschitz classifiers. The solution was obtained as a finite closed set of alternative hypotheses, which contains an object of classification with probability of not less than the specified value. Thus, the classification is represented by a set of hypothetical classes. In this case, the smaller the cardinality of the discrete set of hypothetical classes is, the higher is the classification accuracy. Experiments have shown that if cardinality of the classifiers ensemble is increased then the cardinality of this set of hypothetical classes is reduced. The problem of the guaranteed estimation of the accuracy for an ensemble of Lipschitz classifiers is relevant in multichannel classification of target events in C-OTDR monitoring systems. Results of suggested approach practical usage to accuracy control in C-OTDR monitoring systems are present.

Keywords: Lipschitz classifiers, confidence set, C-OTDR monitoring, classifiers accuracy, classifiers ensemble.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1953
1429 Automatic Classification of Periodic Heart Sounds Using Convolutional Neural Network

Authors: Jia Xin Low, Keng Wah Choo

Abstract:

This paper presents an automatic normal and abnormal heart sound classification model developed based on deep learning algorithm. MITHSDB heart sounds datasets obtained from the 2016 PhysioNet/Computing in Cardiology Challenge database were used in this research with the assumption that the electrocardiograms (ECG) were recorded simultaneously with the heart sounds (phonocardiogram, PCG). The PCG time series are segmented per heart beat, and each sub-segment is converted to form a square intensity matrix, and classified using convolutional neural network (CNN) models. This approach removes the need to provide classification features for the supervised machine learning algorithm. Instead, the features are determined automatically through training, from the time series provided. The result proves that the prediction model is able to provide reasonable and comparable classification accuracy despite simple implementation. This approach can be used for real-time classification of heart sounds in Internet of Medical Things (IoMT), e.g. remote monitoring applications of PCG signal.

Keywords: Convolutional neural network, discrete wavelet transform, deep learning, heart sound classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1146
1428 Exons and Introns Classification in Human and Other Organisms

Authors: Benjamin Y. M. Kwan, Jennifer Y. Y. Kwan, Hon Keung Kwan

Abstract:

In the paper, the relative performances on spectral classification of short exon and intron sequences of the human and eleven model organisms is studied. In the simulations, all combinations of sixteen one-sequence numerical representations, four threshold values, and four window lengths are considered. Sequences of 150-base length are chosen and for each organism, a total of 16,000 sequences are used for training and testing. Results indicate that an appropriate combination of one-sequence numerical representation, threshold value, and window length is essential for arriving at top spectral classification results. For fixed-length sequences, the precisions on exon and intron classification obtained for different organisms are not the same because of their genomic differences. In general, precision increases as sequence length increases.

Keywords: Exons and introns classification, Human genome, Model organism genome, Spectral analysis

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2062
1427 Clustering Mixed Data Using Non-normal Regression Tree for Process Monitoring

Authors: Youngji Yoo, Cheong-Sool Park, Jun Seok Kim, Young-Hak Lee, Sung-Shick Kim, Jun-Geol Baek

Abstract:

In the semiconductor manufacturing process, large amounts of data are collected from various sensors of multiple facilities. The collected data from sensors have several different characteristics due to variables such as types of products, former processes and recipes. In general, Statistical Quality Control (SQC) methods assume the normality of the data to detect out-of-control states of processes. Although the collected data have different characteristics, using the data as inputs of SQC will increase variations of data, require wide control limits, and decrease performance to detect outof- control. Therefore, it is necessary to separate similar data groups from mixed data for more accurate process control. In the paper, we propose a regression tree using split algorithm based on Pearson distribution to handle non-normal distribution in parametric method. The regression tree finds similar properties of data from different variables. The experiments using real semiconductor manufacturing process data show improved performance in fault detecting ability.

Keywords: Semiconductor, non-normal mixed process data, clustering, Statistical Quality Control (SQC), regression tree, Pearson distribution system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
1426 Hydrochemical Assessment and Quality Classification of Water in Torogh and Kardeh Dam Reservoirs, North-East Iran

Authors: Mojtaba Heydarizad

Abstract:

Khorasan Razavi is the second most important province in north-east of Iran, which faces a water shortage crisis due to recent droughts and huge water consummation. Kardeh and Torogh dam reservoirs in this province provide a notable part of Mashhad metropolitan (with more than 4.5 million inhabitants) potable water needs. Hydrochemical analyses on these dam reservoirs samples demonstrate that MgHCO3 in Kardeh and CaHCO3 and to lower extent MgHCO3 water types in Torogh dam reservoir are dominant. On the other hand, Gibbs binary diagram demonstrates that rock weathering is the main factor controlling water quality in dam reservoirs. Plotting dam reservoir samples on Mg2+/Na+ and HCO3-/Na+ vs. Ca2+/ Na+ diagrams demonstrate evaporative and carbonate mineral dissolution is the dominant rock weathering ion sources in these dam reservoirs. Cluster Analyses (CA) also demonstrate intense role of rock weathering mainly (carbonate and evaporative minerals dissolution) in water quality of these dam reservoirs. Studying water quality by the U.S. National Sanitation Foundation (NSF) WQI index NSF-WQI, Oregon Water Quality Index (OWQI) and Canadian Water Quality Index DWQI index show moderate and good quality.

Keywords: Hydrochemistry, water quality classification, water quality indexes, Torogh and Kardeh Dam Reservoirs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1144
1425 Entropy Based Data Hiding for Document Images

Authors: Swetha Kurup, Sridhar G., Sridhar V.

Abstract:

In this paper we present a novel technique for data hiding in binary document images. We use the concept of entropy in order to identify document specific least distortive areas throughout the binary document image. The document image is treated as any other image and the proposed method utilizes the standard document characteristics for the embedding process. Proposed method minimizes perceptual distortion due to embedding and allows watermark extraction without the requirement of any side information at the decoder end.

Keywords: Entropy, Steganography, Watermarking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1530
1424 Optimizing Mobile Agents Migration Based on Decision Tree Learning

Authors: Yasser k. Ali, Hesham N. Elmahdy, Sanaa El Olla Hanfy Ahmed

Abstract:

Mobile agents are a powerful approach to develop distributed systems since they migrate to hosts on which they have the resources to execute individual tasks. In a dynamic environment like a peer-to-peer network, Agents have to be generated frequently and dispatched to the network. Thus they will certainly consume a certain amount of bandwidth of each link in the network if there are too many agents migration through one or several links at the same time, they will introduce too much transferring overhead to the links eventually, these links will be busy and indirectly block the network traffic, therefore, there is a need of developing routing algorithms that consider about traffic load. In this paper we seek to create cooperation between a probabilistic manner according to the quality measure of the network traffic situation and the agent's migration decision making to the next hop based on decision tree learning algorithms.

Keywords: Agent Migration, Decision Tree learning, ID3 algorithm, Naive Bayes Classifier

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991
1423 Musical Instrument Classification Using Embedded Hidden Markov Models

Authors: Ehsan Amid, Sina Rezaei Aghdam

Abstract:

In this paper, a novel method for recognition of musical instruments in a polyphonic music is presented by using an embedded hidden Markov model (EHMM). EHMM is a doubly embedded HMM structure where each state of the external HMM is an independent HMM. The classification is accomplished for two different internal HMM structures where GMMs are used as likelihood estimators for the internal HMMs. The results are compared to those achieved by an artificial neural network with two hidden layers. Appropriate classification accuracies were achieved both for solo instrument performance and instrument combinations which demonstrates that the new approach outperforms the similar classification methods by means of the dynamic of the signal.

Keywords: hidden Markov model (HMM), embedded hidden Markov models (EHMM), MFCC, musical instrument.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1891
1422 Hybrid Reliability-Similarity-Based Approach for Supervised Machine Learning

Authors: Walid Cherif

Abstract:

Data mining has, over recent years, seen big advances because of the spread of internet, which generates everyday a tremendous volume of data, and also the immense advances in technologies which facilitate the analysis of these data. In particular, classification techniques are a subdomain of Data Mining which determines in which group each data instance is related within a given dataset. It is used to classify data into different classes according to desired criteria. Generally, a classification technique is either statistical or machine learning. Each type of these techniques has its own limits. Nowadays, current data are becoming increasingly heterogeneous; consequently, current classification techniques are encountering many difficulties. This paper defines new measure functions to quantify the resemblance between instances and then combines them in a new approach which is different from actual algorithms by its reliability computations. Results of the proposed approach exceeded most common classification techniques with an f-measure exceeding 97% on the IRIS Dataset.

Keywords: Data mining, knowledge discovery, machine learning, similarity measurement, supervised classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
1421 An SVM based Classification Method for Cancer Data using Minimum Microarray Gene Expressions

Authors: R. Mallika, V. Saravanan

Abstract:

This paper gives a novel method for improving classification performance for cancer classification with very few microarray Gene expression data. The method employs classification with individual gene ranking and gene subset ranking. For selection and classification, the proposed method uses the same classifier. The method is applied to three publicly available cancer gene expression datasets from Lymphoma, Liver and Leukaemia datasets. Three different classifiers namely Support vector machines-one against all (SVM-OAA), K nearest neighbour (KNN) and Linear Discriminant analysis (LDA) were tested and the results indicate the improvement in performance of SVM-OAA classifier with satisfactory results on all the three datasets when compared with the other two classifiers.

Keywords: Support vector machines-one against all, cancerclassification, Linear Discriminant analysis, K nearest neighbour, microarray gene expression, gene pair ranking.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2562
1420 Estimating Shortest Circuit Path Length Complexity

Authors: Azam Beg, P. W. Chandana Prasad, S.M.N.A Senenayake

Abstract:

When binary decision diagrams are formed from uniformly distributed Monte Carlo data for a large number of variables, the complexity of the decision diagrams exhibits a predictable relationship to the number of variables and minterms. In the present work, a neural network model has been used to analyze the pattern of shortest path length for larger number of Monte Carlo data points. The neural model shows a strong descriptive power for the ISCAS benchmark data with an RMS error of 0.102 for the shortest path length complexity. Therefore, the model can be considered as a method of predicting path length complexities; this is expected to lead to minimum time complexity of very large-scale integrated circuitries and related computer-aided design tools that use binary decision diagrams.

Keywords: Monte Carlo circuit simulation data, binary decision diagrams, neural network modeling, shortest path length estimation

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1378
1419 A Green Method for Selective Spectrophotometric Determination of Hafnium(IV) with Aqueous Extract of Ficus carica Tree Leaves

Authors: A. Boveiri Monji, H. Yousefnia, M. Haji Hosseini, S. Zolghadri

Abstract:

A clean spectrophotometric method for the determination of hafnium by using a green reagent, acidic extract of Ficus carica tree leaves is developed. In 6-M hydrochloric acid, hafnium reacts with this reagent to form a yellow product. The formed product shows maximum absorbance at 421 nm with a molar absorptivity value of 0.28 × 104 l mol⁻¹ cm⁻¹, and the method was linear in the 2-11 µg ml⁻¹ concentration range. The detection limit value was found to be 0.312 µg ml⁻¹. Except zirconium and iron, the selectivity was good, and most of the ions did not show any significant spectral interference at concentrations up to several hundred times. The proposed method was green, simple, low cost, and selective.

Keywords: Spectrophotometric determination, Ficus carica tree leaves, synthetic reagents, hafnium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 737
1418 A 25-year Monitoring of the Air Pollution Depicted by Plane Tree Species in Tehran

Authors: S. A. A. Korori, H. Valipour K., S. Shabestani, A. shirvany, M. Matinizadeh

Abstract:

Tehran, one of the heavily-populated capitals, is severely suffering from increasing air pollution. To show a documented trend of such pollutants during last years, plane tree species (Platanus orientalis) were suited to be studied as indicators, for the species have been planted throughout the city many years ago. Two areas (Saadatabad and Narmak districts) allotting different contents of crowed and highly-traffic routs but the same ecological characteristics were selected. Twelve sample individuals were cored twice perpendicularly in each area. Tree-rings of each core were measured by a binocular microscope and separated annually for the last 25 years. Two heavy metals including Cd and Pb accompanied by a mineral element (Ca) were analyzed using Hatch method. Treerings analysis of the two areas showed different groups in term of physiologically ability as the growths were plunged during the last 10 years in Saadatabad district and showed a slight decrease in the same period for another studying area. In direct contrast to decreasing growth trend in Saadatabad, all three mentioned elements increased sharply during last 25 years in the same area. When it came to Narmak district, the trend was completely different with Saadatabad. There were some fluctuations in absorbing trace elements like tree-rings widths were, yet calcium showed an upward trend all the last 25 years. The results of the study proved the possibility of using tree species of each region to monitor its air pollution trends of the past, hence to depict a pollution assessment of a populated city for last years and then to make appropriate decisions for the future as it is well-known what the trend is. On the other hand, risen values of calcium (as the stress-indicator element) accompanied by increased trace elements suggests non-sustainable state of the trees.

Keywords: Air pollution, Platanus orientalis, Tehran, Traceelements, Tree rings.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1680
1417 Using Single Decision Tree to Assess the Impact of Cutting Conditions on Vibration

Authors: S. Ghorbani, N. I. Polushin

Abstract:

Vibration during machining process is crucial since it affects cutting tool, machine, and workpiece leading to a tool wear, tool breakage, and an unacceptable surface roughness. This paper applies a nonparametric statistical method, single decision tree (SDT), to identify factors affecting on vibration in machining process. Workpiece material (AISI 1045 Steel, AA2024 Aluminum alloy, A48-class30 Gray Cast Iron), cutting tool (conventional, cutting tool with holes in toolholder, cutting tool filled up with epoxy-granite), tool overhang (41-65 mm), spindle speed (630-1000 rpm), feed rate (0.05-0.075 mm/rev) and depth of cut (0.05-0.15 mm) were used as input variables, while vibration was the output parameter. It is concluded that workpiece material is the most important parameters for natural frequency followed by cutting tool and overhang.

Keywords: Cutting condition, vibration, natural frequency, decision tree, CART algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1433
1416 Metaheuristic Algorithms for Decoding Binary Linear Codes

Authors: Hassan Berbia, Faissal Elbouanani, Rahal Romadi, Mostafa Belkasmi

Abstract:

This paper introduces two decoders for binary linear codes based on Metaheuristics. The first one uses a genetic algorithm and the second is based on a combination genetic algorithm with a feed forward neural network. The decoder based on the genetic algorithms (DAG) applied to BCH and convolutional codes give good performances compared to Chase-2 and Viterbi algorithm respectively and reach the performances of the OSD-3 for some Residue Quadratic (RQ) codes. This algorithm is less complex for linear block codes of large block length; furthermore their performances can be improved by tuning the decoder-s parameters, in particular the number of individuals by population and the number of generations. In the second algorithm, the search space, in contrast to DAG which was limited to the code word space, now covers the whole binary vector space. It tries to elude a great number of coding operations by using a neural network. This reduces greatly the complexity of the decoder while maintaining comparable performances.

Keywords: Block code, decoding, methaheuristic, genetic algorithm, neural network

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2080
1415 A File Splitting Technique for Reducing the Entropy of Text Files

Authors: Abdel-Rahman M. Jaradat, , Mansour I. Irshid, Talha T. Nassar

Abstract:

A novel file splitting technique for the reduction of the nth-order entropy of text files is proposed. The technique is based on mapping the original text file into a non-ASCII binary file using a new codeword assignment method and then the resulting binary file is split into several subfiles each contains one or more bits from each codeword of the mapped binary file. The statistical properties of the subfiles are studied and it is found that they reflect the statistical properties of the original text file which is not the case when the ASCII code is used as a mapper. The nth-order entropy of these subfiles are determined and it is found that the sum of their entropies is less than that of the original text file for the same values of extensions. These interesting statistical properties of the resulting subfiles can be used to achieve better compression ratios when conventional compression techniques are applied to these subfiles individually and on a bit-wise basis rather than on character-wise basis.

Keywords: Bit-wise compression, entropy, file splitting, source mapping.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1444
1414 A Novel Approach to Fault Classification and Fault Location for Medium Voltage Cables Based on Artificial Neural Network

Authors: H. Khorashadi-Zadeh, M. R. Aghaebrahimi

Abstract:

A novel application of neural network approach to fault classification and fault location of Medium voltage cables is demonstrated in this paper. Different faults on a protected cable should be classified and located correctly. This paper presents the use of neural networks as a pattern classifier algorithm to perform these tasks. The proposed scheme is insensitive to variation of different parameters such as fault type, fault resistance, and fault inception angle. Studies show that the proposed technique is able to offer high accuracy in both of the fault classification and fault location tasks.

Keywords: Artificial neural networks, cable, fault location andfault classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1851
1413 Dynamic Routing to Multiple Destinations in IP Networks using Hybrid Genetic Algorithm (DRHGA)

Authors: K. Vijayalakshmi, S. Radhakrishnan

Abstract:

In this paper we have proposed a novel dynamic least cost multicast routing protocol using hybrid genetic algorithm for IP networks. Our protocol finds the multicast tree with minimum cost subject to delay, degree, and bandwidth constraints. The proposed protocol has the following features: i. Heuristic local search function has been devised and embedded with normal genetic operation to increase the speed and to get the optimized tree, ii. It is efficient to handle the dynamic situation arises due to either change in the multicast group membership or node / link failure, iii. Two different crossover and mutation probabilities have been used for maintaining the diversity of solution and quick convergence. The simulation results have shown that our proposed protocol generates dynamic multicast tree with lower cost. Results have also shown that the proposed algorithm has better convergence rate, better dynamic request success rate and less execution time than other existing algorithms. Effects of degree and delay constraints have also been analyzed for the multicast tree interns of search success rate.

Keywords: Dynamic Group membership change, Hybrid Genetic Algorithm, Link / node failure, QoS Parameters.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1448
1412 A Dataset of Program Educational Objectives Mapped to ABET Outcomes: Data Cleansing, Exploratory Data Analysis and Modeling

Authors: Addin Osman, Anwar Ali Yahya, Mohammed Basit Kamal

Abstract:

Datasets or collections are becoming important assets by themselves and now they can be accepted as a primary intellectual output of a research. The quality and usage of the datasets depend mainly on the context under which they have been collected, processed, analyzed, validated, and interpreted. This paper aims to present a collection of program educational objectives mapped to student’s outcomes collected from self-study reports prepared by 32 engineering programs accredited by ABET. The manual mapping (classification) of this data is a notoriously tedious, time consuming process. In addition, it requires experts in the area, which are mostly not available. It has been shown the operational settings under which the collection has been produced. The collection has been cleansed, preprocessed, some features have been selected and preliminary exploratory data analysis has been performed so as to illustrate the properties and usefulness of the collection. At the end, the collection has been benchmarked using nine of the most widely used supervised multiclass classification techniques (Binary Relevance, Label Powerset, Classifier Chains, Pruned Sets, Random k-label sets, Ensemble of Classifier Chains, Ensemble of Pruned Sets, Multi-Label k-Nearest Neighbors and Back-Propagation Multi-Label Learning). The techniques have been compared to each other using five well-known measurements (Accuracy, Hamming Loss, Micro-F, Macro-F, and Macro-F). The Ensemble of Classifier Chains and Ensemble of Pruned Sets have achieved encouraging performance compared to other experimented multi-label classification methods. The Classifier Chains method has shown the worst performance. To recap, the benchmark has achieved promising results by utilizing preliminary exploratory data analysis performed on the collection, proposing new trends for research and providing a baseline for future studies.

Keywords: Benchmark collection, program educational objectives, student outcomes, ABET, Accreditation, machine learning, supervised multiclass classification, text mining.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 837
1411 Analysis of Classifications of Unsolicited Bulk Emails

Authors: Jatinderkumar R. Saini, Apurva A. Desai

Abstract:

In recent times, the problem of Unsolicited Bulk Email (UBE) or commonly known as Spam Email, has increased at a tremendous growth rate. We present an analysis of survey based on classifications of UBE in various research works. There are many research instances for classification between spam and non-spam emails but very few research instances are available for classification of spam emails, per se. This paper does not intend to assert some UBE classification to be better than the others nor does it propose any new classification but it bemoans the lack of harmony on number and definition of categories proposed by different researchers. The paper also elaborates on factors like intent of spammer, content of UBE and ambiguity in different categories as proposed in related research works of classifications of UBE.

Keywords: E-mail, Scams, Spam Email, Unsolicited Bulk Email(UBE)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1728
1410 Face Recognition using Features Combination and a New Non-linear Kernel

Authors: Essam Al Daoud

Abstract:

To improve the classification rate of the face recognition, features combination and a novel non-linear kernel are proposed. The feature vector concatenates three different radius of local binary patterns and Gabor wavelet features. Gabor features are the mean, standard deviation and the skew of each scaling and orientation parameter. The aim of the new kernel is to incorporate the power of the kernel methods with the optimal balance between the features. To verify the effectiveness of the proposed method, numerous methods are tested by using four datasets, which are consisting of various emotions, orientations, configuration, expressions and lighting conditions. Empirical results show the superiority of the proposed technique when compared to other methods.

Keywords: Face recognition, Gabor wavelet, LBP, Non-linearkerner

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1540
1409 Predicting Protein-Protein Interactions from Protein Sequences Using Phylogenetic Profiles

Authors: Omer Nebil Yaveroglu, Tolga Can

Abstract:

In this study, a high accuracy protein-protein interaction prediction method is developed. The importance of the proposed method is that it only uses sequence information of proteins while predicting interaction. The method extracts phylogenetic profiles of proteins by using their sequence information. Combining the phylogenetic profiles of two proteins by checking existence of homologs in different species and fitting this combined profile into a statistical model, it is possible to make predictions about the interaction status of two proteins. For this purpose, we apply a collection of pattern recognition techniques on the dataset of combined phylogenetic profiles of protein pairs. Support Vector Machines, Feature Extraction using ReliefF, Naive Bayes Classification, K-Nearest Neighborhood Classification, Decision Trees, and Random Forest Classification are the methods we applied for finding the classification method that best predicts the interaction status of protein pairs. Random Forest Classification outperformed all other methods with a prediction accuracy of 76.93%

Keywords: Protein Interaction Prediction, Phylogenetic Profile, SVM , ReliefF, Decision Trees, Random Forest Classification

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1613
1408 A New Method for Image Classification Based on Multi-level Neural Networks

Authors: Samy Sadek, Ayoub Al-Hamadi, Bernd Michaelis, Usama Sayed

Abstract:

In this paper, we propose a supervised method for color image classification based on a multilevel sigmoidal neural network (MSNN) model. In this method, images are classified into five categories, i.e., “Car", “Building", “Mountain", “Farm" and “Coast". This classification is performed without any segmentation processes. To verify the learning capabilities of the proposed method, we compare our MSNN model with the traditional Sigmoidal Neural Network (SNN) model. Results of comparison have shown that the MSNN model performs better than the traditional SNN model in the context of training run time and classification rate. Both color moments and multi-level wavelets decomposition technique are used to extract features from images. The proposed method has been tested on a variety of real and synthetic images.

Keywords: Image classification, multi-level neural networks, feature extraction, wavelets decomposition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1648
1407 Ranking and Unranking Algorithms for k-ary Trees in Gray Code Order

Authors: Fateme Ashari-Ghomi, Najme Khorasani, Abbas Nowzari-Dalini

Abstract:

In this paper, we present two new ranking and unranking algorithms for k-ary trees represented by x-sequences in Gray code order. These algorithms are based on a gray code generation algorithm developed by Ahrabian et al.. In mentioned paper, a recursive backtracking generation algorithm for x-sequences corresponding to k-ary trees in Gray code was presented. This generation algorithm is based on Vajnovszki-s algorithm for generating binary trees in Gray code ordering. Up to our knowledge no ranking and unranking algorithms were given for x-sequences in this ordering. we present ranking and unranking algorithms with O(kn2) time complexity for x-sequences in this Gray code ordering

Keywords: k-ary Tree Generation, Ranking, Unranking, Gray Code.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2106
1406 Positive Definite Quadratic Forms, Elliptic Curves and Cubic Congruences

Authors: Ahmet Tekcan

Abstract:

Let F(x, y) = ax2 + bxy + cy2 be a positive definite binary quadratic form with discriminant Δ whose base points lie on the line x = -1/m for an integer m ≥ 2, let p be a prime number and let Fp be a finite field. Let EF : y2 = ax3 + bx2 + cx be an elliptic curve over Fp and let CF : ax3 + bx2 + cx ≡ 0(mod p) be the cubic congruence corresponding to F. In this work we consider some properties of positive definite quadratic forms, elliptic curves and cubic congruences.

Keywords: Binary quadratic form, elliptic curves, cubic congruence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1527
1405 A Relative Analysis of Carbon and Dust Uptake by Important Tree Species in Tehran, Iran

Authors: Sahar Elkaee Behjati

Abstract:

Air pollution, particularly with dust, is one of the biggest issues Tehran is dealing with, and the city's green space which consists of trees has a critical role in absorption of it. The question this study aimed to investigate was which tree species the highest uptake capacity of the dust and carbon have suspended in the air. On this basis, 30 samples of trees from two different districts in Tehran were collected, and after washing and centrifuging, the samples were oven dried. The results of the study revealed that Ulmus minor had the highest amount of deposited dust in both districts. In addition, it was found that in Chamran district Ailanthus altissima and in Gandi district Ulmus minor has had the highest absorption of deposited carbon. Therefore, it could be argued that decision making on the selection of species for urban green spaces should take the above-mentioned parameters into account.

Keywords: Dust, leaves, uptake total carbon, tehran, tree species.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 731
1404 Wood Species Recognition System

Authors: Bremananth R, Nithya B, Saipriya R

Abstract:

The proposed system identifies the species of the wood using the textural features present in its barks. Each species of a wood has its own unique patterns in its bark, which enabled the proposed system to identify it accurately. Automatic wood recognition system has not yet been well established mainly due to lack of research in this area and the difficulty in obtaining the wood database. In our work, a wood recognition system has been designed based on pre-processing techniques, feature extraction and by correlating the features of those wood species for their classification. Texture classification is a problem that has been studied and tested using different methods due to its valuable usage in various pattern recognition problems, such as wood recognition, rock classification. The most popular technique used for the textural classification is Gray-level Co-occurrence Matrices (GLCM). The features from the enhanced images are thus extracted using the GLCM is correlated, which determines the classification between the various wood species. The result thus obtained shows a high rate of recognition accuracy proving that the techniques used in suitable to be implemented for commercial purposes.

Keywords: Correlation, Grey Level Co-Occurrence Matrix, ProbabilityDensity Function, Wood Recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2462
1403 Gene Expression Signature for Classification of Metastasis Positive and Negative Oral Cancer in Homosapiens

Authors: A. Shukla, A. Tarsauliya, R. Tiwari, S. Sharma

Abstract:

Cancer classification to their corresponding cohorts has been key area of research in bioinformatics aiming better prognosis of the disease. High dimensionality of gene data has been makes it a complex task and requires significance data identification technique in order to reducing the dimensionality and identification of significant information. In this paper, we have proposed a novel approach for classification of oral cancer into metastasis positive and negative patients. We have used significance analysis of microarrays (SAM) for identifying significant genes which constitutes gene signature. 3 different gene signatures were identified using SAM from 3 different combination of training datasets and their classification accuracy was calculated on corresponding testing datasets using k-Nearest Neighbour (kNN), Fuzzy C-Means Clustering (FCM), Support Vector Machine (SVM) and Backpropagation Neural Network (BPNN). A final gene signature of only 9 genes was obtained from above 3 individual gene signatures. 9 gene signature-s classification capability was compared using same classifiers on same testing datasets. Results obtained from experimentation shows that 9 gene signature classified all samples in testing dataset accurately while individual genes could not classify all accurately.

Keywords: Cancer, Gene Signature, SAM, Classification.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2076
1402 A Systems Approach to Gene Ranking from DNA Microarray Data of Cervical Cancer

Authors: Frank Emmert Streib, Matthias Dehmer, Jing Liu, Max Mühlhauser

Abstract:

In this paper we present a method for gene ranking from DNA microarray data. More precisely, we calculate the correlation networks, which are unweighted and undirected graphs, from microarray data of cervical cancer whereas each network represents a tissue of a certain tumor stage and each node in the network represents a gene. From these networks we extract one tree for each gene by a local decomposition of the correlation network. The interpretation of a tree is that it represents the n-nearest neighbor genes on the n-th level of a tree, measured by the Dijkstra distance, and, hence, gives the local embedding of a gene within the correlation network. For the obtained trees we measure the pairwise similarity between trees rooted by the same gene from normal to cancerous tissues. This evaluates the modification of the tree topology due to progression of the tumor. Finally, we rank the obtained similarity values from all tissue comparisons and select the top ranked genes. For these genes the local neighborhood in the correlation networks changes most between normal and cancerous tissues. As a result we find that the top ranked genes are candidates suspected to be involved in tumor growth and, hence, indicates that our method captures essential information from the underlying DNA microarray data of cervical cancer.

Keywords: Graph similarity, DNA microarray data, cancer.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1756