Search results for: Variance.
109 Malaysian Multi-Ethnic Discrimination Scale: Preliminary Factor and Psychometric Analysis
Authors: Chua Bee Seok, Shamsul Amri Baharuddin, Rosnah Ismail, Ferlis Bahari, Jasmine Adela Mutang, Lailawati Madlan, Asong Joseph
Abstract:
The aims of this study were to determine the factor structure and psychometric properties (i.e., reliability and convergent validity) of the Malaysian Multi-Ethnic Discrimination Scale (MMEDS). It consists of 71-items measure experience, strategies used and consequences of ethnic discrimination. A sample of 649 university students from one of the higher education institution in Malaysia was asked to complete MMEDS, as well as Perceived Ethnic and Racial Discrimination. The exploratory factor analysis on ethnic discrimination experience extracted two factors labeled ‘unfair treatment’ (15 items) and ‘Denial of the ethnic right’ (12 items) which accounted for 60.92% of the total variance. The two sub scales demonstrated clear reliability with internal consistency above .70. The convergent validity of the Scale was supported by an expected pattern of correlations (positive and significant correlation) between the score of unfair treatment and denial of the ethnic right and the score of Perceived Ethnic and Racial Discrimination by Peers Scale. The results suggest that the MMEDS is a reliable and valid measure. However, further studies need to be carried out in other groups of sample as to validate the Scale.Keywords: Factor structure, psychometric properties, exploratory factor analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2494108 Modeling and Optimization of Abrasive Waterjet Parameters using Regression Analysis
Authors: Farhad Kolahan, A. Hamid Khajavi
Abstract:
Abrasive waterjet is a novel machining process capable of processing wide range of hard-to-machine materials. This research addresses modeling and optimization of the process parameters for this machining technique. To model the process a set of experimental data has been used to evaluate the effects of various parameter settings in cutting 6063-T6 aluminum alloy. The process variables considered here include nozzle diameter, jet traverse rate, jet pressure and abrasive flow rate. Depth of cut, as one of the most important output characteristics, has been evaluated based on different parameter settings. The Taguchi method and regression modeling are used in order to establish the relationships between input and output parameters. The adequacy of the model is evaluated using analysis of variance (ANOVA) technique. The pairwise effects of process parameters settings on process response outputs are also shown graphically. The proposed model is then embedded into a Simulated Annealing algorithm to optimize the process parameters. The optimization is carried out for any desired values of depth of cut. The objective is to determine proper levels of process parameters in order to obtain a certain level of depth of cut. Computational results demonstrate that the proposed solution procedure is quite effective in solving such multi-variable problems.
Keywords: AWJ cutting, Mathematical modeling, Simulated Annealing, Optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2153107 Measuring the Amount of Eroded Soil and Surface Runoff Water in the Field
Authors: Abdulfatah Faraj Aboufayed
Abstract:
Water erosion is the most important problems of the soil in the Jabel Nefusa area located in northwest of Libya; therefore, erosion station had been established in the Faculty of Veterinary and dryfarming research Station, University of the Al-japel Al-gharbi in Zentan. The length of the station is 72.6 feet, 6 feet width and the percentage of its slope is 3%. The station were established to measure the amount of soil eroded and amount of surface water produced during the seasons 95/96 and 96/97 from each rain storms. The monitoring shows that there was a difference between the two seasons in the number of rainstorms which made differences in the amount of surface runoff water and the amount of soil eroded between the two seasons. Although the slope is low (3%), the soil texture is sandy and the land ploughed twice during each season surface runoff and soil eroded were occurred. The average amount of eroded soil was 3792 grams (gr) per season and the average amount of surface runoff water was 410 liter (L) per season. The amount of surface runoff water would be much greater from Jebel Nefusa upland with steep slopes and collecting of them will save a valuable amount of water which lost as a runoff while this area is in desperate of this water. The regression analysis of variance show strong correlation between rainfall depth and the other two depended variable (the amount of surface runoff water and the amount of eroded soil. It shows also strong correlation between amount of surface runoff water and amount of eroded soil.
Keywords: Rain, Surface runoff water, Soil, Water erosion, Soil erosion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1997106 The Development of Positive Emotion Regulation Strategies Scale for Children and Adolescents
Authors: Jia-Ru Li, Ching-Wen Lin
Abstract:
The study was designed to develop a measurement of the positive emotion regulation questionnaire (PERQ) that assesses positive emotion regulation strategies through self-report. The 14 items developed for the surveying instrument of the study were based upon literatures regarding elements of positive regulation strategies. 319 elementary students (age ranging from 12 to14) were recruited among three public elementary schools to survey on their use of positive emotion regulation strategies. Of 319 subjects, 20 invalid questionnaire s yielded a response rate of 92%. The data collected wasanalyzed through methods such as item analysis, factor analysis, and structural equation models. In reference to the results from item analysis, the formal survey instrument was reduced to 11 items. A principal axis factor analysis with varimax was performed on responses, resulting in a 2-factor equation (savoring strategy and neutralizing strategy), which accounted for 55.5% of the total variance. Then, the two-factor structure of scale was also identified by structural equation models. Finally, the reliability coefficients of the two factors were Cronbach-s α .92 and .74. Gender difference was only found in savoring strategy. In conclusion, the positive emotion regulation strategies questionnaire offers a brief, internally consistent, and valid self-report measure for understanding the emotional regulation strategies of children that may be useful to researchers and applied professionals.Keywords: Emotional regulation, emotional regulation strategies, scale, SEM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1991105 Performance Optimization of Data Mining Application Using Radial Basis Function Classifier
Authors: M. Govindarajan, R. M.Chandrasekaran
Abstract:
Text data mining is a process of exploratory data analysis. Classification maps data into predefined groups or classes. It is often referred to as supervised learning because the classes are determined before examining the data. This paper describes proposed radial basis function Classifier that performs comparative crossvalidation for existing radial basis function Classifier. The feasibility and the benefits of the proposed approach are demonstrated by means of data mining problem: direct Marketing. Direct marketing has become an important application field of data mining. Comparative Cross-validation involves estimation of accuracy by either stratified k-fold cross-validation or equivalent repeated random subsampling. While the proposed method may have high bias; its performance (accuracy estimation in our case) may be poor due to high variance. Thus the accuracy with proposed radial basis function Classifier was less than with the existing radial basis function Classifier. However there is smaller the improvement in runtime and larger improvement in precision and recall. In the proposed method Classification accuracy and prediction accuracy are determined where the prediction accuracy is comparatively high.Keywords: Text Data Mining, Comparative Cross-validation, Radial Basis Function, runtime, accuracy.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1553104 Effect of Progressive Type-I Right Censoring on Bayesian Statistical Inference of Simple Step–Stress Acceleration Life Testing Plan under Weibull Life Distribution
Authors: Saleem Z. Ramadan
Abstract:
This paper discusses the effects of using progressive Type-I right censoring on the design of the Simple Step Accelerated Life testing using Bayesian approach for Weibull life products under the assumption of cumulative exposure model. The optimization criterion used in this paper is to minimize the expected pre-posterior variance of the Pth percentile time of failures. The model variables are the stress changing time and the stress value for the first step. A comparison between the conventional and the progressive Type-I right censoring is provided. The results have shown that the progressive Type-I right censoring reduces the cost of testing on the expense of the test precision when the sample size is small. Moreover, the results have shown that using strong priors or large sample size reduces the sensitivity of the test precision to the censoring proportion. Hence, the progressive Type-I right censoring is recommended in these cases as progressive Type-I right censoring reduces the cost of the test and doesn't affect the precision of the test a lot. Moreover, the results have shown that using direct or indirect priors affects the precision of the test.
Keywords: Reliability, Accelerated life testing, Cumulative exposure model, Bayesian estimation, Progressive Type-I censoring, Weibull distribution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2159103 Utilization Juice Wastes as Corn Replacement in the Broiler Diet
Authors: Yose Rizal, Maria Endo Mahata, Mira Andriani, Guoyao Wu
Abstract:
An experiment was conducted with 80 unsexed broilers of the Arbor Acress strain to determine the capability of a carrot and fruit juice wastes mixture (carrot, apple, manggo, avocado, orange, melon and Dutch egg plant) in the same proportion for replacing corn in broiler diet. This study involved a completely randomized design (CRD) with 5 treatments (0, 5, 10, 15, and 20% of juice wastes mixture in diets) and 4 replicates per treatment. Diets were isonitrogenous (22% crude protein) and isocaloric (3000 kcal/kg diet). Measured variables were feed consumption, average daily gain, feed conversion, as well as percentages of abdominal fat pad, carcass, digestive organs (liver, pancreas and gizzard), and heart. Data were analyzed by analysis of variance for CRD. Increasing juice wastes mixture levels in diets increased feed consumption (P<0.05) and average daily gain (P<0.01), while improving feed utilization efficiency (P<0.05). These treatments also affected (P<0.05) abdominal fat pad percentage but had no effect (P>0.05) on carcass, liver, pancreas, gizzard or heart percentages. In conclusion, up to 20% of juice wastes mixture could be included for the broiler diet to effectively replace up to 40% corn in the diet.Keywords: average daily gain, feed consumption, feedconversion, juice waste mixture
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1812102 Jeffrey's Prior for Unknown Sinusoidal Noise Model via Cramer-Rao Lower Bound
Authors: Samuel A. Phillips, Emmanuel A. Ayanlowo, Rasaki O. Olanrewaju, Olayode Fatoki
Abstract:
This paper employs the Jeffrey's prior technique in the process of estimating the periodograms and frequency of sinusoidal model for unknown noisy time variants or oscillating events (data) in a Bayesian setting. The non-informative Jeffrey's prior was adopted for the posterior trigonometric function of the sinusoidal model such that Cramer-Rao Lower Bound (CRLB) inference was used in carving-out the minimum variance needed to curb the invariance structure effect for unknown noisy time observational and repeated circular patterns. An average monthly oscillating temperature series measured in degree Celsius (0C) from 1901 to 2014 was subjected to the posterior solution of the unknown noisy events of the sinusoidal model via Markov Chain Monte Carlo (MCMC). It was not only deduced that two minutes period is required before completing a cycle of changing temperature from one particular degree Celsius to another but also that the sinusoidal model via the CRLB-Jeffrey's prior for unknown noisy events produced a miniature posterior Maximum A Posteriori (MAP) compare to a known noisy events.
Keywords: Cramer-Rao Lower Bound (CRLB), Jeffrey's prior, Sinusoidal, Maximum A Posteriori (MAP), Markov Chain Monte Carlo (MCMC), Periodograms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 658101 Social Influences on Americans' Mask-Wearing Behavior during COVID-19
Authors: Ruoya Huang, Ruoxian Huang, Edgar Huang
Abstract:
Based on a convenience sample of 2,092 participants from across all 50 states of the United States, a survey was conducted to explore Americans’ mask-wearing behaviors during COVID-19 according to their political convictions, religious beliefs, and ethnic cultures from late July to early September, 2020. The purpose of the study is to provide evidential support for government policymaking so as to drive up more effective public policies by taking into consideration the variance in these social factors. It was found that the respondents’ party affiliation or preference, religious belief, and ethnicity, in addition to their health condition, gender, level of concern of contracting COVID-19, all affected their mask-wearing habits both in March, the initial coronavirus outbreak stage, and in August, when mask-wearing had been made mandatory by state governments. The study concludes that pandemic awareness campaigns must be run among all citizens, especially among African Americans, Muslims, and Republicans, who have the lowest rates of wearing masks, in order to protect themselves and others. It is recommended that complementary cognitive bias awareness programs should be implemented in non-Black and non-Muslim communities to eliminate social concerns that deter them from wearing masks.
Keywords: COVID-19 pandemic, ethnicity, mask-wearing, policymaking implications, political affiliations, religious beliefs, United States.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 518100 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles
Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang
Abstract:
With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.
Keywords: Curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 51299 The Proof of Analogous Results for Martingales and Partial Differential Equations Options Price Valuation Formulas Using Stochastic Differential Equation Models in Finance
Authors: H. D. Ibrahim, H. C. Chinwenyi, A. H. Usman
Abstract:
Valuing derivatives (options, futures, swaps, forwards, etc.) is one uneasy task in financial mathematics. The two ways this problem can be effectively resolved in finance is by the use of two methods (Martingales and Partial Differential Equations (PDEs)) to obtain their respective options price valuation formulas. This research paper examined two different stochastic financial models which are Constant Elasticity of Variance (CEV) model and Black-Karasinski term structure model. Assuming their respective option price valuation formulas, we proved the analogous of the Martingales and PDEs options price valuation formulas for the two different Stochastic Differential Equation (SDE) models. This was accomplished by using the applications of Girsanov theorem for defining an Equivalent Martingale Measure (EMM) and the Feynman-Kac theorem. The results obtained show the systematic proof for analogous of the two (Martingales and PDEs) options price valuation formulas beginning with the Martingales option price formula and arriving back at the Black-Scholes parabolic PDEs and vice versa.
Keywords: Option price valuation, Martingales, Partial Differential Equations, PDEs, Equivalent Martingale Measure, Girsanov Theorem, Feyman-Kac Theorem, European Put Option.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38898 Mathematical Analysis of EEG of Patients with Non-fatal Nonspecific Diffuse Encephalitis
Authors: Mukesh Doble, Sunil K Narayan
Abstract:
Diffuse viral encephalitis may lack fever and other cardinal signs of infection and hence its distinction from other acute encephalopathic illnesses is challenging. Often, the EEG changes seen routinely are nonspecific and reflect diffuse encephalopathic changes only. The aim of this study was to use nonlinear dynamic mathematical techniques for analyzing the EEG data in order to look for any characteristic diagnostic patterns in diffuse forms of encephalitis.It was diagnosed on clinical, imaging and cerebrospinal fluid criteria in three young male patients. Metabolic and toxic encephalopathies were ruled out through appropriate investigations. Digital EEGs were done on the 3rd to 5th day of onset. The digital EEGs of 5 male and 5 female age and sex matched healthy volunteers served as controls.Two sample t-test indicated that there was no statistically significant difference between the average values in amplitude between the two groups. However, the standard deviation (or variance) of the EEG signals at FP1-F7 and FP2-F8 are significantly higher for the patients than the normal subjects. The regularisation dimension is significantly less for the patients (average between 1.24-1.43) when compared to the normal persons (average between 1.41-1.63) for the EEG signals from all locations except for the Fz-Cz signal. Similarly the wavelet dimension is significantly less (P = 0.05*) for the patients (1.122) when compared to the normal person (1.458). EEGs are subdued in the case of the patients with presence of uniform patterns, manifested in the values of regularisation and wavelet dimensions, when compared to the normal person, indicating a decrease in chaotic nature.
Keywords: Chaos, Diffuse encephalitis, Electroencephalogram, Fractal dimension, Fourier spectrum.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 220897 A New Fast Intra Prediction Mode Decision Algorithm for H.264/AVC Encoders
Authors: A. Elyousfi, A. Tamtaoui, E. Bouyakhf
Abstract:
The H.264/AVC video coding standard contains a number of advanced features. Ones of the new features introduced in this standard is the multiple intramode prediction. Its function exploits directional spatial correlation with adjacent block for intra prediction. With this new features, intra coding of H.264/AVC offers a considerably higher improvement in coding efficiency compared to other compression standard, but computational complexity is increased significantly when brut force rate distortion optimization (RDO) algorithm is used. In this paper, we propose a new fast intra prediction mode decision method for the complexity reduction of H.264 video coding. for luma intra prediction, the proposed method consists of two step: in the first step, we make the RDO for four mode of intra 4x4 block, based the distribution of RDO cost of those modes and the idea that the fort correlation with adjacent mode, we select the best mode of intra 4x4 block. In the second step, we based the fact that the dominating direction of a smaller block is similar to that of bigger block, the candidate modes of 8x8 blocks and 16x16 macroblocks are determined. So, in case of chroma intra prediction, the variance of the chroma pixel values is much smaller than that of luma ones, since our proposed uses only the mode DC. Experimental results show that the new fast intra mode decision algorithm increases the speed of intra coding significantly with negligible loss of PSNR.
Keywords: Intra prediction, H264/AVC, video coding, encodercomplexity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 250496 Morphology of Indian Female Athletes of Different Track and Field Events
Authors: Anju Luthra, Rajender Lal, Dhananjoy Shaw
Abstract:
Participation in games and sports in the contemporary times has become more competing with the developed scientific knowledge, skills and methods, along with the equipment and applied research in the field. In spite of India being a large country having vast resources and potential, its performance in the world of sports on the whole needs sincere attention for better achievements. Beside numerous factors responsible for the dismal performance of a sportsperson, the physique and body composition, including the size, shape and form are known to play a significant role. The present investigation was undertaken to study the specific morphological characteristics of Indian female Track and Field athletes. A total of 300 athletes were randomly selected as sample for the purpose of the study from the six events having 50 athletes in each event including 100m., 400m., Shot Put, Discus Throw, Long Jump and High Jump. The study included body weight, body fat percentage, lean body weight, endomorphy, mesomorphy and ectomorphy as variables. The data were computed statistically by using Mean, Standard Deviation and Analysis of Variance. The post-hoc analysis was conducted where the F-ratio was found to be significant at .05 level. The study concluded that there is a significant difference with regard to the selected variables among the Indian female athletes of different track and field events.
Keywords: Indian female athletes, body composition, morphology, somatotypes, track and field.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 75095 Application of Statistical Approach for Optimizing CMCase Production by Bacillus tequilensis S28 Strain via Submerged Fermentation Using Wheat Bran as Carbon Source
Authors: A. Sharma, R. Tewari, S. K. Soni
Abstract:
Biofuels production has come forth as a future technology to combat the problem of depleting fossil fuels. Bio-based ethanol production from enzymatic lignocellulosic biomass degradation serves an efficient method and catching the eye of scientific community. High cost of the enzyme is the major obstacle in preventing the commercialization of this process. Thus main objective of the present study was to optimize composition of medium components for enhancing cellulase production by newly isolated strain of Bacillus tequilensis. Nineteen factors were taken into account using statistical Plackett-Burman Design. The significant variables influencing the cellulose production were further employed in statistical Response Surface Methodology using Central Composite Design for maximizing cellulase production. The optimum medium composition for cellulase production was: peptone (4.94 g/L), ammonium chloride (4.99 g/L), yeast extract (2.00 g/L), Tween-20 (0.53 g/L), calcium chloride (0.20 g/L) and cobalt chloride (0.60 g/L) with pH 7, agitation speed 150 rpm and 72 h incubation at 37oC. Analysis of variance (ANOVA) revealed high coefficient of determination (R2) of 0.99. Maximum cellulase productivity of 11.5 IU/ml was observed against the model predicted value of 13 IU/ml. This was found to be optimally active at 60oC and pH 5.5.
Keywords: Bacillus tequilensis, CMCase, Submerged Fermentation, Optimization, Plackett-Burman Design, Response Surface Methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 306394 The Effects of Negative Electronic Word-of-Mouth and Webcare on Thai Online Consumer Behavior
Authors: Pongsatorn Tantrabundit, Lersak Phothong, Ong-art Chanprasitchai
Abstract:
Due to the emergence of the Internet, it has extended the traditional Word-of-Mouth (WOM) to a new form called “Electronic Word-of-Mouth (eWOM).” Unlike traditional WOM, eWOM is able to present information in various ways by applying different components. Each eWOM component generates different effects on online consumer behavior. This research investigates the effects of Webcare (responding message) from product/ service providers on negative eWOM by applying two types of products (search and experience). The proposed conceptual model was developed based on the combination of the stages in consumer decision-making process, theory of reasoned action (TRA), theory of planned behavior (TPB), the technology acceptance model (TAM), the information integration theory and the elaboration likelihood model. The methodology techniques used in this study included multivariate analysis of variance (MANOVA) and multiple regression analysis. The results suggest that Webcare does slightly increase Thai online consumer’s perceptions on perceived eWOM trustworthiness, information diagnosticity and quality. For negative eWOM, we also found that perceived eWOM Trustworthiness, perceived eWOM diagnosticity and quality have a positive relationship with eWOM influence whereas perceived valence has a negative relationship with eWOM influence in Thai online consumers.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 140193 The Response of Winter Wheat to Flooding
Authors: M. E. Ghobadi, M. Ghobadi, A. Zebarjadi
Abstract:
The effect of flooding can be a serious problem for wheat farmers, even at dry land condition. Amount of flooding damage depends on duration flooding, developmental stage, wheat type and variety. Therefore as a factorial experiment in randomized complete design based on winter bread wheat cultivars (Pishtaz, Marvdasht, Shiraz, Zarin, Shahriar, C-81-4, Sardari, Agosta seed, FGS and Azar2) at stages (Non- flooding stress, flooding at tillering and stem elongation stages for 15 days) carried out in Faculty of Agriculture, Razi University, Kermanshah, Iran. During flooding, soil environment of plant roots were water saturated. Analysis of variance showed that flooding had a significant effect on the number of grains per spike, grain weight per spike and a grain weight. Hence flooding reduces the number of grain per spike between 27.1 to 42.5 percent, grain weight per spike between 34.7 to 54.4 percent and single grain weight between 12.1 to 15.1 percent. Effects of flooding at the tillering stage reduced higher than stem elongation stage on studied traits. The result also showed that flooding at tillering stage delayed spikelet primordial and floret. Between wheat cultivars was significant for traits, but were different reactions. "Shiraz", "Zarin" and "Shahriar" had the most no. grain per spike, but "Zarin" and "Sardari" had the most grain weight per spike and single grain weight, respectively. Also, interaction between start of flooding and cultivar was significant.Keywords: Flooding, winter wheat, yield components
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 246592 Food Safety and Perceived Risk: A Case Study of Khao San Road, Bangkok, Thailand
Authors: Siripen Yiamjanya, Kevin Wongleedee
Abstract:
Food safety is an important concern for holiday makers in foreign and unfamiliar tourist destinations. In fact, risk from food in these tourist destinations has an influence on tourist perception. This risk can potentially affect physical health and lead to an inability to pursue planned activities. The objective of this paper was to compare foreign tourists- demographics including gender, age and education level, with the level of perceived risk towards food safety. A total of 222 foreign tourists during their stay at Khao San Road in Bangkok were used as the sample. Independent- samples ttest, analysis of variance, and Least Significant Difference or LSD post hoc test were utilized. The findings revealed that there were few demographic differences in level of perceived risk among the foreign tourists. The post hoc test indicated a significant difference among the old and the young tourists, and between the higher and lower level of education. Ranks of tourists- perceived risk towards food safety unveiled some interesting results. Tourists- perceived risk of food safety in established restaurants can be ranked as i) cleanliness of dining utensils, ii) sanitation of food preparation area, and iii) cleanliness of food seasoning and ingredients. Whereas, the tourists- perceived risk of food safety in street food and drink can be ranked as i) cleanliness of stalls and pushcarts, ii) cleanliness of food sold, and iii) personal hygiene of street food hawkers or vendors.Keywords: Food Safety, Foreign Tourists, Perceived Risk, Khao San Road.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 397491 Intelligent Recognition of Diabetes Disease via FCM Based Attribute Weighting
Authors: Kemal Polat
Abstract:
In this paper, an attribute weighting method called fuzzy C-means clustering based attribute weighting (FCMAW) for classification of Diabetes disease dataset has been used. The aims of this study are to reduce the variance within attributes of diabetes dataset and to improve the classification accuracy of classifier algorithm transforming from non-linear separable datasets to linearly separable datasets. Pima Indians Diabetes dataset has two classes including normal subjects (500 instances) and diabetes subjects (268 instances). Fuzzy C-means clustering is an improved version of K-means clustering method and is one of most used clustering methods in data mining and machine learning applications. In this study, as the first stage, fuzzy C-means clustering process has been used for finding the centers of attributes in Pima Indians diabetes dataset and then weighted the dataset according to the ratios of the means of attributes to centers of theirs. Secondly, after weighting process, the classifier algorithms including support vector machine (SVM) and k-NN (k- nearest neighbor) classifiers have been used for classifying weighted Pima Indians diabetes dataset. Experimental results show that the proposed attribute weighting method (FCMAW) has obtained very promising results in the classification of Pima Indians diabetes dataset.
Keywords: Fuzzy C-means clustering, Fuzzy C-means clustering based attribute weighting, Pima Indians diabetes dataset, SVM.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 176290 Face Recognition Using Principal Component Analysis, K-Means Clustering, and Convolutional Neural Network
Authors: Zukisa Nante, Wang Zenghui
Abstract:
Face recognition is the problem of identifying or recognizing individuals in an image. This paper investigates a possible method to bring a solution to this problem. The method proposes an amalgamation of Principal Component Analysis (PCA), K-Means clustering, and Convolutional Neural Network (CNN) for a face recognition system. It is trained and evaluated using the ORL dataset. This dataset consists of 400 different faces with 40 classes of 10 face images per class. Firstly, PCA enabled the usage of a smaller network. This reduces the training time of the CNN. Thus, we get rid of the redundancy and preserve the variance with a smaller number of coefficients. Secondly, the K-Means clustering model is trained using the compressed PCA obtained data which select the K-Means clustering centers with better characteristics. Lastly, the K-Means characteristics or features are an initial value of the CNN and act as input data. The accuracy and the performance of the proposed method were tested in comparison to other Face Recognition (FR) techniques namely PCA, Support Vector Machine (SVM), as well as K-Nearest Neighbour (kNN). During experimentation, the accuracy and the performance of our suggested method after 90 epochs achieved the highest performance: 99% accuracy F1-Score, 99% precision, and 99% recall in 463.934 seconds. It outperformed the PCA that obtained 97% and KNN with 84% during the conducted experiments. Therefore, this method proved to be efficient in identifying faces in the images.
Keywords: Face recognition, Principal Component Analysis, PCA, Convolutional Neural Network, CNN, Rectified Linear Unit, ReLU, feature extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 50589 Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel
Authors: Pankaj Chandna, Dinesh Kumar
Abstract:
The present work analyses different parameters of end milling to minimize the surface roughness for AISI D2 steel. D2 Steel is generally used for stamping or forming dies, punches, forming rolls, knives, slitters, shear blades, tools, scrap choppers, tyre shredders etc. Surface roughness is one of the main indices that determines the quality of machined products and is influenced by various cutting parameters. In machining operations, achieving desired surface quality by optimization of machining parameters, is a challenging job. In case of mating components the surface roughness become more essential and is influenced by the cutting parameters, because, these quality structures are highly correlated and are expected to be influenced directly or indirectly by the direct effect of process parameters or their interactive effects (i.e. on process environment). In this work, the effects of selected process parameters on surface roughness and subsequent setting of parameters with the levels have been accomplished by Taguchi’s parameter design approach. The experiments have been performed as per the combination of levels of different process parameters suggested by L9 orthogonal array. Experimental investigation of the end milling of AISI D2 steel with carbide tool by varying feed, speed and depth of cut and the surface roughness has been measured using surface roughness tester. Analyses of variance have been performed for mean and signal-to-noise ratio to estimate the contribution of the different process parameters on the process.
Keywords: D2 Steel, Orthogonal Array, Optimization, Surface Roughness, Taguchi Methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 276888 Statistical Analysis for Overdispersed Medical Count Data
Authors: Y. N. Phang, E. F. Loh
Abstract:
Many researchers have suggested the use of zero inflated Poisson (ZIP) and zero inflated negative binomial (ZINB) models in modeling overdispersed medical count data with extra variations caused by extra zeros and unobserved heterogeneity. The studies indicate that ZIP and ZINB always provide better fit than using the normal Poisson and negative binomial models in modeling overdispersed medical count data. In this study, we proposed the use of Zero Inflated Inverse Trinomial (ZIIT), Zero Inflated Poisson Inverse Gaussian (ZIPIG) and zero inflated strict arcsine models in modeling overdispered medical count data. These proposed models are not widely used by many researchers especially in the medical field. The results show that these three suggested models can serve as alternative models in modeling overdispersed medical count data. This is supported by the application of these suggested models to a real life medical data set. Inverse trinomial, Poisson inverse Gaussian and strict arcsine are discrete distributions with cubic variance function of mean. Therefore, ZIIT, ZIPIG and ZISA are able to accommodate data with excess zeros and very heavy tailed. They are recommended to be used in modeling overdispersed medical count data when ZIP and ZINB are inadequate.
Keywords: Zero inflated, inverse trinomial distribution, Poisson inverse Gaussian distribution, strict arcsine distribution, Pearson’s goodness of fit.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 331587 Safe and Efficient Deep Reinforcement Learning Control Model: A Hydroponics Case Study
Authors: Almutasim Billa A. Alanazi, Hal S. Tharp
Abstract:
Safe performance and efficient energy consumption are essential factors for designing a control system. This paper presents a reinforcement learning (RL) model that can be applied to control applications to improve safety and reduce energy consumption. As hardware constraints and environmental disturbances are imprecise and unpredictable, conventional control methods may not always be effective in optimizing control designs. However, RL has demonstrated its value in several artificial intelligence (AI) applications, especially in the field of control systems. The proposed model intelligently monitors a system's success by observing the rewards from the environment, with positive rewards counting as a success when the controlled reference is within the desired operating zone. Thus, the model can determine whether the system is safe to continue operating based on the designer/user specifications, which can be adjusted as needed. Additionally, the controller keeps track of energy consumption to improve energy efficiency by enabling the idle mode when the controlled reference is within the desired operating zone, thus reducing the system energy consumption during the controlling operation. Water temperature control for a hydroponic system is taken as a case study for the RL model, adjusting the variance of disturbances to show the model’s robustness and efficiency. On average, the model showed safety improvement by up to 15% and energy efficiency improvements by 35%-40% compared to a traditional RL model.
Keywords: Control system, hydroponics, machine learning, reinforcement learning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20786 Monte Carlo Estimation of Heteroscedasticity and Periodicity Effects in a Panel Data Regression Model
Authors: Nureni O. Adeboye, Dawud A. Agunbiade
Abstract:
This research attempts to investigate the effects of heteroscedasticity and periodicity in a Panel Data Regression Model (PDRM) by extending previous works on balanced panel data estimation within the context of fitting PDRM for Banks audit fee. The estimation of such model was achieved through the derivation of Joint Lagrange Multiplier (LM) test for homoscedasticity and zero-serial correlation, a conditional LM test for zero serial correlation given heteroscedasticity of varying degrees as well as conditional LM test for homoscedasticity given first order positive serial correlation via a two-way error component model. Monte Carlo simulations were carried out for 81 different variations, of which its design assumed a uniform distribution under a linear heteroscedasticity function. Each of the variation was iterated 1000 times and the assessment of the three estimators considered are based on Variance, Absolute bias (ABIAS), Mean square error (MSE) and the Root Mean Square (RMSE) of parameters estimates. Eighteen different models at different specified conditions were fitted, and the best-fitted model is that of within estimator when heteroscedasticity is severe at either zero or positive serial correlation value. LM test results showed that the tests have good size and power as all the three tests are significant at 5% for the specified linear form of heteroscedasticity function which established the facts that Banks operations are severely heteroscedastic in nature with little or no periodicity effects.
Keywords: Audit fee, heteroscedasticity, Lagrange multiplier test, periodicity.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 73885 Performance Evaluation of Conventional and Wiper Carbide Tools When Turning 6060 Aluminium Alloy: Analysis of Surface Roughness
Authors: Salah Gariani, Taher Dao, Khaled Jegandi
Abstract:
Wiper inserts are widely used nowadays, particularly in turning and milling operations, due to their unique geometric characteristics that generate superb surface finish and improve productivity. Wiper inserts can produce double the feed rate while preserving comparable surface roughness compared to that produced by conventional cutting tools. This paper reports an experimental investigation of surface quality generated in the precision dry turning of 6060 Aluminium alloy using conventional and wiper inserts at different cutting conditions. The Taguchi L9 array, Analysis of Means (AOM) and variance (ANOVA) were employed in the development of the experimental design and to optimise the process parameter identified: average surface roughness (Ra). The experimental results show that the wiper inserts substantially improved the surface quality of the machined samples by a factor of two compared to those for the conventional insert under all cutting conditions. The ANOVA and AOM analysis showed that the type of insert is the most significant factor affecting surface roughness, with a Percentage Contribution Ratio (PCR) value of 67.41%. Feed rate also significantly affected surface roughness but contributed less to its variation. No significant difference was found between values of Ra using wiper inserts under dry and wet cooling modes when turning 6060 Aluminium alloy.
Keywords: 6060 Aluminium alloy, conventional and wiper carbide tools, dry turning, average surface roughness.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 32084 Antiinflammatory and Antinociceptive of Hydro Alcoholic Tanacetum balsamita L. Extract
Authors: S. Nasri, G. H. Amin, A. Azimi
Abstract:
The use of herbs to treat disease is accompanied with the history of human life. This research is aimed to study the anti-inflammatory and antinociceptive effects of hydroalcoholic extract of aerial parts of "Tanacetum balsamita balsamita". In the experimental studies 144 male mice are used. In the inflammatory test, animals were divided into six groups: Control, positive control (receiving Dexamethason at dose of 15mg/kg), and four experimental groups receiving Tanacetum balsamita balsamita hydroalcoholic extract at doses of 25, 50, 100 and 200mg/kg. Xylene was used to induce inflammation. Formalin was used to study the nociceptive effects. Animals were divided into six groups: control group, positive control group (receiving morphine) and four experimental groups receiving Tanacetum balsamita balsamita (Tb.) hydroalcoholic extract at doses of 25, 50, 100 and 200mg/kg. I.p. injection of drugs or normal saline was performed 30 minutes before test. The data were analyzed by using one way Variance analysis and Tukey post test. Aerial parts of Tanacetum balsamita balsamita hydroalcoholic extract decreased significantly inflammatory at dose of 200mg/kg (P<0/001) and caused a significant decrease and alleviated the nociception in both first and second phases at doses of 200mg/kg (p<0/001) and 100mg/kg (P<0/05). Tanacetum balsamita balsamita extract has the anti-inflammatory and anti-nociceptive effects which seems to be related with flavonoids especially Quercetin.
Keywords: Inflammation, nociception, Hydroalcoholic extract, aerial parts of Tanacetum balsamita balsamita L.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 209483 Statistical Screening of Medium Components on Ethanol Production from Cashew Apple Juice using Saccharomyces diasticus
Authors: Karuppaiya Maruthai, Viruthagiri Thangavelu, Manikandan Kanagasabai
Abstract:
In the present study, effect of critical medium components (a total of fifteen components) on ethanol production from waste cashew apple juice (CAJ) using yeast Saccharomyces diasticus was studied. A statistical response surface methodology (RSM) based Plackett-Burman Design (PBD) was used for the design of experiments. The design contains a total of 32 experimental trails. The effect of medium components on ethanol was studied at two different levels such as low concentration level (-) and high concentration levels (+). The dependent variables selected in this study were ethanol concentration (g/L) and cellmass concentration (g/L). Data obtained from RSM on ethanol production were subjected to analysis of variance (ANOVA). In general, initial substrate concentration significantly influenced the microbial growth and product formation. Of the medium components evaluated, CAJ concentration, yeast extract, (NH4)2SO4, and malt extract showed significant effect on ethanol fermentation. A second-order polynomial model was used to predict the experimental data and the model fitted the data with a high correlation coefficient (R2 > 0.98). Maximum ethanol (15.3 g/L) and biomass (6.4 g/L) concentrations were obtained at the optimum medium composition and at optimum condition (temperature-30°C; initial pH-6.8) after 72 h fermentation using S.diasticus.
Keywords: cashew apple juice, ethanol, fermentation, yeast, response surface methodology
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 271282 Using Fuzzy Logic Decision Support System to Predict the Lifted Weight for Students at Weightlifting Class
Authors: Ahmed Abdulghani Taha, Mohammad Abdulghani Taha
Abstract:
This study aims at being acquainted with the using the body fat percentage (%BF) with body Mass Index (BMI) as input parameters in fuzzy logic decision support system to predict properly the lifted weight for students at weightlifting class lift according to his abilities instead of traditional manner. The sample included 53 male students (age = 21.38 ± 0.71 yrs, height (Hgt) = 173.17 ± 5.28 cm, body weight (BW) = 70.34 ± 7.87.6 kg, Body mass index (BMI) 23.42 ± 2.06 kg.m-2, fat mass (FM) = 9.96 ± 3.15 kg and fat percentage (% BF) = 13.98 ± 3.51 %.) experienced the weightlifting class as a credit and has variance at BW, Hgt and BMI and FM. BMI and % BF were taken as input parameters in FUZZY logic whereas the output parameter was the lifted weight (LW). There were statistical differences between LW values before and after using fuzzy logic (Diff 3.55± 2.21, P > 0.001). The percentages of the LW categories proposed by fuzzy logic were 3.77% of students to lift 1.0 fold of their bodies; 50.94% of students to lift 0.95 fold of their bodies; 33.96% of students to lift 0.9 fold of their bodies; 3.77% of students to lift 0.85 fold of their bodies and 7.55% of students to lift 0.8 fold of their bodies. The study concluded that the characteristic changes in body composition experienced by students when undergoing weightlifting could be utilized side by side with the Fuzzy logic decision support system to determine the proper workloads consistent with the abilities of students.Keywords: Fuzzy logic, body mass index, body fat percentage, weightlifting.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 153381 Effects of Process Parameters on the Yield of Oil from Coconut Fruit
Authors: Ndidi F. Amulu, Godian O. Mbah, Maxwel I. Onyiah, Callistus N. Ude
Abstract:
Analysis of the properties of coconut (Cocos nucifera) and its oil was evaluated in this work using standard analytical techniques. The analyses carried out include proximate composition of the fruit, extraction of oil from the fruit using different process parameters and physicochemical analysis of the extracted oil. The results showed the percentage (%) moisture, crude lipid, crude protein, ash and carbohydrate content of the coconut as 7.59, 55.15, 5.65, 7.35 and 19.51 respectively. The oil from the coconut fruit was odourless and yellowish liquid at room temperature (30oC). The treatment combinations used (leaching time, leaching temperature and solute: solvent ratio) showed significant differences (P<0.05) in the yield of oil from coconut flour. The oil yield ranged between 36.25%-49.83%. Lipid indices of the coconut oil indicated the acid value (AV) as 10.05Na0H/g of oil, free fatty acid (FFA) as 5.03%, saponification values (SV) as 183.26mgKOH-1g of oil, iodine value (IV) as 81.00 I2/g of oil, peroxide value (PV) as 5.00 ml/ g of oil and viscosity (V) as 0.002. A standard statistical package minitab version 16.0 program was used in the regression analysis and analysis of variance (ANOVA). The statistical software mentioned above was also used to generate various plots such as single effect plot, interactions effect plot and contour plot. The response or yield of oil from the coconut flour was used to develop a mathematical model that correlates the yield to the process variables studied. The maximum conditions obtained that gave the highest yield of coconut oil were leaching time of 2hrs, leaching temperature of 50oC and solute/solvent ratio of 0.05g/ml.
Keywords: Coconut, oil-extraction, optimization, physicochemical, proximate.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 265180 Modeling Default Probabilities of the Chosen Czech Banks in the Time of the Financial Crisis
Authors: Petr Gurný
Abstract:
One of the most important tasks in the risk management is the correct determination of probability of default (PD) of particular financial subjects. In this paper a possibility of determination of financial institution’s PD according to the creditscoring models is discussed. The paper is divided into the two parts. The first part is devoted to the estimation of the three different models (based on the linear discriminant analysis, logit regression and probit regression) from the sample of almost three hundred US commercial banks. Afterwards these models are compared and verified on the control sample with the view to choose the best one. The second part of the paper is aimed at the application of the chosen model on the portfolio of three key Czech banks to estimate their present financial stability. However, it is not less important to be able to estimate the evolution of PD in the future. For this reason, the second task in this paper is to estimate the probability distribution of the future PD for the Czech banks. So, there are sampled randomly the values of particular indicators and estimated the PDs’ distribution, while it’s assumed that the indicators are distributed according to the multidimensional subordinated Lévy model (Variance Gamma model and Normal Inverse Gaussian model, particularly). Although the obtained results show that all banks are relatively healthy, there is still high chance that “a financial crisis” will occur, at least in terms of probability. This is indicated by estimation of the various quantiles in the estimated distributions. Finally, it should be noted that the applicability of the estimated model (with respect to the used data) is limited to the recessionary phase of the financial market.
Keywords: Credit-scoring Models, Multidimensional Subordinated Lévy Model, Probability of Default.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919