Search results for: Hydrothermal Power Systemsand Genetic Algorithms
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 4794

Search results for: Hydrothermal Power Systemsand Genetic Algorithms

4524 Implementation of Security Algorithms for u-Health Monitoring System

Authors: Jiho Park, Yong-Gyu Lee, Gilwon Yoon

Abstract:

Data security in u-Health system can be an important issue because wireless network is vulnerable to hacking. However, it is not easy to implement a proper security algorithm in an embedded u-health monitoring because of hardware constraints such as low performance, power consumption and limited memory size and etc. To secure data that contain personal and biosignal information, we implemented several security algorithms such as Blowfish, data encryption standard (DES), advanced encryption standard (AES) and Rivest Cipher 4 (RC4) for our u-Health monitoring system and the results were successful. Under the same experimental conditions, we compared these algorithms. RC4 had the fastest execution time. Memory usage was the most efficient for DES. However, considering performance and safety capability, however, we concluded that AES was the most appropriate algorithm for a personal u-Health monitoring system.

Keywords: biosignal, data encryption, security measures, u-health

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2130
4523 The Research of Fuzzy Classification Rules Applied to CRM

Authors: Chien-Hua Wang, Meng-Ying Chou, Chin-Tzong Pang

Abstract:

In the era of great competition, understanding and satisfying customers- requirements are the critical tasks for a company to make a profits. Customer relationship management (CRM) thus becomes an important business issue at present. With the help of the data mining techniques, the manager can explore and analyze from a large quantity of data to discover meaningful patterns and rules. Among all methods, well-known association rule is most commonly seen. This paper is based on Apriori algorithm and uses genetic algorithms combining a data mining method to discover fuzzy classification rules. The mined results can be applied in CRM to help decision marker make correct business decisions for marketing strategies.

Keywords: Customer relationship management (CRM), Data mining, Apriori algorithm, Genetic algorithm, Fuzzy classification rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1662
4522 An Analysis of Genetic Algorithm Based Test Data Compression Using Modified PRL Coding

Authors: K. S. Neelukumari, K. B. Jayanthi

Abstract:

In this paper genetic based test data compression is targeted for improving the compression ratio and for reducing the computation time. The genetic algorithm is based on extended pattern run-length coding. The test set contains a large number of X value that can be effectively exploited to improve the test data compression. In this coding method, a reference pattern is set and its compatibility is checked. For this process, a genetic algorithm is proposed to reduce the computation time of encoding algorithm. This coding technique encodes the 2n compatible pattern or the inversely compatible pattern into a single test data segment or multiple test data segment. The experimental result shows that the compression ratio and computation time is reduced.

Keywords: Backtracking, test data compression (TDC), x-filling, x-propagating and genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1870
4521 Load Balancing in Genetic Zone Routing Protocol for MANETs

Authors: P. Sateesh Kumar , S. Ramachandram

Abstract:

Genetic Zone Routing Protocol (GZRP) is a new hybrid routing protocol for MANETs which is an extension of ZRP by using Genetic Algorithm (GA). GZRP uses GA on IERP and BRP parts of ZRP to provide a limited set of alternative routes to the destination in order to load balance the network and robustness during node/link failure during the route discovery process. GZRP is studied for its performance compared to ZRP in many folds like scalability for packet delivery and proved with improved results. This paper presents the results of the effect of load balancing on GZRP. The results show that GZRP outperforms ZRP while balancing the load.

Keywords: MANET, routing, ZRP, Genetic algorithm, GZRP, load balancing

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2197
4520 Comparison of Three Meta Heuristics to Optimize Hybrid Flow Shop Scheduling Problem with Parallel Machines

Authors: Wahyudin P. Syam, Ibrahim M. Al-Harkan

Abstract:

This study compares three meta heuristics to minimize makespan (Cmax) for Hybrid Flow Shop (HFS) Scheduling Problem with Parallel Machines. This problem is known to be NP-Hard. This study proposes three algorithms among improvement heuristic searches which are: Genetic Algorithm (GA), Simulated Annealing (SA), and Tabu Search (TS). SA and TS are known as deterministic improvement heuristic search. GA is known as stochastic improvement heuristic search. A comprehensive comparison from these three improvement heuristic searches is presented. The results for the experiments conducted show that TS is effective and efficient to solve HFS scheduling problems.

Keywords: Flow shop, genetic algorithm, simulated annealing, tabu search.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2068
4519 Prediction of the Lateral Bearing Capacity of Short Piles in Clayey Soils Using Imperialist Competitive Algorithm-Based Artificial Neural Networks

Authors: Reza Dinarvand, Mahdi Sadeghian, Somaye Sadeghian

Abstract:

Prediction of the ultimate bearing capacity of piles (Qu) is one of the basic issues in geotechnical engineering. So far, several methods have been used to estimate Qu, including the recently developed artificial intelligence methods. In recent years, optimization algorithms have been used to minimize artificial network errors, such as colony algorithms, genetic algorithms, imperialist competitive algorithms, and so on. In the present research, artificial neural networks based on colonial competition algorithm (ANN-ICA) were used, and their results were compared with other methods. The results of laboratory tests of short piles in clayey soils with parameters such as pile diameter, pile buried length, eccentricity of load and undrained shear resistance of soil were used for modeling and evaluation. The results showed that ICA-based artificial neural networks predicted lateral bearing capacity of short piles with a correlation coefficient of 0.9865 for training data and 0.975 for test data. Furthermore, the results of the model indicated the superiority of ICA-based artificial neural networks compared to back-propagation artificial neural networks as well as the Broms and Hansen methods.

Keywords: Lateral bearing capacity, short pile, clayey soil, artificial neural network, Imperialist competition algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 942
4518 Parameter Tuning of Complex Systems Modeled in Agent Based Modeling and Simulation

Authors: Rabia Korkmaz Tan, Şebnem Bora

Abstract:

The major problem encountered when modeling complex systems with agent-based modeling and simulation techniques is the existence of large parameter spaces. A complex system model cannot be expected to reflect the whole of the real system, but by specifying the most appropriate parameters, the actual system can be represented by the model under certain conditions. When the studies conducted in recent years were reviewed, it has been observed that there are few studies for parameter tuning problem in agent based simulations, and these studies have focused on tuning parameters of a single model. In this study, an approach of parameter tuning is proposed by using metaheuristic algorithms such as Genetic Algorithm (GA), Particle Swarm Optimization (PSO), Artificial Bee Colonies (ABC), Firefly (FA) algorithms. With this hybrid structured study, the parameter tuning problems of the models in the different fields were solved. The new approach offered was tested in two different models, and its achievements in different problems were compared. The simulations and the results reveal that this proposed study is better than the existing parameter tuning studies.

Keywords: Parameter tuning, agent based modeling and simulation, metaheuristic algorithms, complex systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1244
4517 Optimization of Propulsion in Flapping Micro Air Vehicles Using Genetic Algorithm Method

Authors: Mahdi Abolfazli, Ebrahim Barati, Hamid Reza Karbasian

Abstract:

In this paper the kinematic parameters of a regular Flapping Micro Air Vehicle (FMAV) is investigated. The optimization is done using multi-objective Genetic algorithm method. It is shown that the maximum propulsive efficiency is occurred on the Strouhal number of 0.2-0.3 and foil-pitch amplitude of 15°-30°. Furthermore, increasing pitch amplitude with respect to power optimization increases the thrust slightly until pitch amplitude around 30°, and then the trust is increased notably with increasing of pitch amplitude. Additionally, the maximum mean thrust coefficient is computed of 2.67 and propulsive efficiency for this value is 42%. Based on the thrust optimization, the maximum propulsive efficiency is acquired 54% while the mean thrust coefficient is 2.18 at the same propulsive efficiency. Consequently, the maximum propulsive efficiency is obtained 77% and the appropriate Strouhal number, pitch amplitude and phase difference between heaving and pitching are calculated of 0.27, 31° and 77°, respectively.

Keywords: Flapping foil propulsion, Genetic algorithm, Micro Air Vehicle (MAV), Optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
4516 Evaluation of Evolution Strategy, Genetic Algorithm and their Hybrid on Evolving Simulated Car Racing Controllers

Authors: Hidehiko Okada, Jumpei Tokida

Abstract:

Researchers have been applying tional intelligence (AI/CI) methods to computer games. In this research field, further researchesare required to compare AI/CI methods with respect to each game application. In th our experimental result on the comparison of three evolutionary algorithms – evolution strategy, genetic algorithm, and their hybrid applied to evolving controller agents for the CIG 2007 Simulated Car Racing competition. Our experimental result shows that, premature convergence of solutions was observed in the case of ES, and GA outperformed ES in the last half of generations. Besides, a hybrid which uses GA first and ES next evolved the best solution among the whole solutions being generated. This result shows the ability of GA in globally searching promising areas in the early stage and the ability of ES in locally searching the focused area (fine-tuning solutions).

Keywords: Evolutionary algorithm, autonomous agent, neuroevolutions, simulated car racing.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1809
4515 Cluster Algorithm for Genetic Diversity

Authors: Manpreet Singh, Keerat Kaur, Bhavdeep Singh

Abstract:

With the hardware technology advancing, the cost of storing is decreasing. Thus there is an urgent need for new techniques and tools that can intelligently and automatically assist us in transferring this data into useful knowledge. Different techniques of data mining are developed which are helpful for handling these large size databases [7]. Data mining is also finding its role in the field of biotechnology. Pedigree means the associated ancestry of a crop variety. Genetic diversity is the variation in the genetic composition of individuals within or among species. Genetic diversity depends upon the pedigree information of the varieties. Parents at lower hierarchic levels have more weightage for predicting genetic diversity as compared to the upper hierarchic levels. The weightage decreases as the level increases. For crossbreeding, the two varieties should be more and more genetically diverse so as to incorporate the useful characters of the two varieties in the newly developed variety. This paper discusses the searching and analyzing of different possible pairs of varieties selected on the basis of morphological characters, Climatic conditions and Nutrients so as to obtain the most optimal pair that can produce the required crossbreed variety. An algorithm was developed to determine the genetic diversity between the selected wheat varieties. Cluster analysis technique is used for retrieving the results.

Keywords: Genetic diversity, pedigree, nutrients.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1803
4514 Design of Static Synchronous Series Compensator Based Damping Controller Employing Real Coded Genetic Algorithm

Authors: S.C.Swain, A.K.Balirsingh, S. Mahapatra, S. Panda

Abstract:

This paper presents a systematic approach for designing Static Synchronous Series Compensator (SSSC) based supplementary damping controllers for damping low frequency oscillations in a single-machine infinite-bus power system. The design problem of the proposed controller is formulated as an optimization problem and RCGA is employed to search for optimal controller parameters. By minimizing the time-domain based objective function, in which the deviation in the oscillatory rotor speed of the generator is involved; stability performance of the system is improved. Simulation results are presented and compared with a conventional method of tuning the damping controller parameters to show the effectiveness and robustness of the proposed design approach.

Keywords: Low frequency Oscillations, Phase CompensationTechnique, Real Coded Genetic Algorithm, Single-machine InfiniteBus Power System, Static Synchronous Series Compensator.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2502
4513 Slime Mould Optimization Algorithms for Optimal Distributed Generation Integration in Distribution Electrical Network

Authors: F. Fissou Amigue, S. Ndjakomo Essiane, S. Pérabi Ngoffé, G. Abessolo Ondoa, G. Mengata Mengounou, T. P. Nna Nna

Abstract:

This document proposes a method for determining the optimal point of integration of distributed generation (DG) in distribution grid. Slime mould optimization is applied to determine best node in case of one and two injection point. Problem has been modeled as an optimization problem where the objective is to minimize joule loses and main constraint is to regulate voltage in each point. The proposed method has been implemented in MATLAB and applied in IEEE network 33 and 69 nodes. Comparing results obtained with other algorithms showed that slime mould optimization algorithms (SMOA) have the best reduction of power losses and good amelioration of voltage profile.

Keywords: Optimization, distributed generation, integration, slime mould algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 647
4512 New Algorithms for Finding Short Reset Sequences in Synchronizing Automata

Authors: Adam Roman

Abstract:

Finding synchronizing sequences for the finite automata is a very important problem in many practical applications (part orienters in industry, reset problem in biocomputing theory, network issues etc). Problem of finding the shortest synchronizing sequence is NP-hard, so polynomial algorithms probably can work only as heuristic ones. In this paper we propose two versions of polynomial algorithms which work better than well-known Eppstein-s Greedy and Cycle algorithms.

Keywords: Synchronizing words, reset sequences, Černý Conjecture

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1600
4511 Space Time Processing with Adaptive STBC-OFDM Systems

Authors: F. Sarabchi, M. E. Kalantari

Abstract:

In this paper, Optimum adaptive loading algorithms are applied to multicarrier system with Space-Time Block Coding (STBC) scheme associated with space-time processing based on singular-value decomposition (SVD) of the channel matrix over Rayleigh fading channels. SVD method has been employed in MIMO-OFDM system in order to overcome subchannel interference. Chaw-s and Compello-s algorithms have been implemented to obtain a bit and power allocation for each subcarrier assuming instantaneous channel knowledge. The adaptive loaded SVD-STBC scheme is capable of providing both full-rate and full-diversity for any number of transmit antennas. The effectiveness of these techniques has demonstrated through the simulation of an Adaptive loaded SVDSTBC system, and the comparison shown that the proposed algorithms ensure better performance in the case of MIMO.

Keywords: OFDM, MIMO, SVD, STBC, Adaptive Loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1971
4510 Heuristic Set-Covering-Based Postprocessing for Improving the Quine-McCluskey Method

Authors: Miloš Šeda

Abstract:

Finding the minimal logical functions has important applications in the design of logical circuits. This task is solved by many different methods but, frequently, they are not suitable for a computer implementation. We briefly summarise the well-known Quine-McCluskey method, which gives a unique procedure of computing and thus can be simply implemented, but, even for simple examples, does not guarantee an optimal solution. Since the Petrick extension of the Quine-McCluskey method does not give a generally usable method for finding an optimum for logical functions with a high number of values, we focus on interpretation of the result of the Quine-McCluskey method and show that it represents a set covering problem that, unfortunately, is an NP-hard combinatorial problem. Therefore it must be solved by heuristic or approximation methods. We propose an approach based on genetic algorithms and show suitable parameter settings.

Keywords: Boolean algebra, Karnaugh map, Quine-McCluskey method, set covering problem, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2793
4509 Social, Group and Individual Mind extracted from Rule Bases of Multiple Agents

Authors: P. Cermak

Abstract:

This paper shows possibility of extraction Social, Group and Individual Mind from Multiple Agents Rule Bases. Types those Rule bases are selected as two fuzzy systems, namely Mambdani and Takagi-Sugeno fuzzy system. Their rule bases are describing (modeling) agent behavior. Modifying of agent behavior in the time varying environment will be provided by learning fuzzyneural networks and optimization of their parameters with using genetic algorithms in development system FUZNET. Finally, extraction Social, Group and Individual Mind from Multiple Agents Rule Bases are provided by Cognitive analysis and Matching criterion.

Keywords: Mind, Multi-agent system, Cognitive analysis, Fuzzy system, Neural network, Genetic algorithm, Rule base.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1253
4508 Genetically Optimized TCSC Controller for Transient Stability Improvement

Authors: Sidhartha Panda, N.P.Padhy, R.N.Patel

Abstract:

This paper presents a procedure for modeling and tuning the parameters of Thyristor Controlled Series Compensation (TCSC) controller in a multi-machine power system to improve transient stability. First a simple transfer function model of TCSC controller for stability improvement is developed and the parameters of the proposed controller are optimally tuned. Genetic algorithm (GA) is employed for the optimization of the parameter-constrained nonlinear optimization problem implemented in a simulation environment. By minimizing an objective function in which the oscillatory rotor angle deviations of the generators are involved, transient stability performance of the system is improved. The proposed TCSC controller is tested on a multi-machine system and the simulation results are presented. The nonlinear simulation results validate the effectiveness of proposed approach for transient stability improvement in a multimachine power system installed with a TCSC. The simulation results also show that the proposed TCSC controller is also effective in damping low frequency oscillations.

Keywords: Genetic algorithm, TCSC, transient stability, multimachinepower system.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2384
4507 An Adaptive Fuzzy Clustering Approach for the Network Management

Authors: Amal Elmzabi, Mostafa Bellafkih, Mohammed Ramdani

Abstract:

The Chiu-s method which generates a Takagi-Sugeno Fuzzy Inference System (FIS) is a method of fuzzy rules extraction. The rules output is a linear function of inputs. In addition, these rules are not explicit for the expert. In this paper, we develop a method which generates Mamdani FIS, where the rules output is fuzzy. The method proceeds in two steps: first, it uses the subtractive clustering principle to estimate both the number of clusters and the initial locations of a cluster centers. Each obtained cluster corresponds to a Mamdani fuzzy rule. Then, it optimizes the fuzzy model parameters by applying a genetic algorithm. This method is illustrated on a traffic network management application. We suggest also a Mamdani fuzzy rules generation method, where the expert wants to classify the output variables in some fuzzy predefined classes.

Keywords: Fuzzy entropy, fuzzy inference systems, genetic algorithms, network management, subtractive clustering.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1884
4506 Comparative Study of Scheduling Algorithms for LTE Networks

Authors: Samia Dardouri, Ridha Bouallegue

Abstract:

Scheduling is the process of dynamically allocating physical resources to User Equipment (UE) based on scheduling algorithms implemented at the LTE base station. Various algorithms have been proposed by network researchers as the implementation of scheduling algorithm which represents an open issue in Long Term Evolution (LTE) standard. This paper makes an attempt to study and compare the performance of PF, MLWDF and EXP/PF scheduling algorithms. The evaluation is considered for a single cell with interference scenario for different flows such as Best effort, Video and VoIP in a pedestrian and vehicular environment using the LTE-Sim network simulator. The comparative study is conducted in terms of system throughput, fairness index, delay, packet loss ratio (PLR) and total cell spectral efficiency.

Keywords: LTE, Multimedia flows, Scheduling algorithms.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4811
4505 A Genetic Algorithm to Schedule the Flow Shop Problem under Preventive Maintenance Activities

Authors: J. Kaabi, Y. Harrath

Abstract:

This paper studied the flow shop scheduling problem under machine availability constraints. The machines are subject to flexible preventive maintenance activities. The nonresumable scenario for the jobs was considered. That is, when a job is interrupted by an unavailability period of a machine it should be restarted from the beginning. The objective is to minimize the total tardiness time for the jobs and the advance/tardiness for the maintenance activities. To solve the problem, a genetic algorithm was developed and successfully tested and validated on many problem instances. The computational results showed that the new genetic algorithm outperforms another earlier proposed algorithm. 

Keywords: Flow shop scheduling, maintenance, genetic algorithm, priority rules.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1924
4504 An Optimal Steganalysis Based Approach for Embedding Information in Image Cover Media with Security

Authors: Ahlem Fatnassi, Hamza Gharsellaoui, Sadok Bouamama

Abstract:

This paper deals with the study of interest in the fields of Steganography and Steganalysis. Steganography involves hiding information in a cover media to obtain the stego media in such a way that the cover media is perceived not to have any embedded message for its unintended recipients. Steganalysis is the mechanism of detecting the presence of hidden information in the stego media and it can lead to the prevention of disastrous security incidents. In this paper, we provide a critical review of the steganalysis algorithms available to analyze the characteristics of an image stego media against the corresponding cover media and understand the process of embedding the information and its detection. We anticipate that this paper can also give a clear picture of the current trends in steganography so that we can develop and improvise appropriate steganalysis algorithms.

Keywords: Optimization, heuristics and metaheuristics algorithms, embedded systems, low-power consumption, Steganalysis Heuristic approach.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1184
4503 Induction Motor Efficiency Estimation using Genetic Algorithm

Authors: Khalil Banan, Mohammad B.B. Sharifian, Jafar Mohammadi

Abstract:

Due to the high percentage of induction motors in industrial market, there exist a large opportunity for energy savings. Replacement of working induction motors with more efficient ones can be an important resource for energy savings. A calculation of energy savings and payback periods, as a result of such a replacement, based on nameplate motor efficiency or manufacture-s data can lead to large errors [1]. Efficiency of induction motors (IMs) can be extracted using some procedures that use the no-load test results. In the cases that we must estimate the efficiency on-line, some of these procedures can-t be efficient. In some cases the efficiency estimates using the rating values of the motor, but these procedures can have errors due to the different working condition of the motor. In this paper the efficiency of an IM estimated by using the genetic algorithm. The results are compared with the measured values of the torque and power. The results show smaller errors for this procedure compared with the conventional classical procedures, hence the cost of the equipments is reduced and on-line estimation of the efficiency can be made.

Keywords: Genetic algorithm, induction motor, efficiency.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2603
4502 Supremacy of Differential Evolution Algorithm in Designing Multiplier-Less Low-Pass FIR Filter

Authors: Abhijit Chandra, Sudipta Chattopadhyay

Abstract:

In this communication, we have made an attempt to design multiplier-less low-pass finite impulse response (FIR) filter with the aid of various mutation strategies of Differential Evolution (DE) algorithm. Impulse response coefficient of the designed FIR filter has been represented as sums or differences of powers of two. Performance of the proposed filter has been evaluated in terms of its frequency response and associated hardware cost. Supremacy of our approach has been substantiated by comparing our result with many of the existing multiplier-less filter design algorithms of recent interest. It has also been demonstrated that DE-optimized filter outperforms Genetic Algorithm (GA) based design by a large margin.  Hardware efficiency of our algorithm has further been validated by implementing those filters on a Field Programmable Gate Array (FPGA) chip.

Keywords: Convergence speed, Differential Evolution (DE), error histogram, finite impulse response (FIR) filter, total power of two (TPT), zero-valued filter coefficient (ZFC).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2155
4501 A Hybrid Fuzzy AGC in a Competitive Electricity Environment

Authors: H. Shayeghi, A. Jalili

Abstract:

This paper presents a new Hybrid Fuzzy (HF) PID type controller based on Genetic Algorithms (GA-s) for solution of the Automatic generation Control (AGC) problem in a deregulated electricity environment. In order for a fuzzy rule based control system to perform well, the fuzzy sets must be carefully designed. A major problem plaguing the effective use of this method is the difficulty of accurately constructing the membership functions, because it is a computationally expensive combinatorial optimization problem. On the other hand, GAs is a technique that emulates biological evolutionary theories to solve complex optimization problems by using directed random searches to derive a set of optimal solutions. For this reason, the membership functions are tuned automatically using a modified GA-s based on the hill climbing method. The motivation for using the modified GA-s is to reduce fuzzy system effort and take large parametric uncertainties into account. The global optimum value is guaranteed using the proposed method and the speed of the algorithm-s convergence is extremely improved, too. This newly developed control strategy combines the advantage of GA-s and fuzzy system control techniques and leads to a flexible controller with simple stricture that is easy to implement. The proposed GA based HF (GAHF) controller is tested on a threearea deregulated power system under different operating conditions and contract variations. The results of the proposed GAHF controller are compared with those of Multi Stage Fuzzy (MSF) controller, robust mixed H2/H∞ and classical PID controllers through some performance indices to illustrate its robust performance for a wide range of system parameters and load changes.

Keywords: AGC, Hybrid Fuzzy Controller, Deregulated Power System, Power System Control, GAs.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1737
4500 Image Similarity: A Genetic Algorithm Based Approach

Authors: R. C. Joshi, Shashikala Tapaswi

Abstract:

The paper proposes an approach using genetic algorithm for computing the region based image similarity. The image is denoted using a set of segmented regions reflecting color and texture properties of an image. An image is associated with a family of image features corresponding to the regions. The resemblance of two images is then defined as the overall similarity between two families of image features, and quantified by a similarity measure, which integrates properties of all the regions in the images. A genetic algorithm is applied to decide the most plausible matching. The performance of the proposed method is illustrated using examples from an image database of general-purpose images, and is shown to produce good results.

Keywords: Image Features, color descriptor, segmented classes, texture descriptors, genetic algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2326
4499 A Family of Affine Projection Adaptive Filtering Algorithms With Selective Regressors

Authors: Mohammad Shams Esfand Abadi, Nader Hadizadeh Kashani, Vahid Mehrdad

Abstract:

In this paper we present a general formalism for the establishment of the family of selective regressor affine projection algorithms (SR-APA). The SR-APA, the SR regularized APA (SR-RAPA), the SR partial rank algorithm (SR-PRA), the SR binormalized data reusing least mean squares (SR-BNDR-LMS), and the SR normalized LMS with orthogonal correction factors (SR-NLMS-OCF) algorithms are established by this general formalism. We demonstrate the performance of the presented algorithms through simulations in acoustic echo cancellation scenario.

Keywords: Adaptive filter, affine projection, selective regressor.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1574
4498 Evolutionary Training of Hybrid Systems of Recurrent Neural Networks and Hidden Markov Models

Authors: Rohitash Chandra, Christian W. Omlin

Abstract:

We present a hybrid architecture of recurrent neural networks (RNNs) inspired by hidden Markov models (HMMs). We train the hybrid architecture using genetic algorithms to learn and represent dynamical systems. We train the hybrid architecture on a set of deterministic finite-state automata strings and observe the generalization performance of the hybrid architecture when presented with a new set of strings which were not present in the training data set. In this way, we show that the hybrid system of HMM and RNN can learn and represent deterministic finite-state automata. We ran experiments with different sets of population sizes in the genetic algorithm; we also ran experiments to find out which weight initializations were best for training the hybrid architecture. The results show that the hybrid architecture of recurrent neural networks inspired by hidden Markov models can train and represent dynamical systems. The best training and generalization performance is achieved when the hybrid architecture is initialized with random real weight values of range -15 to 15.

Keywords: Deterministic finite-state automata, genetic algorithm, hidden Markov models, hybrid systems and recurrent neural networks.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1890
4497 Capacitor Placement in Distribution Systems Using Simulating Annealing (SA)

Authors: Esmail Limouzade, Mahmood.Joorabian, Najaf Hedayat

Abstract:

This paper undertakes the problem of optimal capacitor placement in a distribution system. The problem is how to optimally determine the locations to install capacitors, the types and sizes of capacitors to he installed and, during each load level,the control settings of these capacitors in order that a desired objective function is minimized while the load constraints,network constraints and operational constraints (e.g. voltage profile) at different load levels are satisfied. The problem is formulated as a combinatorial optimization problem with a nondifferentiable objective function. Four solution mythologies based on algorithms (GA),tabu search (TS), and hybrid GA-SA algorithms are presented.The solution methodologies are preceded by a sensitivity analysis to select the candidate capacitor installation locations.

Keywords: Genetic Algorithm (GA) , capacitor placement, voltage profile, network losses, Simulated Annealing, distribution network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1807
4496 Evaluation of the Magnesium Wastes with Boron Oxide in Magnesium Borate Synthesis

Authors: A. S. Kipcak, F. T. Senberber, E. Moroydor Derun, S. Piskin

Abstract:

Magnesium wastes and scraps, one of the metal wastes, are produced by many industrial activities, all over the world. Their growing size is becoming a future problem for the world. In this study, the use of magnesium wastes as a raw material in the production of the magnesium borate hydrates are aimed. The method used in the experiments is hydrothermal synthesis. The conditions are set to, waste magnesium to B2O3, 1:3 as a molar ratio. Four different reaction times are studied which are 30, 60, 120 and 240 minutes. For the identification analyses X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR) and Raman spectroscopy techniques are used. As a result at all the reaction times magnesium borate hydrates are synthesized and the most crystalline forms are obtained at a reaction time of 120 minutes. The overall yields of the production are found between the values of 65-80 %.

Keywords: Hydrothermal synthesis, magnesium borates, magnesium wastes, boron oxide

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2337
4495 Bandwidth Optimization through Dynamic Routing in ATM Networks: Genetic Algorithm and Tabu Search Approach

Authors: Susmi Routray, A. M. Sherry, B. V. R. Reddy

Abstract:

Asynchronous Transfer Mode (ATM) is widely used in telecommunications systems to send data, video and voice at a very high speed. In ATM network optimizing the bandwidth through dynamic routing is an important consideration. Previous research work shows that traditional optimization heuristics result in suboptimal solution. In this paper we have explored non-traditional optimization technique. We propose comparison of two such algorithms - Genetic Algorithm (GA) and Tabu search (TS), based on non-traditional Optimization approach, for solving the dynamic routing problem in ATM networks which in return will optimize the bandwidth. The optimized bandwidth could mean that some attractive business applications would become feasible such as high speed LAN interconnection, teleconferencing etc. We have also performed a comparative study of the selection mechanisms in GA and listed the best selection mechanism and a new initialization technique which improves the efficiency of the GA.

Keywords: Asynchronous Transfer Mode(ATM), GeneticAlgorithm(GA), Tabu Search(TS).

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1769