Search results for: Features extraction parameters
5382 The Shifting Urban Role of Buildings’ Facades: A Diachronic Analysis of El Korba
Authors: Virginia Bassily, Sherif Goubran
Abstract:
In heritage conservation and revival, much of the focus is placed on the techniques and methods to preserve, restore, and revive heritage structures and locations. However, more attention needs to be drawn to how deterioration happens and its effect on the area’s character and socio-economic status. To this end, this research aims to examine the decline and its effect in the El Korba area in Heliopolis, Cairo, Egypt. El Korba was designed with a unique architectural character to stimulate social and economic life. However, the area has been on a path of physical deterioration that is corroding the social life on its streets. This research uses diachronic analysis in Ibrahim El-Lakkani Boulevard of El Korba based on a previously developed framework that connects buildings’ architectural features to the degree of social interaction in the street to document the changes that the building deterioration could have caused. Architectural features of the street level during both the original state (1906) and the current state (2021) are broken down and categorized in those six parameters to understand their decline or improvement over time. We find that the parameters that have decreased over the years and caused the deterioration are complexity and architectural character, permeability, territoriality and personalization, and physical comfort. Based on these findings, revival projects can focus on physical parameters that create synergistic benefits by preserving and renewing heritage locations and revitalizing their socio-economic potential.
Keywords: Architectural character, heritage building conservation, enclosure, ground-floor use, El Korba, visual and physical permeability, personalization, physical comfort, social life, territoriality.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4925381 Person Identification by Using AR Model for EEG Signals
Authors: Gelareh Mohammadi, Parisa Shoushtari, Behnam Molaee Ardekani, Mohammad B. Shamsollahi
Abstract:
A direct connection between ElectroEncephaloGram (EEG) and the genetic information of individuals has been investigated by neurophysiologists and psychiatrists since 1960-s; and it opens a new research area in the science. This paper focuses on the person identification based on feature extracted from the EEG which can show a direct connection between EEG and the genetic information of subjects. In this work the full EO EEG signal of healthy individuals are estimated by an autoregressive (AR) model and the AR parameters are extracted as features. Here for feature vector constitution, two methods have been proposed; in the first method the extracted parameters of each channel are used as a feature vector in the classification step which employs a competitive neural network and in the second method a combination of different channel parameters are used as a feature vector. Correct classification scores at the range of 80% to 100% reveal the potential of our approach for person classification/identification and are in agreement to the previous researches showing evidence that the EEG signal carries genetic information. The novelty of this work is in the combination of AR parameters and the network type (competitive network) that we have used. A comparison between the first and the second approach imply preference of the second one.Keywords: Person Identification, Autoregressive Model, EEG, Neural Network
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17415380 Comparison of Performance between Different SVM Kernels for the Identification of Adult Video
Authors: Hajar Bouirouga, Sanaa El Fkihi , Abdeilah Jilbab, Driss Aboutajdine
Abstract:
In this paper we propose a method for recognition of adult video based on support vector machine (SVM). Different kernel features are proposed to classify adult videos. SVM has an advantage that it is insensitive to the relative number of training example in positive (adult video) and negative (non adult video) classes. This advantage is illustrated by comparing performance between different SVM kernels for the identification of adult video.Keywords: Skin detection, Support vector machine, Pornographic videos, Feature extraction, Video filtering, Classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23065379 Content-Based Image Retrieval Using HSV Color Space Features
Authors: Hamed Qazanfari, Hamid Hassanpour, Kazem Qazanfari
Abstract:
In this paper, a method is provided for content-based image retrieval. Content-based image retrieval system searches query an image based on its visual content in an image database to retrieve similar images. In this paper, with the aim of simulating the human visual system sensitivity to image's edges and color features, the concept of color difference histogram (CDH) is used. CDH includes the perceptually color difference between two neighboring pixels with regard to colors and edge orientations. Since the HSV color space is close to the human visual system, the CDH is calculated in this color space. In addition, to improve the color features, the color histogram in HSV color space is also used as a feature. Among the extracted features, efficient features are selected using entropy and correlation criteria. The final features extract the content of images most efficiently. The proposed method has been evaluated on three standard databases Corel 5k, Corel 10k and UKBench. Experimental results show that the accuracy of the proposed image retrieval method is significantly improved compared to the recently developed methods.
Keywords: Content-based image retrieval, color difference histogram, efficient features selection, entropy, correlation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6615378 Extraction and Characterisation of Protein Fraction from Date Palm Fruit Seeds
Authors: Ibrahim A. Akasha, Lydia Campbell, Stephen R. Euston
Abstract:
Date palm (Phoenix dactylifera L.) seeds are waste streams which are considered a major problem to the food industry. They contain potentially useful protein (10-15% of the whole date-s weight). Global production, industrialisation and utilisation of dates are increasing steadily. The worldwide production of date palm fruit has increased from 1.8 million tons in 1961 to 6.9 million tons in 2005, thus from the global production of dates are almost 800.000 tonnes of date palm seeds are not currently used [1]. The current study was carried out to convert the date palm seeds into useful protein powder. Compositional analysis showed that the seeds were rich in protein and fat 5.64 and 8.14% respectively. We used several laboratory scale methods to extract proteins from seed to produce a high protein powder. These methods included simple acid or alkali extraction, with or without ultrafiltration and phenol trichloroacetic acid with acetone precipitation (Ph/TCA method). The highest protein content powder (68%) was obtained by Ph/TCA method with yield of material (44%) whereas; the use of just alkali extraction gave the lowest protein content of 8%, and a yield of 32%.
Keywords: Date palm seed, Phoenix dactylifera L., extraction of date palm seed protein
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 46175377 Supercritical Fluid Extraction of Lutein Esters from Marigold Flowers and their Hydrolysis by Improved Saponification and Enzyme Biocatalysis
Authors: A. Peter Amala Sujith, T.V. Hymavathi, P. Yasoda Devi
Abstract:
Lutein is a dietary oxycarotenoid which is found to reduce the risks of Age-related Macular Degeneration (AMD). Supercritical fluid extraction of lutein esters from marigold petals was carried out and was found to be much effective than conventional solvent extraction. The saponification of pre-concentrated lutein esters to produce free lutein was studied which showed a composition of about 88% total carotenoids (UV-VIS spectrophotometry) and 90.7% lutein (HPLC). The lipase catalyzed hydrolysis of lutein esters in conventional medium was investigated. The optimal temperature, pH, enzyme concentration and water activity were found to be 50°C, 7, 15% and 0.33 respectively and the activity loss of lipase was about 25% after 8 times re-use in at 50°C for 12 days. However, the lipase catalyzed hydrolysis of lutein esters in conventional media resulted in poor conversions (16.4%).Keywords: lutein, preconcentration, saponification, lipase
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38815376 Systems Versioning: A Features-Based Meta-Modeling Approach
Authors: Ola A. Younis, Said Ghoul
Abstract:
Systems running these days are huge, complex and exist in many versions. Controlling these versions and tracking their changes became a very hard process as some versions are created using meaningless names or specifications. Many versions of a system are created with no clear difference between them. This leads to mismatching between a user’s request and the version he gets. In this paper, we present a system versions meta-modeling approach that produces versions based on system’s features. This model reduced the number of steps needed to configure a release and gave each version its unique specifications. This approach is applicable for systems that use features in its specification.
Keywords: Features, Meta-modeling, Semantic Modeling, SPL, VCS, Versioning.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14365375 Computer Aided Classification of Architectural Distortion in Mammograms Using Texture Features
Authors: Birmohan Singh, V. K. Jain
Abstract:
Computer aided diagnosis systems provide vital opinion to radiologists in the detection of early signs of breast cancer from mammogram images. Architectural distortions, masses and microcalcifications are the major abnormalities. In this paper, a computer aided diagnosis system has been proposed for distinguishing abnormal mammograms with architectural distortion from normal mammogram. Four types of texture features GLCM texture, GLRLM texture, fractal texture and spectral texture features for the regions of suspicion are extracted. Support vector machine has been used as classifier in this study. The proposed system yielded an overall sensitivity of 96.47% and an accuracy of 96% for mammogram images collected from digital database for screening mammography database.Keywords: Architecture Distortion, GLCM Texture features, GLRLM Texture Features, Mammograms, Support Vector Machine.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22615374 Fabricating Protruded Micro-features on AA6061 Substrates by Hot Embossing Method
Authors: Nhat Khoa Tran, Yee Cheong Lam, Chee Yoon Yue, Ming Jen Tan
Abstract:
Metallic micro parts are playing an important role in micro-fabrication industry. Recently, we have demonstrated a new deformation mechanism for micro-formability of polycrystalline materials. Different depressed micro-features smaller than the grain size have been successfully fabricated on 6061 aluminum alloy (AA6061) substrates with good fidelity. To further verify this proposed deformation mechanism that grain size is not a limiting factor, we demonstrate here that in addition of depressed features, protruded micro-features on a polycrystalline substrate can similarly be fabricated.
Keywords: Deformation mechanism, grain size, microfabrication, polycrystalline materials.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17665373 Microwave-Assisted Alginate Extraction from Portuguese Saccorhiza polyschides – Influence of Acid Pretreatment
Authors: Mário Silva, Filipa Gomes, Filipa Oliveira, Simone Morais, Cristina Delerue-Matos
Abstract:
Brown seaweeds are abundant in Portuguese coastline and represent an almost unexploited marine economic resource. One of the most common species, easily available for harvesting in the northwest coast, is Saccorhiza polyschides grows in the lowest shore and costal rocky reefs. It is almost exclusively used by local farmers as natural fertilizer, but contains a substantial amount of valuable compounds, particularly alginates, natural biopolymers of high interest for many industrial applications. Alginates are natural polysaccharides present in cell walls of brown seaweed, highly biocompatible, with particular properties that make them of high interest for the food, biotechnology, cosmetics and pharmaceutical industries. Conventional extraction processes are based on thermal treatment. They are lengthy and consume high amounts of energy and solvents. In recent years, microwave-assisted extraction (MAE) has shown enormous potential to overcome major drawbacks that outcome from conventional plant material extraction (thermal and/or solvent based) techniques, being also successfully applied to the extraction of agar, fucoidans and alginates. In the present study, acid pretreatment of brown seaweed Saccorhiza polyschides for subsequent microwave-assisted extraction (MAE) of alginate was optimized. Seaweeds were collected in Northwest Portuguese coastal waters of the Atlantic Ocean between May and August, 2014. Experimental design was used to assess the effect of temperature and acid pretreatment time in alginate extraction. Response surface methodology allowed the determination of the optimum MAE conditions: 40 mL of HCl 0.1 M per g of dried seaweed with constant stirring at 20ºC during 14h. Optimal acid pretreatment conditions have enhanced significantly MAE of alginates from Saccorhiza polyschides, thus contributing for the development of a viable, more environmental friendly alternative to conventional processes.
Keywords: Acid pretreatment, Alginate, Brown seaweed, Microwave-assisted extraction, Response surface methodology.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 33475372 Morphological Parameters and Selection of Turkish Edible Seed Pumpkins (Cucurbita pepo L.) Germplasm
Authors: Onder Turkmen, Musa Seymen, Sali Fidan, Mustafa Paksoy
Abstract:
There is a requirement for registered edible seed pumpkin suitable for eating in Turkey. A total of 81 genotypes collected from the researchers in 2005 originated from Eskisehir, Konya, Nevsehir, Tekirdag, Sakarya, Kayseri and Kirsehir provinces were utilized. The used genetic materials were brought to S5 generation by the research groups among 2006 and 2010 years. In this research, S5 stage reached in the genotype given some of the morphological features, and selection of promising genotypes generated scale were made. Results showed that the A-1 (420), A-7 (410), A-8 (420), A-32 (420), B-17 (410), B-24 (410), B-25 (420), B-33 (400), C-24 (420), C-25 (410), C-26 (410) and C-30 (420) genotypes are expected to be promising varieties.
Keywords: Candidate cultivar, edible seed pumpkin, morphologic parameters, selection.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12105371 Opponent Color and Curvelet Transform Based Image Retrieval System Using Genetic Algorithm
Authors: Yesubai Rubavathi Charles, Ravi Ramraj
Abstract:
In order to retrieve images efficiently from a large database, a unique method integrating color and texture features using genetic programming has been proposed. Opponent color histogram which gives shadow, shade, and light intensity invariant property is employed in the proposed framework for extracting color features. For texture feature extraction, fast discrete curvelet transform which captures more orientation information at different scales is incorporated to represent curved like edges. The recent scenario in the issues of image retrieval is to reduce the semantic gap between user’s preference and low level features. To address this concern, genetic algorithm combined with relevance feedback is embedded to reduce semantic gap and retrieve user’s preference images. Extensive and comparative experiments have been conducted to evaluate proposed framework for content based image retrieval on two databases, i.e., COIL-100 and Corel-1000. Experimental results clearly show that the proposed system surpassed other existing systems in terms of precision and recall. The proposed work achieves highest performance with average precision of 88.2% on COIL-100 and 76.3% on Corel, the average recall of 69.9% on COIL and 76.3% on Corel. Thus, the experimental results confirm that the proposed content based image retrieval system architecture attains better solution for image retrieval.Keywords: Content based image retrieval, Curvelet transform, Genetic algorithm, Opponent color histogram, Relevance feedback.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18225370 A Proposed Information Extraction Technique in Engineering Drawing for Reuse Design
Authors: Mohd Fahmi Mohamad Amran, Riza Sulaiman, Saliyah Kahar, Suziyanti Marjudi, Muhammad FairuzAbd Rauf
Abstract:
The extensive number of engineering drawing will be referred for planning process and the changes will produce a good engineering design to meet the demand in producing a new model. The advantage in reuse of engineering designs is to allow continuous product development to further improve the quality of product development, thus reduce the development costs. However, to retrieve the existing engineering drawing, it is time consuming, a complex process and are expose to errors. Engineering drawing file searching system will be proposed to solve this problem. It is essential for engineer and designer to have some sort of medium to enable them to search for drawing in the most effective way. This paper lays out the proposed research project under the area of information extraction in engineering drawing.
Keywords: Computer aided design, information extraction, engineering drawing, reuse design.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23095369 A Trainable Neural Network Ensemble for ECG Beat Classification
Authors: Atena Sajedin, Shokoufeh Zakernejad, Soheil Faridi, Mehrdad Javadi, Reza Ebrahimpour
Abstract:
This paper illustrates the use of a combined neural network model for classification of electrocardiogram (ECG) beats. We present a trainable neural network ensemble approach to develop customized electrocardiogram beat classifier in an effort to further improve the performance of ECG processing and to offer individualized health care. We process a three stage technique for detection of premature ventricular contraction (PVC) from normal beats and other heart diseases. This method includes a denoising, a feature extraction and a classification. At first we investigate the application of stationary wavelet transform (SWT) for noise reduction of the electrocardiogram (ECG) signals. Then feature extraction module extracts 10 ECG morphological features and one timing interval feature. Then a number of multilayer perceptrons (MLPs) neural networks with different topologies are designed. The performance of the different combination methods as well as the efficiency of the whole system is presented. Among them, Stacked Generalization as a proposed trainable combined neural network model possesses the highest recognition rate of around 95%. Therefore, this network proves to be a suitable candidate in ECG signal diagnosis systems. ECG samples attributing to the different ECG beat types were extracted from the MIT-BIH arrhythmia database for the study. Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22165368 Extracting Tongue Shape Dynamics from Magnetic Resonance Image Sequences
Authors: María S. Avila-García, John N. Carter, Robert I. Damper
Abstract:
An important problem in speech research is the automatic extraction of information about the shape and dimensions of the vocal tract during real-time speech production. We have previously developed Southampton dynamic magnetic resonance imaging (SDMRI) as an approach to the solution of this problem.However, the SDMRI images are very noisy so that shape extraction is a major challenge. In this paper, we address the problem of tongue shape extraction, which poses difficulties because this is a highly deforming non-parametric shape. We show that combining active shape models with the dynamic Hough transform allows the tongue shape to be reliably tracked in the image sequence.
Keywords: Vocal tract imaging, speech production, active shapemodels, dynamic Hough transform, object tracking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17355367 Extracting Road Signs using the Color Information
Authors: Wen-Yen Wu, Tsung-Cheng Hsieh, Ching-Sung Lai
Abstract:
In this paper, we propose a method to extract the road signs. Firstly, the grabbed image is converted into the HSV color space to detect the road signs. Secondly, the morphological operations are used to reduce noise. Finally, extract the road sign using the geometric property. The feature extraction of road sign is done by using the color information. The proposed method has been tested for the real situations. From the experimental results, it is seen that the proposed method can extract the road sign features effectively.Keywords: Color information, image processing, road sign.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22425366 Influence of Electrolytes and High Viscosity on Liquid-Liquid Separation
Authors: K. Anusarn, P. Chuttrakul, M. Schmidt, T. Kangsadan, A. Pfennig
Abstract:
Liquid-liquid extraction is a process using two immiscible liquids to extract compounds from one phase without high temperature requirement. Mostly, the technical implementation of this process is carried out in mixer-settlers or extraction columns. In real chemical processes, chemicals may have high viscosity and contain impurities. These impurities may change the settling behavior of the process without measurably changing the physical properties of the phases. In the current study, the settling behavior and the affected parameters in a high-viscosity system were observed. Batchsettling experiments were performed to experimentally quantify the settling behavior and the mixer-settler model of Henschke [1] was used to evaluate the behavior of the toluene + water system. The viscosity of the system was increased by adding polyethylene glycol 4000 to the aqueous phase. NaCl and Na2SO4 were used to study the influence of electrolytes. The results from this study show that increasing the viscosity of water has a higher influence on the settling behavior in comparison to the effects of the electrolytes. It can be seen from the experiments that at high salt concentrations, there was no effect on the settling behavior.Keywords: Coalescence; electrolytes; liquid-liquid separation; high viscosity; mixer- settler.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22235365 Image Retrieval Using Fused Features
Authors: K. Sakthivel, R. Nallusamy, C. Kavitha
Abstract:
The system is designed to show images which are related to the query image. Extracting color, texture, and shape features from an image plays a vital role in content-based image retrieval (CBIR). Initially RGB image is converted into HSV color space due to its perceptual uniformity. From the HSV image, Color features are extracted using block color histogram, texture features using Haar transform and shape feature using Fuzzy C-means Algorithm. Then, the characteristics of the global and local color histogram, texture features through co-occurrence matrix and Haar wavelet transform and shape are compared and analyzed for CBIR. Finally, the best method of each feature is fused during similarity measure to improve image retrieval effectiveness and accuracy.
Keywords: Color Histogram, Haar Wavelet Transform, Fuzzy C-means, Co-occurrence matrix; Similarity measure.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21285364 Kinetic and Removable of Amoxicillin Using Aliquat336 as a Carrier via a HFSLM
Authors: Teerapon Pirom, Ura Pancharoen
Abstract:
Amoxicillin is an antibiotic which is widely used to treat various infections in both human beings and animals. However, when amoxicillin is released into the environment, it is a major problem. Amoxicillin causes bacterial resistance to these drugs and failure of treatment with antibiotics. Liquid membrane is of great interest as a promising method for the separation and recovery of the target ions from aqueous solutions due to the use of carriers for the transport mechanism, resulting in highly selectivity and rapid transportation of the desired metal ions. The simultaneous processes of extraction and stripping in a single unit operation of liquid membrane system are very interesting. Therefore, it is practical to apply liquid membrane, particularly the HFSLM for industrial applications as HFSLM is proved to be a separation process with lower capital and operating costs, low energy and extractant with long life time, high selectivity and high fluxes compared with solid membranes. It is a simple design amenable to scaling up for industrial applications. The extraction and recovery for (Amoxicillin) through the hollow fiber supported liquid membrane (HFSLM) using aliquat336 as a carrier were explored with the experimental data. The important variables affecting on transport of amoxicillin viz. extractant concentration and operating time were investigated. The highest AMOX- extraction percentages of 85.35 and Amoxicillin stripping of 80.04 were achieved with the best condition at 6 mmol/L [aliquat336] and operating time 100 min. The extraction reaction order (n) and the extraction reaction rate constant (kf) were found to be 1.00 and 0.0344 min-1, respectively.Keywords: Aliquat336, amoxicillin, HFSLM, kinetic.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17005363 Laser Data Based Automatic Generation of Lane-Level Road Map for Intelligent Vehicles
Authors: Zehai Yu, Hui Zhu, Linglong Lin, Huawei Liang, Biao Yu, Weixin Huang
Abstract:
With the development of intelligent vehicle systems, a high-precision road map is increasingly needed in many aspects. The automatic lane lines extraction and modeling are the most essential steps for the generation of a precise lane-level road map. In this paper, an automatic lane-level road map generation system is proposed. To extract the road markings on the ground, the multi-region Otsu thresholding method is applied, which calculates the intensity value of laser data that maximizes the variance between background and road markings. The extracted road marking points are then projected to the raster image and clustered using a two-stage clustering algorithm. Lane lines are subsequently recognized from these clusters by the shape features of their minimum bounding rectangle. To ensure the storage efficiency of the map, the lane lines are approximated to cubic polynomial curves using a Bayesian estimation approach. The proposed lane-level road map generation system has been tested on urban and expressway conditions in Hefei, China. The experimental results on the datasets show that our method can achieve excellent extraction and clustering effect, and the fitted lines can reach a high position accuracy with an error of less than 10 cm.
Keywords: Curve fitting, lane-level road map, line recognition, multi-thresholding, two-stage clustering.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5125362 Segmentation of Arabic Handwritten Numeral Strings Based on Watershed Approach
Authors: Nidal F. Shilbayeh, Remah W. Al-Khatib, Sameer A. Nooh
Abstract:
Arabic offline handwriting recognition systems are considered as one of the most challenging topics. Arabic Handwritten Numeral Strings are used to automate systems that deal with numbers such as postal code, banking account numbers and numbers on car plates. Segmentation of connected numerals is the main bottleneck in the handwritten numeral recognition system. This is in turn can increase the speed and efficiency of the recognition system. In this paper, we proposed algorithms for automatic segmentation and feature extraction of Arabic handwritten numeral strings based on Watershed approach. The algorithms have been designed and implemented to achieve the main goal of segmenting and extracting the string of numeral digits written by hand especially in a courtesy amount of bank checks. The segmentation algorithm partitions the string into multiple regions that can be associated with the properties of one or more criteria. The numeral extraction algorithm extracts the numeral string digits into separated individual digit. Both algorithms for segmentation and feature extraction have been tested successfully and efficiently for all types of numerals.
Keywords: Handwritten numerals, segmentation, courtesy amount, feature extraction, numeral recognition.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6715361 Face Recognition Using Morphological Shared-weight Neural Networks
Authors: Hossein Sahoolizadeh, Mahdi Rahimi, Hamid Dehghani
Abstract:
We introduce an algorithm based on the morphological shared-weight neural network. Being nonlinear and translation-invariant, the MSNN can be used to create better generalization during face recognition. Feature extraction is performed on grayscale images using hit-miss transforms that are independent of gray-level shifts. The output is then learned by interacting with the classification process. The feature extraction and classification networks are trained together, allowing the MSNN to simultaneously learn feature extraction and classification for a face. For evaluation, we test for robustness under variations in gray levels and noise while varying the network-s configuration to optimize recognition efficiency and processing time. Results show that the MSNN performs better for grayscale image pattern classification than ordinary neural networks.Keywords: Face recognition, Neural Networks, Multi-layer Perceptron, masking.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15175360 Face Recognition Using Eigen face Coefficients and Principal Component Analysis
Authors: Parvinder S. Sandhu, Iqbaldeep Kaur, Amit Verma, Samriti Jindal, Inderpreet Kaur, Shilpi Kumari
Abstract:
Face Recognition is a field of multidimensional applications. A lot of work has been done, extensively on the most of details related to face recognition. This idea of face recognition using PCA is one of them. In this paper the PCA features for Feature extraction are used and matching is done for the face under consideration with the test image using Eigen face coefficients. The crux of the work lies in optimizing Euclidean distance and paving the way to test the same algorithm using Matlab which is an efficient tool having powerful user interface along with simplicity in representing complex images.Keywords: Eigen Face, Multidimensional, Matching, PCA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28705359 Synthesis and Use of Thiourea Derivative (1-Phenyl-3- Benzoyl-2-Thiourea) for Extraction of Cadmium Ion
Authors: Abdulfattah M. Alkherraz, Zaineb I. Lusta, Ahmed E. Zubi
Abstract:
The environmental pollution by heavy metals became more problematic nowadays. To solve the problem of Cadmium accumulation in human organs which lead to dangerous effects on human health, and to determine its concentration, the organic legand 1-phenyl-3-benzoyl-2-thiourea was used to extract the cadmium ions from its solution. This legand as one of thiourea derivatives was successfully synthesized. The legand was characterized by NMR and CHN elemental analysis, and used to extract the cadmium from its solutions by formation of a stable complex at neutral pH. The complex was characterized by elemental analysis and melting point. The concentrations of cadmium ions before and after the extraction were determined by Atomic Absorption Spectrophotometer (AAS). The data show the percentage of the extract was more than 98.7% of the concentration of cadmium used in the study
Keywords: Thiourea derivatives, cadmium extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 71715358 Triangular Geometric Feature for Offline Signature Verification
Authors: Zuraidasahana Zulkarnain, Mohd Shafry Mohd Rahim, Nor Anita Fairos Ismail, Mohd Azhar M. Arsad
Abstract:
Handwritten signature is accepted widely as a biometric characteristic for personal authentication. The use of appropriate features plays an important role in determining accuracy of signature verification; therefore, this paper presents a feature based on the geometrical concept. To achieve the aim, triangle attributes are exploited to design a new feature since the triangle possesses orientation, angle and transformation that would improve accuracy. The proposed feature uses triangulation geometric set comprising of sides, angles and perimeter of a triangle which is derived from the center of gravity of a signature image. For classification purpose, Euclidean classifier along with Voting-based classifier is used to verify the tendency of forgery signature. This classification process is experimented using triangular geometric feature and selected global features. Based on an experiment that was validated using Grupo de Senales 960 (GPDS-960) signature database, the proposed triangular geometric feature achieves a lower Average Error Rates (AER) value with a percentage of 34% as compared to 43% of the selected global feature. As a conclusion, the proposed triangular geometric feature proves to be a more reliable feature for accurate signature verification.
Keywords: biometrics, euclidean classifier, feature extraction, offline signature verification, VOTING-based classifier
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19785357 Reliable Line-of-Sight and Non-Line-of-Sight Propagation Channel Identification in Ultra-Wideband Wireless Networks
Authors: Mohamed Adnan Landolsi, Ali F. Almutairi
Abstract:
The paper addresses the problem of line-of-sight (LOS) vs. non-line-of-sight (NLOS) propagation link identification in ultra-wideband (UWB) wireless networks, which is necessary for improving the accuracy of radiolocation and positioning applications. A LOS/NLOS likelihood hypothesis testing approach is applied based on exploiting distinctive statistical features of the channel impulse response (CIR) using parameters related to the “skewness” of the CIR and its root mean square (RMS) delay spread. A log-normal fit is presented for the probability densities of the CIR parameters. Simulation results show that different environments (residential, office, outdoor, etc.) have measurable differences in their CIR parameters’ statistics, which is then exploited in determining the nature of the propagation channels. Correct LOS/NLOS channel identification rates exceeding 90% are shown to be achievable for most types of environments. Additional improvement is also obtained by combining both CIR skewness and RMS delay statistics.
Keywords: Ultra-wideband, propagation, line-of-sight, non-line-of-sight, identification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12575356 Feasibility Study for a Castor oil Extraction Plant in South Africa
Authors: Mohamed Belaid, Edison Muzenda, Getrude Mitilene, Mansoor Mollagee
Abstract:
A feasibility study for the design and construction of a pilot plant for the extraction of castor oil in South Africa was conducted. The study emphasized the four critical aspects of project feasibility analysis, namely technical, financial, market and managerial aspects. The technical aspect involved research on existing oil extraction technologies, namely: mechanical pressing and solvent extraction, as well as assessment of the proposed production site for both short and long term viability of the project. The site is on the outskirts of Nkomazi village in the Mpumalanga province, where connections for water and electricity are currently underway, potential raw material supply proves to be reliable since the province is known for its commercial farming. The managerial aspect was evaluated based on the fact that the current producer of castor oil will be fully involved in the project while receiving training and technical assistance from Sasol Technology, the TSC and SEDA. Market and financial aspects were evaluated and the project was considered financially viable with a Net Present Value (NPV) of R2 731 687 and an Internal Rate of Return (IRR) of 18% at an annual interest rate of 10.5%. The payback time is 6years for analysis over the first 10 years with a net income of R1 971 000 in the first year. The project was thus found to be feasible with high chance of success while contributing to socio-economic development. It was recommended for lab tests to be conducted to establish process kinetics that would be used in the initial design of the plant.Keywords: Mechanical pressing, Net Present Value, Oilextraction, Project feasibility, Solvent extraction
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 60825355 From Electroencephalogram to Epileptic Seizures Detection by Using Artificial Neural Networks
Authors: Gaetano Zazzaro, Angelo Martone, Roberto V. Montaquila, Luigi Pavone
Abstract:
Seizure is the main factor that affects the quality of life of epileptic patients. The diagnosis of epilepsy, and hence the identification of epileptogenic zone, is commonly made by using continuous Electroencephalogram (EEG) signal monitoring. Seizure identification on EEG signals is made manually by epileptologists and this process is usually very long and error prone. The aim of this paper is to describe an automated method able to detect seizures in EEG signals, using knowledge discovery in database process and data mining methods and algorithms, which can support physicians during the seizure detection process. Our detection method is based on Artificial Neural Network classifier, trained by applying the multilayer perceptron algorithm, and by using a software application, called Training Builder that has been developed for the massive extraction of features from EEG signals. This tool is able to cover all the data preparation steps ranging from signal processing to data analysis techniques, including the sliding window paradigm, the dimensionality reduction algorithms, information theory, and feature selection measures. The final model shows excellent performances, reaching an accuracy of over 99% during tests on data of a single patient retrieved from a publicly available EEG dataset.
Keywords: Artificial Neural Network, Data Mining, Electroencephalogram, Epilepsy, Feature Extraction, Seizure Detection, Signal Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13155354 A Novel Approach for Protein Classification Using Fourier Transform
Authors: A. F. Ali, D. M. Shawky
Abstract:
Discovering new biological knowledge from the highthroughput biological data is a major challenge to bioinformatics today. To address this challenge, we developed a new approach for protein classification. Proteins that are evolutionarily- and thereby functionally- related are said to belong to the same classification. Identifying protein classification is of fundamental importance to document the diversity of the known protein universe. It also provides a means to determine the functional roles of newly discovered protein sequences. Our goal is to predict the functional classification of novel protein sequences based on a set of features extracted from each protein sequence. The proposed technique used datasets extracted from the Structural Classification of Proteins (SCOP) database. A set of spectral domain features based on Fast Fourier Transform (FFT) is used. The proposed classifier uses multilayer back propagation (MLBP) neural network for protein classification. The maximum classification accuracy is about 91% when applying the classifier to the full four levels of the SCOP database. However, it reaches a maximum of 96% when limiting the classification to the family level. The classification results reveal that spectral domain contains information that can be used for classification with high accuracy. In addition, the results emphasize that sequence similarity measures are of great importance especially at the family level.
Keywords: Bioinformatics, Artificial Neural Networks, Protein Sequence Analysis, Feature Extraction.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23615353 A Hybrid Feature Selection and Deep Learning Algorithm for Cancer Disease Classification
Authors: Niousha Bagheri Khulenjani, Mohammad Saniee Abadeh
Abstract:
Learning from very big datasets is a significant problem for most present data mining and machine learning algorithms. MicroRNA (miRNA) is one of the important big genomic and non-coding datasets presenting the genome sequences. In this paper, a hybrid method for the classification of the miRNA data is proposed. Due to the variety of cancers and high number of genes, analyzing the miRNA dataset has been a challenging problem for researchers. The number of features corresponding to the number of samples is high and the data suffer from being imbalanced. The feature selection method has been used to select features having more ability to distinguish classes and eliminating obscures features. Afterward, a Convolutional Neural Network (CNN) classifier for classification of cancer types is utilized, which employs a Genetic Algorithm to highlight optimized hyper-parameters of CNN. In order to make the process of classification by CNN faster, Graphics Processing Unit (GPU) is recommended for calculating the mathematic equation in a parallel way. The proposed method is tested on a real-world dataset with 8,129 patients, 29 different types of tumors, and 1,046 miRNA biomarkers, taken from The Cancer Genome Atlas (TCGA) database.
Keywords: Cancer classification, feature selection, deep learning, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1272