Search results for: Versioning.
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 5

Search results for: Versioning.

5 Versioning OWL Ontologies using Temporal Tags

Authors: Punam Bedi, Sudeep Marwaha

Abstract:

Ontologies play an important role in semantic web applications and are often developed by different groups and continues to evolve over time. The knowledge in ontologies changes very rapidly that make the applications outdated if they continue to use old versions or unstable if they jump to new versions. Temporal frames using frame versioning and slot versioning are used to take care of dynamic nature of the ontologies. The paper proposes new tags and restructured OWL format enabling the applications to work with the old or new version of ontologies. Gene Ontology, a very dynamic ontology, has been used as a case study to explain the OWL Ontology with Temporal Tags.

Keywords: Frame and slot Versioning, OWL, OntologyVersioning, Semantic Web.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1723
4 Temporal Extension to OWL Ontologies

Authors: Sudeep Marwaha, Punam Bedi

Abstract:

Ontologies play an important role in semantic web applications and are often developed by different groups and continues to evolve over time. The knowledge in ontologies changes very rapidly that make the applications outdated if they continue to use old versions or unstable if they jump to new versions. Temporal frames using frame versioning and slot versioning are used to take care of dynamic nature of the ontologies. The paper proposes new tags and restructured OWL format enabling the applications to work with the old or new version of ontologies. Gene Ontology, a very dynamic ontology, has been used as a case study to explain the OWL Ontology with Temporal Tags.

Keywords: Frame and slot Versioning, OWL, OntologyVersioning, Semantic Web.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1388
3 A Survey of Model Comparison Strategies and Techniques in Model Driven Engineering

Authors: Junaid Rashid, Waqar Mehmood, Muhammad Wasif Nisar

Abstract:

This survey paper shows the recent state of model comparison as it’s applies to Model Driven engineering. In Model Driven Engineering to calculate the difference between the models is a very important and challenging task. There are number of tasks involved in model differencing that firstly starts with identifying and matching the elements of the model. In this paper, we discuss how model matching is accomplished, the strategies, techniques and the types of the model. We also discuss the future direction. We found out that many of the latest model comparison strategies are geared near enabling Meta model and similarity based matching. Therefore model versioning is the most dominant application of the model comparison. Recently to work on comparison for versioning has begun to deteriorate, giving way to different applications. Ultimately there is wide change among the tools in the measure of client exertion needed to perform model comparisons, as some require more push to encourage more sweeping statement and expressive force.

Keywords: Model comparison, model clone detection, model versioning, EMF Model, model diff.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2171
2 MLOps Scaling Machine Learning Lifecycle in an Industrial Setting

Authors: Yizhen Zhao, Adam S. Z. Belloum, Gonc¸alo Maia da Costa, Zhiming Zhao

Abstract:

Machine learning has evolved from an area of academic research to a real-world applied field. This change comes with challenges, gaps and differences exist between common practices in academic environments and the ones in production environments. Following continuous integration, development and delivery practices in software engineering, similar trends have happened in machine learning (ML) systems, called MLOps. In this paper we propose a framework that helps to streamline and introduce best practices that facilitate the ML lifecycle in an industrial setting. This framework can be used as a template that can be customized to implement various machine learning experiments. The proposed framework is modular and can be recomposed to be adapted to various use cases (e.g. data versioning, remote training on Cloud). The framework inherits practices from DevOps and introduces other practices that are unique to the machine learning system (e.g.data versioning). Our MLOps practices automate the entire machine learning lifecycle, bridge the gap between development and operation.

Keywords: Cloud computing, continuous development, data versioning, DevOps, industrial setting, MLOps, machine learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1073
1 Systems Versioning: A Features-Based Meta-Modeling Approach

Authors: Ola A. Younis, Said Ghoul

Abstract:

Systems running these days are huge, complex and exist in many versions. Controlling these versions and tracking their changes became a very hard process as some versions are created using meaningless names or specifications. Many versions of a system are created with no clear difference between them. This leads to mismatching between a user’s request and the version he gets. In this paper, we present a system versions meta-modeling approach that produces versions based on system’s features. This model reduced the number of steps needed to configure a release and gave each version its unique specifications. This approach is applicable for systems that use features in its specification.

Keywords: Features, Meta-modeling, Semantic Modeling, SPL, VCS, Versioning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1435