Search results for: Adaptive Control
4005 A Study of Adaptive Fault Detection Method for GNSS Applications
Authors: Je Young Lee, Hee Sung Kim, Kwang Ho Choi, Joonhoo Lim, Sebum Chun, Hyung Keun Lee
Abstract:
This study is purposed to develop an efficient fault detection method for Global Navigation Satellite Systems (GNSS) applications based on adaptive noise covariance estimation. Due to the dependence on radio frequency signals, GNSS measurements are dominated by systematic errors in receiver’s operating environment. In the proposed method, the pseudorange and carrier-phase measurement noise covariances are obtained at time propagations and measurement updates in process of Carrier-Smoothed Code (CSC) filtering, respectively. The test statistics for fault detection are generated by the estimated measurement noise covariances. To evaluate the fault detection capability, intentional faults were added to the filed-collected measurements. The experiment result shows that the proposed method is efficient in detecting unhealthy measurements and improves GNSS positioning accuracy against fault occurrences.
Keywords: Adaptive estimation, fault detection, GNSS, residual.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25554004 Elitist Self-Adaptive Step-Size Search in Optimum Sizing of Steel Structures
Authors: Oğuzhan Hasançebi, Saeid Kazemzadeh Azad
Abstract:
Keywords: Structural design optimization, optimal sizing, metaheuristics, self-adaptive step-size search, steel trusses, steel frames.}
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14244003 Performance Enhancement of Analog Voltage Inverter with Adaptive Gain Control for Capacitive Load
Authors: Sun-Ki Hong, Yong-Ho Cho, Ki-Seok Kim, Tae-Sam Kang
Abstract:
Piezoelectric actuator is treated as RC load when it is modeled electrically. For some piezoelectric actuator applications, arbitrary voltage is required to actuate. Especially for unidirectional arbitrary voltage driving like as sine wave, some special inverter with circuit that can charge and discharge the capacitive energy can be used. In this case, the difference between power supply level and the object voltage level for RC load is varied. Because the control gain is constant, the controlled output is not uniform according to the voltage difference. In this paper, for charge and discharge circuit for unidirectional arbitrary voltage driving for piezoelectric actuator, the controller gain is controlled according to the voltage difference. With the proposed simple idea, the load voltage can have controlled smoothly although the voltage difference is varied. The appropriateness is proved from the simulation of the proposed circuit.Keywords: Analog voltage inverter, Capacitive load, Gain control, DC-DC converter, Piezoelectric, Voltage waveform.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17534002 Increasing The Speed of Convergence of an Artificial Neural Network based ARMA Coefficients Determination Technique
Authors: Abiodun M. Aibinu, Momoh J. E. Salami, Amir A. Shafie, Athaur Rahman Najeeb
Abstract:
In this paper, novel techniques in increasing the accuracy and speed of convergence of a Feed forward Back propagation Artificial Neural Network (FFBPNN) with polynomial activation function reported in literature is presented. These technique was subsequently used to determine the coefficients of Autoregressive Moving Average (ARMA) and Autoregressive (AR) system. The results obtained by introducing sequential and batch method of weight initialization, batch method of weight and coefficient update, adaptive momentum and learning rate technique gives more accurate result and significant reduction in convergence time when compared t the traditional method of back propagation algorithm, thereby making FFBPNN an appropriate technique for online ARMA coefficient determination.Keywords: Adaptive Learning rate, Adaptive momentum, Autoregressive, Modeling, Neural Network.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14984001 A Family of Affine Projection Adaptive Filtering Algorithms With Selective Regressors
Authors: Mohammad Shams Esfand Abadi, Nader Hadizadeh Kashani, Vahid Mehrdad
Abstract:
In this paper we present a general formalism for the establishment of the family of selective regressor affine projection algorithms (SR-APA). The SR-APA, the SR regularized APA (SR-RAPA), the SR partial rank algorithm (SR-PRA), the SR binormalized data reusing least mean squares (SR-BNDR-LMS), and the SR normalized LMS with orthogonal correction factors (SR-NLMS-OCF) algorithms are established by this general formalism. We demonstrate the performance of the presented algorithms through simulations in acoustic echo cancellation scenario.Keywords: Adaptive filter, affine projection, selective regressor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15744000 Adaptive Score Normalization: A Novel Approach for Multimodal Biometric Systems
Authors: Anouar Ben Khalifa, Sami Gazzah, Najoua Essoukri BenAmara
Abstract:
Multimodal biometric systems integrate the data presented by multiple biometric sources, hence offering a better performance than the systems based on a single biometric modality. Although the coupling of biometric systems can be done at different levels, the fusion at the scores level is the most common since it has been proven effective than the rest of the fusion levels. However, the scores from different modalities are generally heterogeneous. A step of normalizing the scores is needed to transform these scores into a common domain before combining them. In this paper, we study the performance of several normalization techniques with various fusion methods in a context relating to the merger of three unimodal systems based on the face, the palmprint and the fingerprint. We also propose a new adaptive normalization method that takes into account the distribution of client scores and impostor scores. Experiments conducted on a database of 100 people show that the performances of a multimodal system depend on the choice of the normalization method and the fusion technique. The proposed normalization method has given the best results.
Keywords: Multibiometrics, Fusion, Score level, Score normalization, Adaptive normalization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35543999 An Intelligent Cascaded Fuzzy Logic Based Controller for Controlling the Room Temperature in Hydronic Heating System
Authors: Vikram Jeganathan, A. V. Sai Balasubramanian, N. Ravi Shankar, S. Subbaraman, R. Rengaraj
Abstract:
Heating systems are a necessity for regions which brace extreme cold weather throughout the year. To maintain a comfortable temperature inside a given place, heating systems making use of- Hydronic boilers- are used. The principle of a single pipe system serves as a base for their working. It is mandatory for these heating systems to control the room temperature, thus maintaining a warm environment. In this paper, the concept of regulation of the room temperature over a wide range is established by using an Adaptive Fuzzy Controller (AFC). This fuzzy controller automatically detects the changes in the outside temperatures and correspondingly maintains the inside temperature to a palatial value. Two separate AFC's are put to use to carry out this function: one to determine the quantity of heat needed to reach the prospective temperature required and to set the desired temperature; the other to control the position of the valve, which is directly proportional to the error between the present room temperature and the user desired temperature. The fuzzy logic controls the position of the valve as per the requirement of the heat. The amount by which the valve opens or closes is controlled by 5 knob positions, which vary from minimum to maximum, thereby regulating the amount of heat flowing through the valve. For the given test system data, different de-fuzzifier methods have been implemented and the results are compared. In order to validate the effectiveness of the proposed approach, a fuzzy controller has been designed by obtaining a test data from a real time system. The simulations are performed in MATLAB and are verified with standard system data. The proposed approach can be implemented for real time applications.Keywords: Adaptive fuzzy controller, Hydronic heating system
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19773998 Adaptive E-Learning System Using Fuzzy Logic and Concept Map
Authors: Mesfer Al Duhayyim, Paul Newbury
Abstract:
This paper proposes an effective adaptive e-learning system that uses a coloured concept map to show the learner's knowledge level for each concept in the chosen subject area. A Fuzzy logic system is used to evaluate the learner's knowledge level for each concept in the domain, and produce a ranked concept list of learning materials to address weaknesses in the learner’s understanding. This system obtains information on the learner's understanding of concepts by an initial pre-test before the system is used for learning and a post-test after using the learning system. A Fuzzy logic system is used to produce a weighted concept map during the learning process. The aim of this research is to prove that such a proposed novel adapted e-learning system will enhance learner's performance and understanding. In addition, this research aims to increase participants' overall understanding of their learning level by providing a coloured concept map of understanding followed by a ranked concepts list of learning materials.
Keywords: Adaptive e-learning system, coloured concept map, fuzzy logic, ranked concept list.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11033997 Performance Analysis of an Adaptive Threshold Hybrid Double-Dwell System with Antenna Diversity for Acquisition in DS-CDMA Systems
Authors: H. Krouma, M. Barkat, K. Kemih, M. Benslama, Y. Yacine
Abstract:
In this paper, we consider the analysis of the acquisition process for a hybrid double-dwell system with antenna diversity for DS-CDMA (direct sequence-code division multiple access) using an adaptive threshold. Acquisition systems with a fixed threshold value are unable to adapt to fast varying mobile communications environments and may result in a high false alarm rate, and/or low detection probability. Therefore, we propose an adaptively varying threshold scheme through the use of a cellaveraging constant false alarm rate (CA-CFAR) algorithm, which is well known in the field of radar detection. We derive exact expressions for the probabilities of detection and false alarm in Rayleigh fading channels. The mean acquisition time of the system under consideration is also derived. The performance of the system is analyzed and compared to that of a hybrid single dwell system.Keywords: Adaptive threshold, hybrid double-dwell system, CA-CFAR algorithm, DS-CDMA.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17193996 Accurate And Efficient Global Approximation using Adaptive Polynomial RSM for Complex Mechanical and Vehicular Performance Models
Authors: Y. Z. Wu, Z. Dong, S. K. You
Abstract:
Global approximation using metamodel for complex mathematical function or computer model over a large variable domain is often needed in sensibility analysis, computer simulation, optimal control, and global design optimization of complex, multiphysics systems. To overcome the limitations of the existing response surface (RS), surrogate or metamodel modeling methods for complex models over large variable domain, a new adaptive and regressive RS modeling method using quadratic functions and local area model improvement schemes is introduced. The method applies an iterative and Latin hypercube sampling based RS update process, divides the entire domain of design variables into multiple cells, identifies rougher cells with large modeling error, and further divides these cells along the roughest dimension direction. A small number of additional sampling points from the original, expensive model are added over the small and isolated rough cells to improve the RS model locally until the model accuracy criteria are satisfied. The method then combines local RS cells to regenerate the global RS model with satisfactory accuracy. An effective RS cells sorting algorithm is also introduced to improve the efficiency of model evaluation. Benchmark tests are presented and use of the new metamodeling method to replace complex hybrid electrical vehicle powertrain performance model in vehicle design optimization and optimal control are discussed.Keywords: Global approximation, polynomial response surface, domain decomposition, domain combination, multiphysics modeling, hybrid powertrain optimization
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19083995 A New Hybrid RMN Image Segmentation Algorithm
Authors: Abdelouahab Moussaoui, Nabila Ferahta, Victor Chen
Abstract:
The development of aid's systems for the medical diagnosis is not easy thing because of presence of inhomogeneities in the MRI, the variability of the data from a sequence to the other as well as of other different source distortions that accentuate this difficulty. A new automatic, contextual, adaptive and robust segmentation procedure by MRI brain tissue classification is described in this article. A first phase consists in estimating the density of probability of the data by the Parzen-Rozenblatt method. The classification procedure is completely automatic and doesn't make any assumptions nor on the clusters number nor on the prototypes of these clusters since these last are detected in an automatic manner by an operator of mathematical morphology called skeleton by influence zones detection (SKIZ). The problem of initialization of the prototypes as well as their number is transformed in an optimization problem; in more the procedure is adaptive since it takes in consideration the contextual information presents in every voxel by an adaptive and robust non parametric model by the Markov fields (MF). The number of bad classifications is reduced by the use of the criteria of MPM minimization (Maximum Posterior Marginal).Keywords: Clustering, Automatic Classification, SKIZ, MarkovFields, Image segmentation, Maximum Posterior Marginal (MPM).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14123994 Channel Estimation/Equalization with Adaptive Modulation and Coding over Multipath Faded Channels for WiMAX
Authors: B. Siva Kumar Reddy, B. Lakshmi
Abstract:
Different order modulations combined with different coding schemes, allow sending more bits per symbol, thus achieving higher throughputs and better spectral efficiencies. However, it must also be noted that when using a modulation technique such as 64- QAM with less overhead bits, better signal-to-noise ratios (SNRs) are needed to overcome any Inter symbol Interference (ISI) and maintain a certain bit error ratio (BER). The use of adaptive modulation allows wireless technologies to yielding higher throughputs while also covering long distances. The aim of this paper is to implement an Adaptive Modulation and Coding (AMC) features of the WiMAX PHY in MATLAB and to analyze the performance of the system in different channel conditions (AWGN, Rayleigh and Rician fading channel) with channel estimation and blind equalization. Simulation results have demonstrated that the increment in modulation order causes to increment in throughput and BER values. These results derived a trade-off among modulation order, FFT length, throughput, BER value and spectral efficiency. The BER changes gradually for AWGN channel and arbitrarily for Rayleigh and Rician fade channels.
Keywords: AMC, CSI, CMA, OFDM, OFDMA, WiMAX.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 31033993 An Incomplete Factorization Preconditioner for LMS Adaptive Filter
Authors: Shazia Javed, Noor Atinah Ahmad
Abstract:
In this paper an efficient incomplete factorization preconditioner is proposed for the Least Mean Squares (LMS) adaptive filter. The proposed preconditioner is approximated from a priori knowledge of the factors of input correlation matrix with an incomplete strategy, motivated by the sparsity patter of the upper triangular factor in the QRD-RLS algorithm. The convergence properties of IPLMS algorithm are comparable with those of transform domain LMS(TDLMS) algorithm. Simulation results show efficiency and robustness of the proposed algorithm with reduced computational complexity.
Keywords: Autocorrelation matrix, Cholesky's factor, eigenvalue spread, Markov input.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17933992 Adaptive Conjoint Analysis of Professionals’ Job Preferences
Authors: N. Scheidegger, A. Mueller
Abstract:
Job preferences are a well-developed research field. Many studies analyze the preferences using simple ratings with a sample of university graduates. The current study analyzes the preferences with a mixed method approach of a qualitative preliminary study and adaptive conjoint-analysis. Preconditions of accepting job offers are clarified for professionals in the industrial sector. It could be shown that, e.g. wages above the average are critical and that career opportunities must be seen broader than merely a focus on formal personnel development programs. The results suggest that, to be effective with their recruitment efforts, employers must take into account key desirable job attributes of their target group.
Keywords: Conjoint analysis, employer attractiveness, job preferences, personnel marketing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9753991 Model to Support Synchronous and Asynchronous in the Learning Process with An Adaptive Hypermedia System
Authors: Francisca Grimón, Marylin Giugni, Josep Monguet F., Joaquín Fernández, Luis León G.
Abstract:
In blended learning environments, the Internet can be combined with other technologies. The aim of this research was to design, introduce and validate a model to support synchronous and asynchronous activities by managing content domains in an Adaptive Hypermedia System (AHS). The application is based on information recovery techniques, clustering algorithms and adaptation rules to adjust the user's model to contents and objects of study. This system was applied to blended learning in higher education. The research strategy used was the case study method. Empirical studies were carried out on courses at two universities to validate the model. The results of this research show that the model had a positive effect on the learning process. The students indicated that the synchronous and asynchronous scenario is a good option, as it involves a combination of work with the lecturer and the AHS. In addition, they gave positive ratings to the system and stated that the contents were adapted to each user profile.
Keywords: Blended Learning, System Adaptive, Model, Clustering Algorithms.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18523990 Dynamics and Feedback Control for a New Hyperchaotic System
Authors: Kejun Zhuang, Hailong Zhu
Abstract:
In this paper, stability and Hopf bifurcation analysis of a novel hyperchaotic system are investigated. Four feedback control strategies, the linear feedback control method, enhancing feedback control method, speed feedback control method and delayed feedback control method, are used to control the hyperchaotic attractor to unstable equilibrium. Moreover numerical simulations are given to verify the theoretical results.Keywords: Feedback control, Hopf bifurcation, hyperchaotic system, stability.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17603989 A Model-Free Robust Control Approach for Robot Manipulator
Authors: A. Izadbakhsh, M. M. Fateh
Abstract:
A model-free robust control (MFRC) approach is proposed for position control of robot manipulators in the state space. The control approach is verified analytically to be robust subject to uncertainties including external disturbances, unmodeled dynamics, and parametric uncertainties. There is a high flexibility to work on different systems including actuators by the use of the proposed control approach. The proposed control approach can guarantee the robustness of control system. A PUMA 560 robot driven by geared permanent magnet dc motors is simulated. The simulation results show a satisfactory performance for control system under technical specifications. KeywordsModel-free, robust control, position control, PUMA 560.Keywords: Model-free, robust control, position control, PUMA 560.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21183988 Adaptive Multiple Transforms Hardware Architecture for Versatile Video Coding
Authors: T. Damak, S. Houidi, M. A. Ben Ayed, N. Masmoudi
Abstract:
The Versatile Video Coding standard (VVC) is actually under development by the Joint Video Exploration Team (or JVET). An Adaptive Multiple Transforms (AMT) approach was announced. It is based on different transform modules that provided an efficient coding. However, the AMT solution raises several issues especially regarding the complexity of the selected set of transforms. This can be an important issue, particularly for a future industrial adoption. This paper proposed an efficient hardware implementation of the most used transform in AMT approach: the DCT II. The developed circuit is adapted to different block sizes and can reach a minimum frequency of 192 MHz allowing an optimized execution time.
Keywords: AMT, DCT II, hardware, transform, VVC.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5833987 A Simplified Adaptive Decision Feedback Equalization Technique for π/4-DQPSK Signals
Authors: V. Prapulla, A. Mitra, R. Bhattacharjee, S. Nandi
Abstract:
We present a simplified equalization technique for a π/4 differential quadrature phase shift keying ( π/4 -DQPSK) modulated signal in a multipath fading environment. The proposed equalizer is realized as a fractionally spaced adaptive decision feedback equalizer (FS-ADFE), employing exponential step-size least mean square (LMS) algorithm as the adaptation technique. The main advantage of the scheme stems from the usage of exponential step-size LMS algorithm in the equalizer, which achieves similar convergence behavior as that of a recursive least squares (RLS) algorithm with significantly reduced computational complexity. To investigate the finite-precision performance of the proposed equalizer along with the π/4 -DQPSK modem, the entire system is evaluated on a 16-bit fixed point digital signal processor (DSP) environment. The proposed scheme is found to be attractive even for those cases where equalization is to be performed within a restricted number of training samples.Keywords: Adaptive decision feedback equalizer, Fractionally spaced equalizer, π/4 DQPSK signal, Digital signal processor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 57373986 An Optimal Control Method for Reconstruction of Topography in Dam-Break Flows
Authors: Alia Alghosoun, Nabil El Moçayd, Mohammed Seaid
Abstract:
Modeling dam-break flows over non-flat beds requires an accurate representation of the topography which is the main source of uncertainty in the model. Therefore, developing robust and accurate techniques for reconstructing topography in this class of problems would reduce the uncertainty in the flow system. In many hydraulic applications, experimental techniques have been widely used to measure the bed topography. In practice, experimental work in hydraulics may be very demanding in both time and cost. Meanwhile, computational hydraulics have served as an alternative for laboratory and field experiments. Unlike the forward problem, the inverse problem is used to identify the bed parameters from the given experimental data. In this case, the shallow water equations used for modeling the hydraulics need to be rearranged in a way that the model parameters can be evaluated from measured data. However, this approach is not always possible and it suffers from stability restrictions. In the present work, we propose an adaptive optimal control technique to numerically identify the underlying bed topography from a given set of free-surface observation data. In this approach, a minimization function is defined to iteratively determine the model parameters. The proposed technique can be interpreted as a fractional-stage scheme. In the first stage, the forward problem is solved to determine the measurable parameters from known data. In the second stage, the adaptive control Ensemble Kalman Filter is implemented to combine the optimality of observation data in order to obtain the accurate estimation of the topography. The main features of this method are on one hand, the ability to solve for different complex geometries with no need for any rearrangements in the original model to rewrite it in an explicit form. On the other hand, its achievement of strong stability for simulations of flows in different regimes containing shocks or discontinuities over any geometry. Numerical results are presented for a dam-break flow problem over non-flat bed using different solvers for the shallow water equations. The robustness of the proposed method is investigated using different numbers of loops, sensitivity parameters, initial samples and location of observations. The obtained results demonstrate high reliability and accuracy of the proposed techniques.Keywords: Optimal control, ensemble Kalman Filter, topography reconstruction, data assimilation, shallow water equations.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 6793985 Shot Detection Using Modified Dugad Model
Authors: Lenka Krulikovská, Jaroslav Polec
Abstract:
In this paper we present a modification to existed model of threshold for shot cut detection, which is able to adapt itself to the sequence statistics and operate in real time, because it use for calculation only previously evaluated frames. The efficiency of proposed modified adaptive threshold scheme was verified through extensive test experiment with several similarity metrics and achieved results were compared to the results reached by the original model. According to results proposed threshold scheme reached higher accuracy than existed original model.
Keywords: Abrupt cut, shot cut detection, adaptive threshold.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15333984 Performance Evaluation of an ANC-based Hybrid Algorithm for Multi-target Wideband Active Sonar Echolocation System
Authors: Jason Chien-Hsun Tseng
Abstract:
This paper evaluates performances of an adaptive noise cancelling (ANC) based target detection algorithm on a set of real test data supported by the Defense Evaluation Research Agency (DERA UK) for multi-target wideband active sonar echolocation system. The hybrid algorithm proposed is a combination of an adaptive ANC neuro-fuzzy scheme in the first instance and followed by an iterative optimum target motion estimation (TME) scheme. The neuro-fuzzy scheme is based on the adaptive noise cancelling concept with the core processor of ANFIS (adaptive neuro-fuzzy inference system) to provide an effective fine tuned signal. The resultant output is then sent as an input to the optimum TME scheme composed of twogauge trimmed-mean (TM) levelization, discrete wavelet denoising (WDeN), and optimal continuous wavelet transform (CWT) for further denosing and targets identification. Its aim is to recover the contact signals in an effective and efficient manner and then determine the Doppler motion (radial range, velocity and acceleration) at very low signal-to-noise ratio (SNR). Quantitative results have shown that the hybrid algorithm have excellent performance in predicting targets- Doppler motion within various target strength with the maximum false detection of 1.5%.Keywords: Wideband Active Sonar Echolocation, ANC Neuro-Fuzzy, Wavelet Denoise, CWT, Hybrid Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20593983 Milling Chatter Prevention by Adaptive Spindle Speed Tuning
Authors: Nan-Chyuan Tsai, Din-Chang Chen, Rong-Mao Lee, Bai-Lu Wang
Abstract:
This paper presents how the real-time chatter prevention can be realized by feedback of acoustic cutting signal, and the efficacy of the proposed adaptive spindle speed tuning algorithm is verified by intensive experimental simulations. A pair of microphones, perpendicular to each other, is used to acquire the acoustic cutting signal resulting from milling chatter. A real-time feedback control loop is constructed for spindle speed compensation so that the milling process can be ensured to be within the stability zone of stability lobe diagram. Acoustic Chatter Signal Index (ACSI) and Spindle Speed Compensation Strategy (SSCS) are proposed to quantify the acoustic signal and actively tune the spindle speed respectively. By converting the acoustic feedback signal into ACSI, an appropriate Spindle Speed Compensation Rate (SSCR) can be determined by SSCS based on real-time chatter level or ACSI. Accordingly, the compensation command, referred to as Added-On Voltage (AOV), is applied to increase/decrease the spindle motor speed. By inspection on the precision and quality of the workpiece surface after milling, the efficacy of the real-time chatter prevention strategy via acoustic signal feedback is further assured.Keywords: Chatter compensation, Stability lobes, Non-invasivemeasurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17143982 Adaptive Kernel Principal Analysis for Online Feature Extraction
Authors: Mingtao Ding, Zheng Tian, Haixia Xu
Abstract:
The batch nature limits the standard kernel principal component analysis (KPCA) methods in numerous applications, especially for dynamic or large-scale data. In this paper, an efficient adaptive approach is presented for online extraction of the kernel principal components (KPC). The contribution of this paper may be divided into two parts. First, kernel covariance matrix is correctly updated to adapt to the changing characteristics of data. Second, KPC are recursively formulated to overcome the batch nature of standard KPCA.This formulation is derived from the recursive eigen-decomposition of kernel covariance matrix and indicates the KPC variation caused by the new data. The proposed method not only alleviates sub-optimality of the KPCA method for non-stationary data, but also maintains constant update speed and memory usage as the data-size increases. Experiments for simulation data and real applications demonstrate that our approach yields improvements in terms of both computational speed and approximation accuracy.
Keywords: adaptive method, kernel principal component analysis, online extraction, recursive algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15523981 Second Order Sliding Mode Observer Using MRAS Theory for Sensorless Control of Multiphase Induction Machine
Authors: Mohammad Jafarifar
Abstract:
This paper presents a speed estimation scheme based on second-order sliding-mode Super Twisting Algorithm (STA) and Model Reference Adaptive System (MRAS) estimation theory for Sensorless control of multiphase induction machine. A stator current observer is designed based on the STA, which is utilized to take the place of the reference voltage model of the standard MRAS algorithm. The observer is insensitive to the variation of rotor resistance and magnetizing inductance when the states arrive at the sliding mode. Derivatives of rotor flux are obtained and designed as the state of MRAS, thus eliminating the integration. Compared with the first-order sliding-mode speed estimator, the proposed scheme makes full use of the auxiliary sliding-mode surface, thus alleviating the chattering behavior without increasing the complexity. Simulation results show the robustness and effectiveness of the proposed scheme.Keywords: Multiphase induction machine, field oriented control, sliding mode, super twisting algorithm, MRAS algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22973980 Microservices-Based Provisioning and Control of Network Services for Heterogeneous Networks
Authors: Shameemraj M. Nadaf, Sipra Behera, Hemant K. Rath, Garima Mishra, Raja Mukhopadhyay, Sumanta Patro
Abstract:
Microservices architecture has been widely embraced for rapid, frequent, and reliable delivery of complex applications. It enables organizations to evolve their technology stack in various domains. Today, the networking domain is flooded with plethora of devices and software solutions which address different functionalities ranging from elementary operations, viz., switching, routing, firewall etc., to complex analytics and insights based intelligent services. In this paper, we attempt to bring in the microservices based approach for agile and adaptive delivery of network services for any underlying networking technology. We discuss the life cycle management of each individual microservice and a distributed control approach with emphasis for dynamic provisioning, management, and orchestration in an automated fashion which can provide seamless operations in large scale networks. We have conducted validations of the system in lab testbed comprising of Traditional/Legacy and Software Defined Wireless Local Area networks.
Keywords: Microservices architecture, software defined wireless networks, traditional wireless networks, automation, orchestration, intelligent networks, network analytics, seamless management, single pane control, fine-grain control.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8963979 A Novel Modified Adaptive Fuzzy Inference Engine and Its Application to Pattern Classification
Authors: J. Hossen, A. Rahman, K. Samsudin, F. Rokhani, S. Sayeed, R. Hasan
Abstract:
The Neuro-Fuzzy hybridization scheme has become of research interest in pattern classification over the past decade. The present paper proposes a novel Modified Adaptive Fuzzy Inference Engine (MAFIE) for pattern classification. A modified Apriori algorithm technique is utilized to reduce a minimal set of decision rules based on input output data sets. A TSK type fuzzy inference system is constructed by the automatic generation of membership functions and rules by the fuzzy c-means clustering and Apriori algorithm technique, respectively. The generated adaptive fuzzy inference engine is adjusted by the least-squares fit and a conjugate gradient descent algorithm towards better performance with a minimal set of rules. The proposed MAFIE is able to reduce the number of rules which increases exponentially when more input variables are involved. The performance of the proposed MAFIE is compared with other existing applications of pattern classification schemes using Fisher-s Iris and Wisconsin breast cancer data sets and shown to be very competitive.Keywords: Apriori algorithm, Fuzzy C-means, MAFIE, TSK
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19313978 Sensitizing Rules for Fuzzy Control Charts
Authors: N. Pekin Alakoç, A. Apaydın
Abstract:
Quality control charts indicate out of control conditions if any nonrandom pattern of the points is observed or any point is plotted beyond the control limits. Nonrandom patterns of Shewhart control charts are tested with sensitizing rules. When the processes are defined with fuzzy set theory, traditional sensitizing rules are insufficient for defining all out of control conditions. This is due to the fact that fuzzy numbers increase the number of out of control conditions. The purpose of the study is to develop a set of fuzzy sensitizing rules, which increase the flexibility and sensitivity of fuzzy control charts. Fuzzy sensitizing rules simplify the identification of out of control situations that results in a decrease in the calculation time and number of evaluations in fuzzy control chart approach.Keywords: Fuzzy set theory, Quality control charts, Run Rules, Unnatural patterns.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 35443977 Contrast Enhancement of Color Images with Color Morphing Approach
Authors: Javed Khan, Aamir Saeed Malik, Nidal Kamel, Sarat Chandra Dass, Azura Mohd Affandi
Abstract:
Low contrast images can result from the wrong setting of image acquisition or poor illumination conditions. Such images may not be visually appealing and can be difficult for feature extraction. Contrast enhancement of color images can be useful in medical area for visual inspection. In this paper, a new technique is proposed to improve the contrast of color images. The RGB (red, green, blue) color image is transformed into normalized RGB color space. Adaptive histogram equalization technique is applied to each of the three channels of normalized RGB color space. The corresponding channels in the original image (low contrast) and that of contrast enhanced image with adaptive histogram equalization (AHE) are morphed together in proper proportions. The proposed technique is tested on seventy color images of acne patients. The results of the proposed technique are analyzed using cumulative variance and contrast improvement factor measures. The results are also compared with decorrelation stretch. Both subjective and quantitative analysis demonstrates that the proposed techniques outperform the other techniques.
Keywords: Contrast enhancement, normalized RGB, adaptive histogram equalization, cumulative variance.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11053976 Robust Control of a Parallel 3-RRR Robotic Manipulator via μ-Synthesis Method
Authors: A. Abbasi Moshaii, M. Soltan Rezaee, M. Mohammadi Moghaddam
Abstract:
Control of some mechanisms is hard because of their complex dynamic equations. If part of the complexity is resulting from uncertainties, an efficient way for solving that is robust control. By this way, the control procedure could be simple and fast and finally, a simple controller can be designed. One kind of these mechanisms is 3-RRR which is a parallel mechanism and has three revolute joints. This paper aims to robust control a 3-RRR planner mechanism and it presents that this could be used for other mechanisms. So, a significant problem in mechanisms control could be solved. The relevant diagrams are drawn and they show the correctness of control process.Keywords: 3-RRR, dynamic equations, mechanisms control, structural uncertainty.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286