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Abstract—In this paper, stability and Hopf bifurcation analysis of
a novel hyperchaotic system are investigated. Four feedback control
strategies, the linear feedback control method, enhancing feedback
control method, speed feedback control method and delayed feedback
control method, are used to control the hyperchaotic attractor to
unstable equilibrium. Moreover numerical simulations are given to
verify the theoretical results.

Keywords—Feedback control, Hopf bifurcation, hyperchaotic sys-
tem, stability.

I. INTRODUCTION

IN 1963, the first chaotic system was introduced by Lorenz

[1]. Over time, many interesting chaotic and hyperchaotic

systems were constructed in [2]–[5], due to the potential

applications in many fields. For these systems, dynamics and

control have been extensively investigated, such as bifurcation

behavior [6]–[9], various feedback control strategies [10]–[15],

chaos synchronization [5], [16], [17], and so on.

Recently, Zheng et al. constructed the following 4D au-

tonomous hyperchaotic system in [5] by adding an additional

state to an existing chaotic system:⎧⎪⎪⎨
⎪⎪⎩

ẋ = a(y − x) + w,
ẏ = bx + cy + xz + w,
ż = −x2 − hz,
ẇ = −fy,

(1)

where a, b, c, h, f are parameters to be determined. It has

been proved that system (1) shows hyperchaotic behavior

with two positive Lyapunov exponents when a = 20, b =
14, c = 10.6, h = 2.8 and f = 4. The full state hybrid

projective synchronization of this new hyperchaotic system is

also studied by using adaptive control.

In the following, the stability of equilibrium and existence

of local Hopf bifurcation is discussed. Some feedback control

techniques are employed to control hyperchaos to equilibrium.

By the way, the corresponding numerical examples are given

to illustrate the theoretical analysis.

II. LOCAL BIFURCATION

In this section, we mainly study the stability of equilibrium

by analyzing the distribution of characteristic roots of linear

system. Through direct computation and with the help of
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Routh–Hurwitz criteria, it is easy to obtain following lemmas

about the existence and stability of zero equilibrium.

Lemma 1 System (1) has three equilibria O(0, 0, 0, 0),
E1(

√
(a + b)h, 0, a

√
(a + b)h,−(a + b)) and

E2(−
√

(a + b)h, 0,−a
√

(a + b)h,−(a + b)).
Lemma 2 For system (1), the equilibrium O(0, 0, 0, 0) is

asymptotically stable if and only if a > c, h > 0 and (a −
c)(f − ac − ab) > f(a + b) > 0.

Proof Linearizing system (1), the Jacobian matrix at

O(0, 0, 0, 0) is in the form of

J =

⎡
⎢⎢⎣

−a a 0 1
b c 0 1
0 0 −h 0
0 −f 0 0

⎤
⎥⎥⎦

and the characteristic equation is

(λ+h)(λ3 +(a−c)λ2 +(f −ac−ab)λ+f(a+b)) = 0. (2)

According to the Routh–Hurwitz criterion, the real parts of

all the characteristic roots are negative if and only if a > c,

h > 0 and (a − c)(f − ac − ab) > f(a + b) > 0, thus the

equilibrium is stable.

Now, we shall study the existence of the local Hopf bifur-

cation regarding f as the bifurcation parameter.

Theorem 1 If a > c, h > 0 and (a − c)(f − ac − ab) >
f(a+b) > 0, then system (1) undergoes a Hopf bifurcation at

the equilibrium O(0, 0, 0, 0) when f passes through the critical

value f0 = −a(a − c).
Proof Let λ = iω(ω > 0) be a root of (2). Substituting it

into (2) and separating real and imaginary parts, we have{
ω2 = f − ac − ab,
ω2(a − c) = f(a + b),

then

ω = ω0 =
√

f − ac − ab, f = f0 = −a(a − c).

Differentiating both sides of equation (2) with respect to f ,

we can obtain

3λ2 dλ

df
+ 2λ(a − c)

dλ

df
+ (f − ac − ab)

dλ

df
+ (a + b) = 0

and (
dλ

df

)−1

= −3λ2 + 2λ(a − c) + (f − ac − ab)
a + b

,

then

Re

(
dλ

df

)−1

λ=iω0

=
2ω2

0

a + b
> 0.
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Fig. 1. Stable states of system (1) with (a, b, c, h, f) =
(−10, 25,−20, 5, 75).
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Fig. 2. Periodic states of system (1) with (a, b, c, h, f) =
(−10, 25,−20, 5, 120).

Thus, the conditions for Hopf bifurcation are satisfied and

the equilibrium O(0, 0, 0, 0) is stable when f < f0, periodic

solutions exist when f > f0.

If a = −10, b = 25, c = −20, h = 5, then the critical

value f0 = 100. From Fig.1–2, the equilibrium O(0, 0, 0, 0) is

asymptotically stable when f = 75 < f0 and periodic solution

bifurcates from the equilibrium when f = 120 > f0.

III. FEEDBACK CONTROL METHODS

In this section, we will use four different feedback control

methods to suppress hyperchaotic attractor to equilibrium

O(0, 0, 0, 0). Assume that the controlled hyperchaotic system

is given by ⎧⎪⎪⎨
⎪⎪⎩

ẋ = a(y − x) + w + u1,
ẏ = bx + cy + xz + w + u2,
ż = −x2 − hz + u3,
ẇ = −fy + u4,

(3)

where ui(i = 1, 2, 3, 4) are external control inputs which will

be suitably derived from the trajectory of the hyperchaotic sys-
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Fig. 3. The states of system (4) with (a, b, c, h, f, k) =
(20, 14, 10.6, 2.8, 4, 25).

tem, specified by (x, y, z, w) to the equilibrium O(0, 0, 0, 0)
of uncontrolled system.

A. Linear feedback control

First, we use the simple linear feedback control approach

with u1 = −kx, u2 = u3 = u4 = 0 and get the following

controlled system:⎧⎪⎪⎨
⎪⎪⎩

ẋ = a(y − x) + w,
ẏ = bx + cy + xz + w − ky,
ż = −x2 − hz,
ẇ = −fy,

(4)

where k is the feedback coefficient. The characteristic equation

of linear part for (4) at equilibrium O(0, 0, 0, 0) is

(λ + h)[λ3 + (a + k − c)λ2 + (f + ak − ac − ab)λ
+f(a + b)] = 0.

By Routh–Hurwitz criterion, the equilibrium O(0, 0, 0, 0) of

controlled system (4) is stable if and only if a + k − c > 0,

h > 0 and (a + k − c)(f + ak − ac − ab) > f(a + b) > 0,

which can be shown in Fig.3.

B. Enhancing linear feedback control

It is difficult for a complex system to be controlled by only

one feedback variable, and in such cases the feedback gain is

always very large. So we use the enhancing feedback control

method and the controlled system is⎧⎪⎪⎨
⎪⎪⎩

ẋ = a(y − x) + w − kx,
ẏ = bx + cy + xz + w − ky,
ż = −x2 − hz,
ẇ = −fy,

(5)

then the corresponding characteristic equation at O(0, 0, 0, 0)
is

(λ + h)[λ3 + (a + 2k − c)λ2 + (ak + k2 − ac
−ck − ab + f)λ + f(a + b + k)] = 0.

Thus, the zero equilibrium of (5) is asymptotically stable if

and only if a + 2k − c > 0, h > 0 and (a + 2k − c)(ak +
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Fig. 4. The states of system (5) with (a, b, c, h, f, k) =
(20, 14, 10.6, 2.8, 4, 19).

k2 + f −ac− ck−ab) > f(a+ b+ k) > 0, which means that

the system with (a, b, c, h, f) = (20, 14, 10.6, 2.8, 4) is stable

when the feedback coefficient k > 17.9864 (see Fig.4).

C. Speed feedback control

If we multiply the derivative of independent variable with

coefficient, we call it speed feedback control [12]. Let the

controlled system be⎧⎪⎪⎨
⎪⎪⎩

ẋ = a(y − x) + w,
ẏ = bx + cy + xz + w,
ż = −x2 − hz,
ẇ = −fy − k(bx + cy + xz + w),

(6)

the Jacobian matrix of (6) at O(0, 0, 0, 0) is

J =

⎡
⎢⎢⎣

−a a 0 1
b c 0 1
0 0 −h 0

−kb −f − ck 0 −k

⎤
⎥⎥⎦

and the characteristic equation is

(λ + h)[λ3 + (a − c)λ + (ak + f − ac − ab + bk)λ
+f(a + b)] = 0.

Obviously, the equilibrium O(0,0,0,0) of (6) is stable if and

only if a− c > 0, h > 0 and (a− c)(ak+f −ac−ab+kb) >
f(a + b) > 0. In this case, the system is stable only with the

feedback coefficient k > 14.7785 as shown in Fig.5.

D. Delayed feedback control

The effects of time delay on nonlinear systems have long

been investigated [18]–[20]. For simplicity, we consider the

following controlled system by only adding time delay feed-

back to the third equation of system (1),⎧⎪⎪⎨
⎪⎪⎩

ẋ = a(y − x) + w,
ẏ = bx + cy + xz + w,
ż = −x2 − hz + K(z(t) − z(t − τ)),
ẇ = −fy,

(7)
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Fig. 5. The states of system (6) with (a, b, c, h, f, k) =
(20, 14, 10.6, 2.8, 4, 15).

where τ ≥ 0 is time delay and K indicates the strength of

the feedback, and then we shall study the stability and local

Hopf bifurcation at equilibrium O(0, 0, 0, 0). The characteris-

tic equation is given by

(λ + h − K + Ke−λτ )[λ3 + (a − c)λ + (f − ac − ab)λ
+f(a + b)] = 0.

It is only need to consider the distribution of the root of the

following transcendental equation:

λ + h − K + Ke−λτ = 0. (8)

Clearly, iω0(ω0 > 0) is a root of (8) if and only if ω0 satisfies

iω0 + h − K + ke−iω0τ = 0.

Separating the real and imaginary parts, we have{
ω0 − K sinω0τ = 0,
K cos ω0τ = K − h,

then we have ω0 =
√

2Kh − h2 and τj = 1
ω0

[arcsin ω0
K +2jπ],

where j = 0, 1, 2, . . ..
Suppose λ(τ) = α(τ) + iω(τ) denotes the root of (8) and

differentiate both sides of (8) with respect to τ , it is easy to

obtain
dλ

dτ
− Ke−λτ

(
λ + τ

dλ

dτ

)
= 0.

It follows that
dλ

dτ
=

Kλ

eλτ − Kτ
,

moreover,

dλ

dτ

∣∣∣∣
λ=iω0,τ=τj

=
iKω0

cos ω0τ + i sinω0τ − Kτ

and

Re

[
dλ

dτ

]
λ=iω0,τ=τj

=
ω2

0

(cos ω0τ − Kτ)2 + (sinω0τ)2
> 0.

Due to the results from [21] and [22], we have the following

theorem about stability and bifurcation for system (7) and can

control the hyperchaotic attractor effectively.

World Academy of Science, Engineering and Technology
International Journal of Mathematical and Computational Sciences

 Vol:6, No:8, 2012 

811International Scholarly and Scientific Research & Innovation 6(8) 2012 ISNI:0000000091950263

O
pe

n 
Sc

ie
nc

e 
In

de
x,

 M
at

he
m

at
ic

al
 a

nd
 C

om
pu

ta
tio

na
l S

ci
en

ce
s 

V
ol

:6
, N

o:
8,

 2
01

2 
pu

bl
ic

at
io

ns
.w

as
et

.o
rg

/1
76

9.
pd

f



0 10 20 30
−0.5

0

0.5

1

t

x

0 10 20 30
−1

−0.5

0

0.5

1

t
y

0 10 20 30
−0.5

0

0.5

t

z

0 10 20 30
−5

0

5

t

w

Fig. 6. The states of system (7) with (a, b, c, h, f, K, τ) =
(−10, 25,−20, 5, 75, 3, 0.3).

Theorem 2 Suppose that a > c, h > 0, f < −a(a − c)
and (a − c)(f − ac − ab) > f(a + b) > 0 are satisfied.

The equilibrium O(0, 0, 0, 0) of (7) is asymptotically stable

when τ ∈ [0, τ0) and unstable when τ > τ0. System (7)

undergoes a Hopf bifurcation at O(0, 0, 0, 0) when τ = τj ,

which means that periodic solutions may bifurcate from the

equilibrium when τ > τ0.

For instance, if (a, b, c, h, f,K) = (−10, 25,−20, 5, 75, 3),
then system (7) is stable when the bifurcation parameter τ <
τ0 = 0.376137, see Fig.6.
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