A Model-Free Robust Control Approach for Robot Manipulator
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 33122
A Model-Free Robust Control Approach for Robot Manipulator

Authors: A. Izadbakhsh, M. M. Fateh

Abstract:

A model-free robust control (MFRC) approach is proposed for position control of robot manipulators in the state space. The control approach is verified analytically to be robust subject to uncertainties including external disturbances, unmodeled dynamics, and parametric uncertainties. There is a high flexibility to work on different systems including actuators by the use of the proposed control approach. The proposed control approach can guarantee the robustness of control system. A PUMA 560 robot driven by geared permanent magnet dc motors is simulated. The simulation results show a satisfactory performance for control system under technical specifications. KeywordsModel-free, robust control, position control, PUMA 560.

Keywords: Model-free, robust control, position control, PUMA 560.

Digital Object Identifier (DOI): doi.org/10.5281/zenodo.1075591

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2122

References:


[1] E. M. Jafarov, M. N. A. Parlak, and Y.Istefanopulos," A new variable structure PID-Controller design for robot manipulators", IEEE Transaction on control systems technology, vol.13, No. 1, January 2005.
[2] Y. Chen, K. L. Moore and V. Bahl, Learning feed forward control using a dilated B-Spline network: frequency domain analysis and design, IEEE Transaction on Neural Networks, vol. 15, No. 2, march 2004.
[3] I. Hassanzadeh, A. Harifi, and F. Arvani, Design and implementation of an adaptive control for a robot, American Journal of Applied Sciences4 (2), pp. 56-59, 2007.
[4] C. K. Lin, Nonsingular terminal sliding mode control of robot manipulators using fuzzy wavelet networks, IEEE Transaction on Fuzzy Systems, vol. 14, No. 6, p.849, 2006.
[5] S. F. M. Assal, K. Watanabe, and K. Izumi, Neural network-based kinematic inversion of industrial redundant robots using cooperative fuzzy hint for the joint limits avoidance, IEEE/ASME Transaction on Mechatronics, vol. 11, NO. 5, pp. 593-603, 2006.
[6] K. P. Valavanis, L. Doitsidis, M. Long, and R. R. Murphy, A case study of fuzzy-logic-based robot navigation IEEE Robotic and Automation Magazine, P. 93-107, 2006.
[7] W. Khalil, E. Dombre, Modeling identification and control of robots, Hermes Penton Science, 2002.
[8] A. Vivas, V. Mosquera, Predictive functional control of a PUMA robot, ACSE Conference, 19-21 December 2005, CICC, Cairo, Egypt.
[9] S. Okuma, and A. Ishiguro, A neural network compensator for uncertainties of robotic manipulators, Proc. of the 29th conference on Decision and control, Honolulu, Hawaii, 1990, pp. 3303-3307.
[10] W. Chen, J. K. mills, J. chu, D. Sun, A Fuzzy compensator for uncertainty of industrial robots, Proceeding of the 2001 IEEE international conference on Robotics & Automation.
[11] M. F. Mendes, W. Jr. Karus, E. R. de Pieri, Variable Structure position control of an industrial Robotic Manipulator, ABCM, Journal of the Braz. Soc. Mechanical Sciences, Vol. XXIV, 2002.
[12] M. W. Spong, M. Vidyasagar, Robot dynamics and control, John Wiley and Sons, 1989.
[13] G. Zhu, S. S. Ge, A model free approach for regulation of multi-link flexible robot, Proceedings of the American control conference, Albuquerque, New Mexico,1417-1421, June 1997.
[14] S. S. Ge, T. H. Lee, J. Q. Gong, and Z. P. Wang, Model-free controller design for a single-link flexible smart materials robot, Int. J. Control, Vol. 73, NO. 6, pp. 531544, 2000.
[15] S. S. Ge, T. H. Lee, and Z. P. Wang, Model-free Regulation of Multi-link Smart Materials Robots, IEEE/ASME Transactions on Mechatronics, Vol. 6, NO. 3, September 2001.
[16] K. S. Narendra and K. Parthasarathy, Identification and control of dynamical systems using neural networks, IEEE Trans. Neural Networks, vol. 1, pp. 427, Mar. 1990.
[17] R. M. Sanner and J.-J. E. Slotine, Gaussian networks for direct adaptive control, IEEE Trans. Neural Networks, vol. 3, pp. 837868, Nov. 1992.
[18] F.-C. Chen and H. K. Khail, Adaptive control of nonlinear systems using neural networks, Int. J. Control, vol. 55, no. 6, pp. 12991317, 1992.
[19] G. A. Revithakis and M. A. Christodoulou, Adaptive control of unknown plants using dynamical neural networks, IEEE Trans. Syst, Man, Cybern., vol. 24, pp. 400411, Mar 1994.
[20] F. L. Lewis, K. Liu, and A.Aydin Yeildirek, Neural net robot controller with guaranteed tracking performance, IEEE Trans. Neural Networks, vol. 6, pp. 703715, May 1995.
[21] Y. H. Kim and F. L. Lewi, Neural Network Output Feedback Control of Robot Manipulators, IEEE Transactions on robotics and automation, vol. 15, NO. 2, pp. 301-309, APRIL 1999.
[22] T.H. Lee, H.K. Lam, F.H.F. Leung, and P.K.S. Tam, 4 A practical fuzzy logic controller for the path tracking of wheeled mobile robots, IEEE Control Systems Magazine, pp.60-65, April 2003.
[23] R. J. Wai and P. C. Chen, Robust Neural-Fuzzy-Network Control for Robot Manipulator Including Actuator Dynamics, IEEE T Transactions on Industrial Electronics, Vol. 53, NO. 4, August 2006.
[24] M-J Lee and Y-K Choi, An adaptive neurocontroller using RBFN for robot manipulators, IEEE Transactions on Industrial Electronics, Vol. 51, NO. 3, pp. 711-717, June 2004.
[25] J. Weng and S. Chen, Visual Learning with navigation as an Example, IEEE Transactions o intelligent systems, pp. 63-71, September/October 2000.
[26] E. Malis, and F. Chaumette, Theoretical improvements in the stability analysis of a new class of model-free visual servoing methods, IEEE Transactions on robotics and automation 18(2), 2002, 176186.
[27] M. Pressigout, E. Marchand, Model-free augmented reality by virtual visual servoing, IAPR Int. Conf. on Pattern Recognition, ICPR04, Cambridge, UK, August 2004.
[28] O. Pettersson, L. Karlsson, and A. Saffiotti, Model-free execution monitoring by learning from simulation, 2005.
[29] S. Kumar , A. Shukla,, A. Dutta, L. Behera, A Model-free redundancy resolution technique for visual motor coordination of a 6 DOF robot manipulator, IEEE Multi-conference on Systems and Control, October 1-3, 2007, Suntec City Convention Centre, Singapore.
[30] O. Pettersson, L. Karlsson, and A. Saffiotti, Model-Free Execution Monitoring in Behavior-Based Robotics, IEEE Trasactions on Syatems, MAN, and Cybernetics-PART B: Cybernetics, Vol. 37, NO. 4, August 2007.
[31] P. I. Corke, B. Armstrong-Helouvry, A Search for consensus among model parameters reported for the PUMA 560 Robot.
[32] P. I. Corke, The Unimation Puma servo system, MTM-226, July 1994.
[33] G.F. Franklin and A.Emami-Naeini, A foundation of the multivariable information servomechanism problem, Int. Rep, Stanford Univ, Informaion Science Lab., 1983.
[34] C. D. Doyle and G. Stein, Multivariable feedback design: Concepts for a classical/modern synthesis, IEEE Trans. Automat. Contr, vol. AC-26, no. 1, pp.4-16, Feb.1981.