Search results for: learning using labeled and unlabelled data
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 8790

Search results for: learning using labeled and unlabelled data

8790 An Experimental Study of a Self-Supervised Classifier Ensemble

Authors: Neamat El Gayar

Abstract:

Learning using labeled and unlabelled data has received considerable amount of attention in the machine learning community due its potential in reducing the need for expensive labeled data. In this work we present a new method for combining labeled and unlabeled data based on classifier ensembles. The model we propose assumes each classifier in the ensemble observes the input using different set of features. Classifiers are initially trained using some labeled samples. The trained classifiers learn further through labeling the unknown patterns using a teaching signals that is generated using the decision of the classifier ensemble, i.e. the classifiers self-supervise each other. Experiments on a set of object images are presented. Our experiments investigate different classifier models, different fusing techniques, different training sizes and different input features. Experimental results reveal that the proposed self-supervised ensemble learning approach reduces classification error over the single classifier and the traditional ensemble classifier approachs.

Keywords: Multiple Classifier Systems, classifier ensembles, learning using labeled and unlabelled data, K-nearest neighbor classifier, Bayes classifier.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1645
8789 Analysis of Relation between Unlabeled and Labeled Data to Self-Taught Learning Performance

Authors: Ekachai Phaisangittisagul, Rapeepol Chongprachawat

Abstract:

Obtaining labeled data in supervised learning is often difficult and expensive, and thus the trained learning algorithm tends to be overfitting due to small number of training data. As a result, some researchers have focused on using unlabeled data which may not necessary to follow the same generative distribution as the labeled data to construct a high-level feature for improving performance on supervised learning tasks. In this paper, we investigate the impact of the relationship between unlabeled and labeled data for classification performance. Specifically, we will apply difference unlabeled data which have different degrees of relation to the labeled data for handwritten digit classification task based on MNIST dataset. Our experimental results show that the higher the degree of relation between unlabeled and labeled data, the better the classification performance. Although the unlabeled data that is completely from different generative distribution to the labeled data provides the lowest classification performance, we still achieve high classification performance. This leads to expanding the applicability of the supervised learning algorithms using unsupervised learning.

Keywords: Autoencoder, high-level feature, MNIST dataset, selftaught learning, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1833
8788 Information Retrieval in Domain Specific Search Engine with Machine Learning Approaches

Authors: Shilpy Sharma

Abstract:

As the web continues to grow exponentially, the idea of crawling the entire web on a regular basis becomes less and less feasible, so the need to include information on specific domain, domain-specific search engines was proposed. As more information becomes available on the World Wide Web, it becomes more difficult to provide effective search tools for information access. Today, people access web information through two main kinds of search interfaces: Browsers (clicking and following hyperlinks) and Query Engines (queries in the form of a set of keywords showing the topic of interest) [2]. Better support is needed for expressing one's information need and returning high quality search results by web search tools. There appears to be a need for systems that do reasoning under uncertainty and are flexible enough to recover from the contradictions, inconsistencies, and irregularities that such reasoning involves. In a multi-view problem, the features of the domain can be partitioned into disjoint subsets (views) that are sufficient to learn the target concept. Semi-supervised, multi-view algorithms, which reduce the amount of labeled data required for learning, rely on the assumptions that the views are compatible and uncorrelated. This paper describes the use of semi-structured machine learning approach with Active learning for the “Domain Specific Search Engines". A domain-specific search engine is “An information access system that allows access to all the information on the web that is relevant to a particular domain. The proposed work shows that with the help of this approach relevant data can be extracted with the minimum queries fired by the user. It requires small number of labeled data and pool of unlabelled data on which the learning algorithm is applied to extract the required data.

Keywords: Search engines; machine learning, Informationretrieval, Active logic.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2083
8787 Analyzing Multi-Labeled Data Based on the Roll of a Concept against a Semantic Range

Authors: Masahiro Kuzunishi, Tetsuya Furukawa, Ke Lu

Abstract:

Classifying data hierarchically is an efficient approach to analyze data. Data is usually classified into multiple categories, or annotated with a set of labels. To analyze multi-labeled data, such data must be specified by giving a set of labels as a semantic range. There are some certain purposes to analyze data. This paper shows which multi-labeled data should be the target to be analyzed for those purposes, and discusses the role of a label against a set of labels by investigating the change when a label is added to the set of labels. These discussions give the methods for the advanced analysis of multi-labeled data, which are based on the role of a label against a semantic range.

Keywords: Classification Hierarchies, Data Analysis, Multilabeled Data, Orders of Sets of Labels

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1209
8786 Multi-labeled Data Expressed by a Set of Labels

Authors: Tetsuya Furukawa, Masahiro Kuzunishi

Abstract:

Collected data must be organized to be utilized efficiently, and hierarchical classification of data is efficient approach to organize data. When data is classified to multiple categories or annotated with a set of labels, users request multi-labeled data by giving a set of labels. There are several interpretations of the data expressed by a set of labels. This paper discusses which data is expressed by a set of labels by introducing orders for sets of labels and shows that there are four types of orders, which are characterized by whether the labels of expressed data includes every label of the given set of labels within the range of the set. Desirable properties of the orders, data is also expressed by the higher set of labels and different sets of labels express different data, are discussed for the orders.

Keywords: Classification Hierarchies, Multi-labeled Data, Multiple Classificaiton, Orders of Sets of Labels

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1305
8785 The Labeled Classification and its Application

Authors: M. Nemissi, H. Seridi, H. Akdag

Abstract:

This paper presents and evaluates a new classification method that aims to improve classifiers performances and speed up their training process. The proposed approach, called labeled classification, seeks to improve convergence of the BP (Back propagation) algorithm through the addition of an extra feature (labels) to all training examples. To classify every new example, tests will be carried out each label. The simplicity of implementation is the main advantage of this approach because no modifications are required in the training algorithms. Therefore, it can be used with others techniques of acceleration and stabilization. In this work, two models of the labeled classification are proposed: the LMLP (Labeled Multi Layered Perceptron) and the LNFC (Labeled Neuro Fuzzy Classifier). These models are tested using Iris, wine, texture and human thigh databases to evaluate their performances.

Keywords: Artificial neural networks, Fusion of neural networkfuzzysystems, Learning theory, Pattern recognition.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1412
8784 Improving Classification in Bayesian Networks using Structural Learning

Authors: Hong Choon Ong

Abstract:

Naïve Bayes classifiers are simple probabilistic classifiers. Classification extracts patterns by using data file with a set of labeled training examples and is currently one of the most significant areas in data mining. However, Naïve Bayes assumes the independence among the features. Structural learning among the features thus helps in the classification problem. In this study, the use of structural learning in Bayesian Network is proposed to be applied where there are relationships between the features when using the Naïve Bayes. The improvement in the classification using structural learning is shown if there exist relationship between the features or when they are not independent.

Keywords: Bayesian Network, Classification, Naïve Bayes, Structural Learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2600
8783 Machine Learning Facing Behavioral Noise Problem in an Imbalanced Data Using One Side Behavioral Noise Reduction: Application to a Fraud Detection

Authors: Salma El Hajjami, Jamal Malki, Alain Bouju, Mohammed Berrada

Abstract:

With the expansion of machine learning and data mining in the context of Big Data analytics, the common problem that affects data is class imbalance. It refers to an imbalanced distribution of instances belonging to each class. This problem is present in many real world applications such as fraud detection, network intrusion detection, medical diagnostics, etc. In these cases, data instances labeled negatively are significantly more numerous than the instances labeled positively. When this difference is too large, the learning system may face difficulty when tackling this problem, since it is initially designed to work in relatively balanced class distribution scenarios. Another important problem, which usually accompanies these imbalanced data, is the overlapping instances between the two classes. It is commonly referred to as noise or overlapping data. In this article, we propose an approach called: One Side Behavioral Noise Reduction (OSBNR). This approach presents a way to deal with the problem of class imbalance in the presence of a high noise level. OSBNR is based on two steps. Firstly, a cluster analysis is applied to groups similar instances from the minority class into several behavior clusters. Secondly, we select and eliminate the instances of the majority class, considered as behavioral noise, which overlap with behavior clusters of the minority class. The results of experiments carried out on a representative public dataset confirm that the proposed approach is efficient for the treatment of class imbalances in the presence of noise.

Keywords: Machine learning, Imbalanced data, Data mining, Big data.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1138
8782 An Adaptive Hand-Talking System for the Hearing Impaired

Authors: Zhou Yu, Jiang Feng

Abstract:

An adaptive Chinese hand-talking system is presented in this paper. By analyzing the 3 data collecting strategies for new users, the adaptation framework including supervised and unsupervised adaptation methods is proposed. For supervised adaptation, affinity propagation (AP) is used to extract exemplar subsets, and enhanced maximum a posteriori / vector field smoothing (eMAP/VFS) is proposed to pool the adaptation data among different models. For unsupervised adaptation, polynomial segment models (PSMs) are used to help hidden Markov models (HMMs) to accurately label the unlabeled data, then the "labeled" data together with signerindependent models are inputted to MAP algorithm to generate signer-adapted models. Experimental results show that the proposed framework can execute both supervised adaptation with small amount of labeled data and unsupervised adaptation with large amount of unlabeled data to tailor the original models, and both achieve improvements on the performance of recognition rate.

Keywords: sign language recognition, signer adaptation, eMAP/VFS, polynomial segment model.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1759
8781 A Multi-Feature Deep Learning Algorithm for Urban Traffic Classification with Limited Labeled Data

Authors: Rohan Putatunda, Aryya Gangopadhyay

Abstract:

Acoustic sensors, if embedded in smart street lights, can help in capturing the activities (car honking, sirens, events, traffic, etc.) in cities. Needless to say, the acoustic data from such scenarios are complex due to multiple audio streams originating from different events, and when decomposed to independent signals, the amount of retrieved data volume is small in quantity which is inadequate to train deep neural networks. So, in this paper, we address the two challenges: a) separating the mixed signals, and b) developing an efficient acoustic classifier under data paucity. So, to address these challenges, we propose an architecture with supervised deep learning, where the initial captured mixed acoustics data are analyzed with Fast Fourier Transformation (FFT), followed by filtering the noise from the signal, and then decomposed to independent signals by fast independent component analysis (Fast ICA). To address the challenge of data paucity, we propose a multi feature-based deep neural network with high performance that is reflected in our experiments when compared to the conventional convolutional neural network (CNN) and multi-layer perceptron (MLP).

Keywords: FFT, ICA, vehicle classification, multi-feature DNN, CNN, MLP.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 433
8780 Designing a Framework for Network Security Protection

Authors: Eric P. Jiang

Abstract:

As the Internet continues to grow at a rapid pace as the primary medium for communications and commerce and as telecommunication networks and systems continue to expand their global reach, digital information has become the most popular and important information resource and our dependence upon the underlying cyber infrastructure has been increasing significantly. Unfortunately, as our dependency has grown, so has the threat to the cyber infrastructure from spammers, attackers and criminal enterprises. In this paper, we propose a new machine learning based network intrusion detection framework for cyber security. The detection process of the framework consists of two stages: model construction and intrusion detection. In the model construction stage, a semi-supervised machine learning algorithm is applied to a collected set of network audit data to generate a profile of normal network behavior and in the intrusion detection stage, input network events are analyzed and compared with the patterns gathered in the profile, and some of them are then flagged as anomalies should these events are sufficiently far from the expected normal behavior. The proposed framework is particularly applicable to the situations where there is only a small amount of labeled network training data available, which is very typical in real world network environments.

Keywords: classification, data analysis and mining, network intrusion detection, semi-supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1796
8779 Prime Cordial Labeling on Graphs

Authors: S. Babitha, J. Baskar Babujee

Abstract:

A prime cordial labeling of a graph G with vertex set V is a bijection f from V to {1, 2, ..., |V |} such that each edge uv is assigned the label 1 if gcd(f(u), f(v)) = 1 and 0 if gcd(f(u), f(v)) > 1, then the number of edges labeled with 0 and the number of edges labeled with 1 differ by at most 1. In this paper we exhibit some characterization results and new constructions on prime cordial graphs.

Keywords: Prime cordial, tree, Euler, bijective, function.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3579
8778 Analysis of Cooperative Learning Behavior Based on the Data of Students' Movement

Authors: Wang Lin, Li Zhiqiang

Abstract:

The purpose of this paper is to analyze the cooperative learning behavior pattern based on the data of students' movement. The study firstly reviewed the cooperative learning theory and its research status, and briefly introduced the k-means clustering algorithm. Then, it used clustering algorithm and mathematical statistics theory to analyze the activity rhythm of individual student and groups in different functional areas, according to the movement data provided by 10 first-year graduate students. It also focused on the analysis of students' behavior in the learning area and explored the law of cooperative learning behavior. The research result showed that the cooperative learning behavior analysis method based on movement data proposed in this paper is feasible. From the results of data analysis, the characteristics of behavior of students and their cooperative learning behavior patterns could be found.

Keywords: Behavior pattern, cooperative learning, data analyze, K-means clustering algorithm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 815
8777 Rapid Study on Feature Extraction and Classification Models in Healthcare Applications

Authors: S. Sowmyayani

Abstract:

The advancement of computer-aided design helps the medical force and security force. Some applications include biometric recognition, elderly fall detection, face recognition, cancer recognition, tumor recognition, etc. This paper deals with different machine learning algorithms that are more generically used for any health care system. The most focused problems are classification and regression. With the rise of big data, machine learning has become particularly important for solving problems. Machine learning uses two types of techniques: supervised learning and unsupervised learning. The former trains a model on known input and output data and predicts future outputs. Classification and regression are supervised learning techniques. Unsupervised learning finds hidden patterns in input data. Clustering is one such unsupervised learning technique. The above-mentioned models are discussed briefly in this paper.

Keywords: Supervised learning, unsupervised learning, regression, neural network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 346
8776 Missing Link Data Estimation with Recurrent Neural Network: An Application Using Speed Data of Daegu Metropolitan Area

Authors: JaeHwan Yang, Da-Woon Jeong, Seung-Young Kho, Dong-Kyu Kim

Abstract:

In terms of ITS, information on link characteristic is an essential factor for plan or operation. But in practical cases, not every link has installed sensors on it. The link that does not have data on it is called “Missing Link”. The purpose of this study is to impute data of these missing links. To get these data, this study applies the machine learning method. With the machine learning process, especially for the deep learning process, missing link data can be estimated from present link data. For deep learning process, this study uses “Recurrent Neural Network” to take time-series data of road. As input data, Dedicated Short-range Communications (DSRC) data of Dalgubul-daero of Daegu Metropolitan Area had been fed into the learning process. Neural Network structure has 17 links with present data as input, 2 hidden layers, for 1 missing link data. As a result, forecasted data of target link show about 94% of accuracy compared with actual data.

Keywords: Data Estimation, link data, machine learning, road network.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1504
8775 Analyzing the Perception of Key Terms in E-Learning in Academia: Case Study of Princess Nourah Bint Abdulrahman University

Authors: M. Almohaimeed, Y. Alhaidari, H. Alhamdan, A. Alfaries, A. Ater Kranov

Abstract:

A university-wide survey to obtain baseline data regarding the perceptions of key terms related to e-learning and distance learning among students, faculty and staff was conducted to help achieve the goals of Princess Nourah bint Abdulrahman University’s and the Kingdom of Saudi Arabia’s National Center for e-learning and Distance Learning. This paper comprises a relevant literature review, the survey methodology, preliminary data analysis, discussion, and recommendations for further research. The major findings indicate a deep and wide differentiation of understanding among users of critical key terms.

Keywords: E-learning, distance learning, on-line learning, perceptions of learning environments.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1834
8774 Analysis and Categorization of e-Learning Activities Based On Meaningful Learning Characteristics

Authors: Arda Yunianta, Norazah Yusof, Mohd Shahizan Othman, Dewi Octaviani

Abstract:

Learning is the acquisition of new mental schemata, knowledge, abilities and skills which can be used to solve problems potentially more successfully. The learning process is optimum when it is assisted and personalized. Learning is not a single activity, but should involve many possible activities to make learning become meaningful. Many e-learning applications provide facilities to support teaching and learning activities. One way to identify whether the e-learning system is being used by the learners is through the number of hits that can be obtained from the e-learning system's log data. However, we cannot rely solely to the number of hits in order to determine whether learning had occurred meaningfully. This is due to the fact that meaningful learning should engage five characteristics namely active, constructive, intentional, authentic and cooperative. This paper aims to analyze the e-learning activities that is meaningful to learning. By focusing on the meaningful learning characteristics, we match it to the corresponding Moodle e-learning activities. This analysis discovers the activities that have high impact to meaningful learning, as well as activities that are less meaningful. The high impact activities is given high weights since it become important to meaningful learning, while the low impact has less weight and said to be supportive e-learning activities. The result of this analysis helps us categorize which e-learning activities that are meaningful to learning and guide us to measure the effectiveness of e-learning usage.

Keywords: e-learning system, e-learning activity, meaningful learning characteristics, Moodle

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3151
8773 Analysis of Education Faculty Students’ Attitudes towards E-Learning According to Different Variables

Authors: Eyup Yurt, Ahmet Kurnaz, Ismail Sahin

Abstract:

The purpose of the study is to investigate the education faculty students’ attitudes towards e-learning according to different variables. In current study, the data were collected from 393 students of an education faculty in Turkey. In this study, theattitude towards e‐learning scale and the demographic information form were used to collect data. The collected data were analyzed by t-test, ANOVA and Pearson correlation coefficient. It was found that there is a significant difference in students’ tendency towards e-learning and avoidance from e-learning based on gender. Male students have more positive attitudes towards e-learning than female students. Also, the students who used the internet lesshave higher levels of avoidance from e-learning. Additionally, it is found that there is a positive and significant relationship between the number of personal mobile learning devices and tendency towards e-learning. On the other hand, there is a negative and significant relationship between the number of personal mobile learning devices and avoidance from e-learning. Also, suggestions were presented according to findings.

Keywords: Education faculty students, attitude towards e-learning, gender, daily Internet usage time, m-learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2164
8772 Data Mining Using Learning Automata

Authors: M. R. Aghaebrahimi, S. H. Zahiri, M. Amiri

Abstract:

In this paper a data miner based on the learning automata is proposed and is called LA-miner. The LA-miner extracts classification rules from data sets automatically. The proposed algorithm is established based on the function optimization using learning automata. The experimental results on three benchmarks indicate that the performance of the proposed LA-miner is comparable with (sometimes better than) the Ant-miner (a data miner algorithm based on the Ant Colony optimization algorithm) and CNZ (a well-known data mining algorithm for classification).

Keywords: Data mining, Learning automata, Classification rules, Knowledge discovery.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1936
8771 Oscillation Effect of the Multi-stage Learning for the Layered Neural Networks and Its Analysis

Authors: Isao Taguchi, Yasuo Sugai

Abstract:

This paper proposes an efficient learning method for the layered neural networks based on the selection of training data and input characteristics of an output layer unit. Comparing to recent neural networks; pulse neural networks, quantum neuro computation, etc, the multilayer network is widely used due to its simple structure. When learning objects are complicated, the problems, such as unsuccessful learning or a significant time required in learning, remain unsolved. Focusing on the input data during the learning stage, we undertook an experiment to identify the data that makes large errors and interferes with the learning process. Our method devides the learning process into several stages. In general, input characteristics to an output layer unit show oscillation during learning process for complicated problems. The multi-stage learning method proposes by the authors for the function approximation problems of classifying learning data in a phased manner, focusing on their learnabilities prior to learning in the multi layered neural network, and demonstrates validity of the multi-stage learning method. Specifically, this paper verifies by computer experiments that both of learning accuracy and learning time are improved of the BP method as a learning rule of the multi-stage learning method. In learning, oscillatory phenomena of a learning curve serve an important role in learning performance. The authors also discuss the occurrence mechanisms of oscillatory phenomena in learning. Furthermore, the authors discuss the reasons that errors of some data remain large value even after learning, observing behaviors during learning.

Keywords: data selection, function approximation problem, multistage leaning, neural network, voluntary oscillation.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1430
8770 Collaborative Education Practice in a Data Structure E-Learning Course

Authors: Gang Chen, Ruimin Shen

Abstract:

This paper presented a collaborative education model, which consists four parts: collaborative teaching, collaborative working, collaborative training and interaction. Supported by an e-learning platform, collaborative education was practiced in a data structure e-learning course. Data collected shows that most of students accept collaborative education. This paper goes one step attempting to determine which aspects appear to be most important or helpful in collaborative education.

Keywords: Collaborative work, education, data structures.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1691
8769 An Evolutionary Statistical Learning Theory

Authors: Sung-Hae Jun, Kyung-Whan Oh

Abstract:

Statistical learning theory was developed by Vapnik. It is a learning theory based on Vapnik-Chervonenkis dimension. It also has been used in learning models as good analytical tools. In general, a learning theory has had several problems. Some of them are local optima and over-fitting problems. As well, statistical learning theory has same problems because the kernel type, kernel parameters, and regularization constant C are determined subjectively by the art of researchers. So, we propose an evolutionary statistical learning theory to settle the problems of original statistical learning theory. Combining evolutionary computing into statistical learning theory, our theory is constructed. We verify improved performances of an evolutionary statistical learning theory using data sets from KDD cup.

Keywords: Evolutionary computing, Local optima, Over-fitting, Statistical learning theory

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1780
8768 Applications of Big Data in Education

Authors: Faisal Kalota

Abstract:

Big Data and analytics have gained a huge momentum in recent years. Big Data feeds into the field of Learning Analytics (LA) that may allow academic institutions to better understand the learners’ needs and proactively address them. Hence, it is important to have an understanding of Big Data and its applications. The purpose of this descriptive paper is to provide an overview of Big Data, the technologies used in Big Data, and some of the applications of Big Data in education. Additionally, it discusses some of the concerns related to Big Data and current research trends. While Big Data can provide big benefits, it is important that institutions understand their own needs, infrastructure, resources, and limitation before jumping on the Big Data bandwagon.

Keywords: Analytics, Big Data in Education, Hadoop, Learning Analytics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4879
8767 Mining Educational Data to Analyze the Student Motivation Behavior

Authors: Kunyanuth Kularbphettong, Cholticha Tongsiri

Abstract:

The purpose of this research aims to discover the knowledge for analysis student motivation behavior on e-Learning based on Data Mining Techniques, in case of the Information Technology for Communication and Learning Course at Suan Sunandha Rajabhat University. The data mining techniques was applied in this research including association rules, classification techniques. The results showed that using data mining technique can indicate the important variables that influence the student motivation behavior on e-Learning.

Keywords: association rule mining, classification techniques, e- Learning, Moodle log Motivation Behavior

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3095
8766 Collaborative Online Learning for Lecturers

Authors: Lee Bih Ni, Emily Doreen Lee, Wee Hui Yean

Abstract:

This paper was prepared to see the perceptions of online lectures regarding collaborative learning, in terms of how lecturers view online collaborative learning in the higher learning institution. The purpose of this study was conducted to determine the perceptions of online lectures about collaborative learning, especially how lecturers see online collaborative learning in the university. Adult learning education enhance collaborative learning culture with the target of involving learners in the learning process to make teaching and learning more effective and open at the university. This will finally make students learning that will assist each other. It is also to cut down the pressure of loneliness and isolation might felt among adult learners. Their ways in collaborative online was also determined. In this paper, researchers collect data using questionnaires instruments. The collected data were analyzed and interpreted. By analyzing the data, researchers report the results according the proof taken from the respondents. Results from the study, it is not only dependent on the lecturer but also a student to shape a good collaborative learning practice. Rational concepts and pattern to achieve these targets be clear right from the beginning and may be good seen by a number of proposals submitted and include how the higher learning institution has trained with ongoing lectures online. Advantages of online collaborative learning show that lecturers should be trained effectively. Studies have seen that the lecturer aware of online collaborative learning. This positive attitude will encourage the higher learning institution to continue to give the knowledge and skills required.

Keywords: Collaborative Online Learning, Lecturers’ Training.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2453
8765 Acceptance of Mobile Learning: a Respecification and Validation of Information System Success

Authors: Chin-Cheh Yi, Pei-Wen Liao, Chin-Feng Huang, I-Hui Hwang

Abstract:

With the proliferation of mobile computing technology, mobile learning (m-learning) will play a vital role in the rapidly growing electronic learning market. However, the acceptance of m-learning by individuals is critical to the successful implementation of m-learning systems. Thus, there is a need to research the factors that affect users- intention to use m-learning. Based on an updated information system (IS) success model, data collected from 350 respondents in Taiwan were tested against the research model using the structural equation modeling approach. The data collected by questionnaire were analyzed to check the validity of constructs. Then hypotheses describing the relationships between the identified constructs and users- satisfaction were formulated and tested.

Keywords: m-learning, information system success, users' satisfaction, perceived value.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1990
8764 DIFFER: A Propositionalization approach for Learning from Structured Data

Authors: Thashmee Karunaratne, Henrik Böstrom

Abstract:

Logic based methods for learning from structured data is limited w.r.t. handling large search spaces, preventing large-sized substructures from being considered by the resulting classifiers. A novel approach to learning from structured data is introduced that employs a structure transformation method, called finger printing, for addressing these limitations. The method, which generates features corresponding to arbitrarily complex substructures, is implemented in a system, called DIFFER. The method is demonstrated to perform comparably to an existing state-of-art method on some benchmark data sets without requiring restrictions on the search space. Furthermore, learning from the union of features generated by finger printing and the previous method outperforms learning from each individual set of features on all benchmark data sets, demonstrating the benefit of developing complementary, rather than competing, methods for structure classification.

Keywords: Machine learning, Structure classification, Propositionalization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1224
8763 Optimizing Data Evaluation Metrics for Fraud Detection Using Machine Learning

Authors: Jennifer Leach, Umashanger Thayasivam

Abstract:

The use of technology has benefited society in more ways than one ever thought possible. Unfortunately, as society’s knowledge of technology has advanced, so has its knowledge of ways to use technology to manipulate others. This has led to a simultaneous advancement in the world of fraud. Machine learning techniques can offer a possible solution to help decrease these advancements. This research explores how the use of various machine learning techniques can aid in detecting fraudulent activity across two different types of fraudulent datasets, and the accuracy, precision, recall, and F1 were recorded for each method. Each machine learning model was also tested across five different training and testing splits in order to discover which split and technique would lead to the most optimal results.

Keywords: Data science, fraud detection, machine learning, supervised learning.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 778
8762 Machine Learning Development Audit Framework: Assessment and Inspection of Risk and Quality of Data, Model and Development Process

Authors: Jan Stodt, Christoph Reich

Abstract:

The usage of machine learning models for prediction is growing rapidly and proof that the intended requirements are met is essential. Audits are a proven method to determine whether requirements or guidelines are met. However, machine learning models have intrinsic characteristics, such as the quality of training data, that make it difficult to demonstrate the required behavior and make audits more challenging. This paper describes an ML audit framework that evaluates and reviews the risks of machine learning applications, the quality of the training data, and the machine learning model. We evaluate and demonstrate the functionality of the proposed framework by auditing an steel plate fault prediction model.

Keywords: Audit, machine learning, assessment, metrics.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1035
8761 Students’ Perception of Their M-Learning Readiness

Authors: Sulaiman Almutairy, Trevor Davies, Yota Dimitriadi

Abstract:

The following paper presents the results of a study aimed at achieving a better understanding of the psychological readiness for mobile learning (m-learning) among Saudi students, while also evaluating m-learning readiness as a whole in Saudi Arabia - a topic that has not yet received adequate attention from researchers. Data was acquired via a questionnaire administered to 131 Saudi students at UK universities, in July 2013. The study confirmed that students are confident about using mobile devices in their daily lives, and that they would welcome more opportunities for mobile learning. The findings also indicated that Saudi higher education students are very familiar with, and psychologically ready for, m-learning.

Keywords: M-learning, Mobile Technologies, Psychological Readiness.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2842