Search results for: image interpolation
1636 Better Perception of Low Resolution Images Using Wavelet Interpolation Techniques
Authors: Tarun Gulati, Kapil Gupta, Dushyant Gupta
Abstract:
High resolution images are always desired as they contain the more information and they can better represent the original data. So, to convert the low resolution image into high resolution interpolation is done. The quality of such high resolution image depends on the interpolation function and is assessed in terms of sharpness of image. This paper focuses on Wavelet based Interpolation Techniques in which an input image is divided into subbands. Each subband is processed separately and finally combined the processed subbandsto get the super resolution image.
Keywords: SWT, DWTSR, DWTSWT, DWCWT.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21721635 Adaptive Bidirectional Flow for Image Interpolation and Enhancement
Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang
Abstract:
Image interpolation is a common problem in imaging applications. However, most interpolation algorithms in existence suffer visually the effects of blurred edges and jagged artifacts in the image to some extent. This paper presents an adaptive feature preserving bidirectional flow process, where an inverse diffusion is performed to sharpen edges along the normal directions to the isophote lines (edges), while a normal diffusion is done to remove artifacts (“jaggies") along the tangent directions. In order to preserve image features such as edges, corners and textures, the nonlinear diffusion coefficients are locally adjusted according to the directional derivatives of the image. Experimental results on synthetic images and nature images demonstrate that our interpolation algorithm substantially improves the subjective quality of the interpolated images over conventional interpolations.
Keywords: anisotropic diffusion, bidirectional flow, directional derivatives, edge enhancement, image interpolation, inverse flow, shock filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15391634 Feature Preserving Image Interpolation and Enhancement Using Adaptive Bidirectional Flow
Authors: Shujun Fu, Qiuqi Ruan, Wenqia Wang
Abstract:
Image interpolation is a common problem in imaging applications. However, most interpolation algorithms in existence suffer visually to some extent the effects of blurred edges and jagged artifacts in the image. This paper presents an adaptive feature preserving bidirectional flow process, where an inverse diffusion is performed to enhance edges along the normal directions to the isophote lines (edges), while a normal diffusion is done to remove artifacts (''jaggies'') along the tangent directions. In order to preserve image features such as edges, angles and textures, the nonlinear diffusion coefficients are locally adjusted according to the first and second order directional derivatives of the image. Experimental results on synthetic images and nature images demonstrate that our interpolation algorithm substantially improves the subjective quality of the interpolated images over conventional interpolations.
Keywords: anisotropic diffusion, bidirectional flow, directionalderivatives, edge enhancement, image interpolation, inverse flow, shock filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14981633 Complex Wavelet Transform Based Image Denoising and Zooming Under the LMMSE Framework
Authors: T. P. Athira, Gibin Chacko George
Abstract:
This paper proposes a dual tree complex wavelet transform (DT-CWT) based directional interpolation scheme for noisy images. The problems of denoising and interpolation are modelled as to estimate the noiseless and missing samples under the same framework of optimal estimation. Initially, DT-CWT is used to decompose an input low-resolution noisy image into low and high frequency subbands. The high-frequency subband images are interpolated by linear minimum mean square estimation (LMMSE) based interpolation, which preserves the edges of the interpolated images. For each noisy LR image sample, we compute multiple estimates of it along different directions and then fuse those directional estimates for a more accurate denoised LR image. The estimation parameters calculated in the denoising processing can be readily used to interpolate the missing samples. The inverse DT-CWT is applied on the denoised input and interpolated high frequency subband images to obtain the high resolution image. Compared with the conventional schemes that perform denoising and interpolation in tandem, the proposed DT-CWT based noisy image interpolation method can reduce many noise-caused interpolation artifacts and preserve well the image edge structures. The visual and quantitative results show that the proposed technique outperforms many of the existing denoising and interpolation methods.
Keywords: Dual-tree complex wavelet transform (DT-CWT), denoising, interpolation, optimal estimation, super resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21631632 Enhance Image Transmission Based on DWT with Pixel Interleaver
Authors: Muhanned Alfarras
Abstract:
The recent growth of using multimedia transmission over wireless communication systems, have challenges to protect the data from lost due to wireless channel effect. Images are corrupted due to the noise and fading when transmitted over wireless channel, in wireless channel the image is transmitted block by block, Due to severe fading, entire image blocks can be damaged. The aim of this paper comes out from need to enhance the digital images at the wireless receiver side. Proposed Boundary Interpolation (BI) Algorithm using wavelet, have been adapted here used to reconstruction the lost block in the image at the receiver depend on the correlation between the lost block and its neighbors. New Proposed technique by using Boundary Interpolation (BI) Algorithm using wavelet with Pixel interleaver has been implemented. Pixel interleaver work on distribute the pixel to new pixel position of original image before transmitting the image. The block lost through wireless channel is only effects individual pixel. The lost pixels at the receiver side can be recovered by using Boundary Interpolation (BI) Algorithm using wavelet. The results showed that the New proposed algorithm boundary interpolation (BI) using wavelet with pixel interleaver is better in term of MSE and PSNR.Keywords: Image Transmission, Wavelet, Pixel Interleaver, Boundary Interpolation Algorithm
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15951631 Efficient CT Image Volume Rendering for Diagnosis
Authors: HaeNa Lee, Sun K. Yoo
Abstract:
Volume rendering is widely used in medical CT image visualization. Applying 3D image visualization to diagnosis application can require accurate volume rendering with high resolution. Interpolation is important in medical image processing applications such as image compression or volume resampling. However, it can distort the original image data because of edge blurring or blocking effects when image enhancement procedures were applied. In this paper, we proposed adaptive tension control method exploiting gradient information to achieve high resolution medical image enhancement in volume visualization, where restored images are similar to original images as much as possible. The experimental results show that the proposed method can improve image quality associated with the adaptive tension control efficacy.Keywords: Tension control, Interpolation, Ray-casting, Medical imaging analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23721630 Generalized Morphological 3D Shape Decomposition Grayscale Interframe Interpolation Method
Authors: Dragos Nicolae VIZIREANU
Abstract:
One of the main image representations in Mathematical Morphology is the 3D Shape Decomposition Representation, useful for Image Compression and Representation,and Pattern Recognition. The 3D Morphological Shape Decomposition representation can be generalized a number of times,to extend the scope of its algebraic characteristics as much as possible. With these generalizations, the Morphological Shape Decomposition 's role to serve as an efficient image decomposition tool is extended to grayscale images.This work follows the above line, and further develops it. Anew evolutionary branch is added to the 3D Morphological Shape Decomposition's development, by the introduction of a 3D Multi Structuring Element Morphological Shape Decomposition, which permits 3D Morphological Shape Decomposition of 3D binary images (grayscale images) into "multiparameter" families of elements. At the beginning, 3D Morphological Shape Decomposition representations are based only on "1 parameter" families of elements for image decomposition.This paper addresses the gray scale inter frame interpolation by means of mathematical morphology. The new interframe interpolation method is based on generalized morphological 3D Shape Decomposition. This article will present the theoretical background of the morphological interframe interpolation, deduce the new representation and show some application examples.Computer simulations could illustrate results.
Keywords: 3D shape decomposition representation, mathematical morphology, gray scale interframe interpolation
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17451629 Single Frame Supercompression of Still Images,Video, High Definition TV and Digital Cinema
Authors: Mario Mastriani
Abstract:
Super-resolution is nowadays used for a high-resolution image produced from several low-resolution noisy frames. In this work, we consider the problem of high-quality interpolation of a single noise-free image. Such images may come from different sources, i.e., they may be frames of videos, individual pictures, etc. On the other hand, in the encoder we apply a downsampling via bidimen-sional interpolation of each frame, and in the decoder we apply a upsampling by which we restore the original size of the image. If the compression ratio is very high, then we use a convolutive mask that restores the edges, eliminating the blur. Finally, both, the encoder and the complete decoder are implemented on General-Purpose computation on Graphics Processing Units (GPGPU) cards. In fact, the mentioned mask is coded inside texture memory of a GPGPU.Keywords: General-Purpose computation on Graphics ProcessingUnits, Image Compression, Interpolation, Super-resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19991628 A Survey on Lossless Compression of Bayer Color Filter Array Images
Authors: Alina Trifan, António J. R. Neves
Abstract:
Although most digital cameras acquire images in a raw format, based on a Color Filter Array that arranges RGB color filters on a square grid of photosensors, most image compression techniques do not use the raw data; instead, they use the rgb result of an interpolation algorithm of the raw data. This approach is inefficient and by performing a lossless compression of the raw data, followed by pixel interpolation, digital cameras could be more power efficient and provide images with increased resolution given that the interpolation step could be shifted to an external processing unit. In this paper, we conduct a survey on the use of lossless compression algorithms with raw Bayer images. Moreover, in order to reduce the effect of the transition between colors that increase the entropy of the raw Bayer image, we split the image into three new images corresponding to each channel (red, green and blue) and we study the same compression algorithms applied to each one individually. This simple pre-processing stage allows an improvement of more than 15% in predictive based methods.Keywords: Bayer images, CFA, losseless compression, image coding standards.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 25451627 Overview of Adaptive Spline Interpolation
Authors: Rongli Gai, Zhiyuan Chang, Xiaohong Wang, Jingyu Liu
Abstract:
In view of various situations in the interpolation process, most researchers use self-adaptation to adjust the interpolation process, which is also one of the current and future research hotspots in the field of CNC (Computerized Numerical Control) machining. In the interpolation process, according to the overview of the spline curve interpolation algorithm, the adaptive analysis is carried out from the factors affecting the interpolation process. The adaptive operation is reflected in various aspects, such as speed, parameters, errors, nodes, feed rates, random period, sensitive point, step size, curvature, adaptive segmentation, adaptive optimization, etc. This paper will analyze and summarize the research of adaptive imputation in the direction of the above factors affecting imputation.
Keywords: Adaptive algorithm, CNC machining, interpolation constraints, spline curve interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5521626 Image Enhancement of Medical Images using Gabor Filter Bank on Hexagonal Sampled Grids
Authors: Veni.S , K.A.Narayanankutty
Abstract:
For about two decades scientists have been developing techniques for enhancing the quality of medical images using Fourier transform, DWT (Discrete wavelet transform),PDE model etc., Gabor wavelet on hexagonal sampled grid of the images is proposed in this work. This method has optimal approximation theoretic performances, for a good quality image. The computational cost is considerably low when compared to similar processing in the rectangular domain. As X-ray images contain light scattered pixels, instead of unique sigma, the parameter sigma of 0.5 to 3 is found to satisfy most of the image interpolation requirements in terms of high Peak Signal-to-Noise Ratio (PSNR) , lower Mean Squared Error (MSE) and better image quality by adopting windowing technique.Keywords: Hexagonal lattices, Gabor filter, Interpolation, imageprocessing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27431625 Image Magnification Using Adaptive Interpolationby Pixel Level Data-Dependent Geometrical Shapes
Authors: Muhammad Sajjad, Naveed Khattak, Noman Jafri
Abstract:
World has entered in 21st century. The technology of computer graphics and digital cameras is prevalent. High resolution display and printer are available. Therefore high resolution images are needed in order to produce high quality display images and high quality prints. However, since high resolution images are not usually provided, there is a need to magnify the original images. One common difficulty in the previous magnification techniques is that of preserving details, i.e. edges and at the same time smoothing the data for not introducing the spurious artefacts. A definitive solution to this is still an open issue. In this paper an image magnification using adaptive interpolation by pixel level data-dependent geometrical shapes is proposed that tries to take into account information about the edges (sharp luminance variations) and smoothness of the image. It calculate threshold, classify interpolation region in the form of geometrical shapes and then assign suitable values inside interpolation region to the undefined pixels while preserving the sharp luminance variations and smoothness at the same time. The results of proposed technique has been compared qualitatively and quantitatively with five other techniques. In which the qualitative results show that the proposed method beats completely the Nearest Neighbouring (NN), bilinear(BL) and bicubic(BC) interpolation. The quantitative results are competitive and consistent with NN, BL, BC and others.Keywords: Adaptive, digital image processing, imagemagnification, interpolation, geometrical shapes, qualitative &quantitative analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18001624 Enhancing Multi-Frame Images Using Self-Delaying Dynamic Networks
Authors: Lewis E. Hibell, Honghai Liu, David J. Brown
Abstract:
This paper presents the use of a newly created network structure known as a Self-Delaying Dynamic Network (SDN) to create a high resolution image from a set of time stepped input frames. These SDNs are non-recurrent temporal neural networks which can process time sampled data. SDNs can store input data for a lifecycle and feature dynamic logic based connections between layers. Several low resolution images and one high resolution image of a scene were presented to the SDN during training by a Genetic Algorithm. The SDN was trained to process the input frames in order to recreate the high resolution image. The trained SDN was then used to enhance a number of unseen noisy image sets. The quality of high resolution images produced by the SDN is compared to that of high resolution images generated using Bi-Cubic interpolation. The SDN produced images are superior in several ways to the images produced using Bi-Cubic interpolation.Keywords: Image Enhancement, Neural Networks, Multi-Frame.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 11941623 MAP-Based Image Super-resolution Reconstruction
Authors: Xueting Liu, Daojin Song, Chuandai Dong, Hongkui Li
Abstract:
From a set of shifted, blurred, and decimated image , super-resolution image reconstruction can get a high-resolution image. So it has become an active research branch in the field of image restoration. In general, super-resolution image restoration is an ill-posed problem. Prior knowledge about the image can be combined to make the problem well-posed, which contributes to some regularization methods. In the regularization methods at present, however, regularization parameter was selected by experience in some cases and other techniques have too heavy computation cost for computing the parameter. In this paper, we construct a new super-resolution algorithm by transforming the solving of the System stem Є=An into the solving of the equations X+A*X-1A=I , and propose an inverse iterative method.
Keywords: High-resolution MAP image, Reconstruction, Image interpolation, Motion Estimation, Hermitian positive definite solutions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 21571622 Interpolation of Geofield Parameters
Authors: A. Pashayev, C. Ardil, R. Sadiqov
Abstract:
Various methods of geofield parameters restoration (by algebraic polynoms; filters; rational fractions; interpolation splines; geostatistical methods – kriging; search methods of nearest points – inverse distance, minimum curvature, local – polynomial interpolation; neural networks) have been analyzed and some possible mistakes arising during geofield surface modeling have been presented.
Keywords: interpolation methods, geofield parameters, neural networks.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17041621 Low Resolution Single Neural Network Based Face Recognition
Authors: Jahan Zeb, Muhammad Younus Javed, Usman Qayyum
Abstract:
This research paper deals with the implementation of face recognition using neural network (recognition classifier) on low-resolution images. The proposed system contains two parts, preprocessing and face classification. The preprocessing part converts original images into blurry image using average filter and equalizes the histogram of those image (lighting normalization). The bi-cubic interpolation function is applied onto equalized image to get resized image. The resized image is actually low-resolution image providing faster processing for training and testing. The preprocessed image becomes the input to neural network classifier, which uses back-propagation algorithm to recognize the familiar faces. The crux of proposed algorithm is its beauty to use single neural network as classifier, which produces straightforward approach towards face recognition. The single neural network consists of three layers with Log sigmoid, Hyperbolic tangent sigmoid and Linear transfer function respectively. The training function, which is incorporated in our work, is Gradient descent with momentum (adaptive learning rate) back propagation. The proposed algorithm was trained on ORL (Olivetti Research Laboratory) database with 5 training images. The empirical results provide the accuracy of 94.50%, 93.00% and 90.25% for 20, 30 and 40 subjects respectively, with time delay of 0.0934 sec per image.Keywords: Average filtering, Bicubic Interpolation, Neurons, vectorization.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17501620 Node Insertion in Coalescence Hidden-Variable Fractal Interpolation Surface
Authors: Srijanani Anurag Prasad
Abstract:
The Coalescence Hidden-variable Fractal Interpolation Surface (CHFIS) was built by combining interpolation data from the Iterated Function System (IFS). The interpolation data in a CHFIS comprise a row and/or column of uncertain values when a single point is entered. Alternatively, a row and/or column of additional points are placed in the given interpolation data to demonstrate the node added CHFIS. There are three techniques for inserting new points that correspond to the row and/or column of nodes inserted, and each method is further classified into four types based on the values of the inserted nodes. As a result, numerous forms of node insertion can be found in a CHFIS.
Keywords: Fractal, interpolation, iterated function system, coalescence, node insertion, knot insertion.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3411619 Statistical Approach to Basis Function Truncation in Digital Interpolation Filters
Authors: F. Castillo, J. Arellano, S. Sánchez
Abstract:
In this paper an alternative analysis in the time domain is described and the results of the interpolation process are presented by means of functions that are based on the rule of conditional mathematical expectation and the covariance function. A comparison between the interpolation error caused by low order filters and the classic sinc(t) truncated function is also presented. When fewer samples are used, low-order filters have less error. If the number of samples increases, the sinc(t) type functions are a better alternative. Generally speaking there is an optimal filter for each input signal which depends on the filter length and covariance function of the signal. A novel scheme of work for adaptive interpolation filters is also presented.Keywords: Interpolation, basis function, over-sampling.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15561618 A Conservative Multi-block Algorithm for Two-dimensional Numerical Model
Authors: Yaoxin Zhang, Yafei Jia, Sam S.Y. Wang
Abstract:
A multi-block algorithm and its implementation in two-dimensional finite element numerical model CCHE2D are presented. In addition to a conventional Lagrangian Interpolation Method (LIM), a novel interpolation method, called Consistent Interpolation Method (CIM), is proposed for more accurate information transfer across the interfaces. The consistent interpolation solves the governing equations over the auxiliary elements constructed around the interpolation nodes using the same numerical scheme used for the internal computational nodes. With the CIM, the momentum conservation can be maintained as well as the mass conservation. An imbalance correction scheme is used to enforce the conservation laws (mass and momentum) across the interfaces. Comparisons of the LIM and the CIM are made using several flow simulation examples. It is shown that the proposed CIM is physically more accurate and produces satisfactory results efficiently.
Keywords: Multi-block algorithm, conservation, interpolation, numerical model, flow simulation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17931617 Low Resolution Face Recognition Using Mixture of Experts
Authors: Fatemeh Behjati Ardakani, Fatemeh Khademian, Abbas Nowzari Dalini, Reza Ebrahimpour
Abstract:
Human activity is a major concern in a wide variety of applications, such as video surveillance, human computer interface and face image database management. Detecting and recognizing faces is a crucial step in these applications. Furthermore, major advancements and initiatives in security applications in the past years have propelled face recognition technology into the spotlight. The performance of existing face recognition systems declines significantly if the resolution of the face image falls below a certain level. This is especially critical in surveillance imagery where often, due to many reasons, only low-resolution video of faces is available. If these low-resolution images are passed to a face recognition system, the performance is usually unacceptable. Hence, resolution plays a key role in face recognition systems. In this paper we introduce a new low resolution face recognition system based on mixture of expert neural networks. In order to produce the low resolution input images we down-sampled the 48 × 48 ORL images to 12 × 12 ones using the nearest neighbor interpolation method and after that applying the bicubic interpolation method yields enhanced images which is given to the Principal Component Analysis feature extractor system. Comparison with some of the most related methods indicates that the proposed novel model yields excellent recognition rate in low resolution face recognition that is the recognition rate of 100% for the training set and 96.5% for the test set.Keywords: Low resolution face recognition, Multilayered neuralnetwork, Mixture of experts neural network, Principal componentanalysis, Bicubic interpolation, Nearest neighbor interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17241616 A Localized Interpolation Method Using Radial Basis Functions
Authors: Mehdi Tatari
Abstract:
Finding the interpolation function of a given set of nodes is an important problem in scientific computing. In this work a kind of localization is introduced using the radial basis functions which finds a sufficiently smooth solution without consuming large amount of time and computer memory. Some examples will be presented to show the efficiency of the new method.
Keywords: Radial basis functions, local interpolation method, closed form solution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15481615 A Novel Interpolation Scheme and Apparatus to Extend DAC Usable Spectrum over Nyquist Frequency
Authors: Wang liguo, Wang zongmin, Kong ying
Abstract:
A novel interpolation scheme to extend usable spectrum and upconvert in high performance D/A converters is addressed in this paper. By adjusting the pulse width of cycle and the production circuit of code, the expansion code is a null code or complementary code that is interpolation process. What the times and codes of interpolation decide DAC works in one of a normal mode or multi-mixer mode so that convert the input digital data signal into normal signal or a mixed analog signal having a mixer frequency that is higher than the data frequency. Simulation results show that the novel scheme and apparatus most extend the usable frequency spectrum into fifth to sixth Nyquist zone beyond conventional DACs.Keywords: interpolation, upconversion, modulation, switching function, duty cycle.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15071614 Artifacts in Spiral X-ray CT Scanners: Problems and Solutions
Authors: Mehran Yazdi, Luc Beaulieu
Abstract:
Artifact is one of the most important factors in degrading the CT image quality and plays an important role in diagnostic accuracy. In this paper, some artifacts typically appear in Spiral CT are introduced. The different factors such as patient, equipment and interpolation algorithm which cause the artifacts are discussed and new developments and image processing algorithms to prevent or reduce them are presented.Keywords: CT artifacts, Spiral CT, Artifact removal.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 45061613 Investigating Polynomial Interpolation Functions for Zooming Low Resolution Digital Medical Images
Authors: Maninder Pal
Abstract:
Medical digital images usually have low resolution because of nature of their acquisition. Therefore, this paper focuses on zooming these images to obtain better level of information, required for the purpose of medical diagnosis. For this purpose, a strategy for selecting pixels in zooming operation is proposed. It is based on the principle of analog clock and utilizes a combination of point and neighborhood image processing. In this approach, the hour hand of clock covers the portion of image to be processed. For alignment, the center of clock points at middle pixel of the selected portion of image. The minute hand is longer in length, and is used to gain information about pixels of the surrounding area. This area is called neighborhood pixels region. This information is used to zoom the selected portion of the image. The proposed algorithm is implemented and its performance is evaluated for many medical images obtained from various sources such as X-ray, Computerized Tomography (CT) scan and Magnetic Resonance Imaging (MRI). However, for illustration and simplicity, the results obtained from a CT scanned image of head is presented. The performance of algorithm is evaluated in comparison to various traditional algorithms in terms of Peak signal-to-noise ratio (PSNR), maximum error, SSIM index, mutual information and processing time. From the results, the proposed algorithm is found to give better performance than traditional algorithms.
Keywords: Zooming, interpolation, medical images, resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15761612 A New Quadrature Rule Derived from Spline Interpolation with Error Analysis
Authors: Hadi Taghvafard
Abstract:
We present a new quadrature rule based on the spline interpolation along with the error analysis. Moreover, some error estimates for the reminder when the integrand is either a Lipschitzian function, a function of bounded variation or a function whose derivative belongs to Lp are given. We also give some examples to show that, practically, the spline rule is better than the trapezoidal rule.Keywords: Quadrature, Spline interpolation, Trapezoidal rule, Numericalintegration, Error analysis.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22221611 Solving One-dimensional Hyperbolic Telegraph Equation Using Cubic B-spline Quasi-interpolation
Authors: Marzieh Dosti, Alireza Nazemi
Abstract:
In this paper, the telegraph equation is solved numerically by cubic B-spline quasi-interpolation .We obtain the numerical scheme, by using the derivative of the quasi-interpolation to approximate the spatial derivative of the dependent variable and a low order forward difference to approximate the temporal derivative of the dependent variable. The advantage of the resulting scheme is that the algorithm is very simple so it is very easy to implement. The results of numerical experiments are presented, and are compared with analytical solutions by calculating errors L2 and L∞ norms to confirm the good accuracy of the presented scheme.
Keywords: Cubic B-spline, quasi-interpolation, collocation method, second-order hyperbolic telegraph equation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 28011610 Design of Nonlinear Observer by Using Chebyshev Interpolation based on Formal Linearization
Authors: Kazuo Komatsu, Hitoshi Takata
Abstract:
This paper discusses a design of nonlinear observer by a formal linearization method using an application of Chebyshev Interpolation in order to facilitate processes for synthesizing a nonlinear observer and to improve the precision of linearization. A dynamic nonlinear system is linearized with respect to a linearization function, and a measurement equation is transformed into an augmented linear one by the formal linearization method which is based on Chebyshev interpolation. To the linearized system, a linear estimation theory is applied and a nonlinear observer is derived. To show effectiveness of the observer design, numerical experiments are illustrated and they indicate that the design shows remarkable performances for nonlinear systems.Keywords: nonlinear system, nonlinear observer, formal linearization, Chebyshev interpolation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15941609 Comparison of Data Reduction Algorithms for Image-Based Point Cloud Derived Digital Terrain Models
Authors: M. Uysal, M. Yilmaz, I. Tiryakioğlu
Abstract:
Digital Terrain Model (DTM) is a digital numerical representation of the Earth's surface. DTMs have been applied to a diverse field of tasks, such as urban planning, military, glacier mapping, disaster management. In the expression of the Earth' surface as a mathematical model, an infinite number of point measurements are needed. Because of the impossibility of this case, the points at regular intervals are measured to characterize the Earth's surface and DTM of the Earth is generated. Hitherto, the classical measurement techniques and photogrammetry method have widespread use in the construction of DTM. At present, RADAR, LiDAR, and stereo satellite images are also used for the construction of DTM. In recent years, especially because of its superiorities, Airborne Light Detection and Ranging (LiDAR) has an increased use in DTM applications. A 3D point cloud is created with LiDAR technology by obtaining numerous point data. However recently, by the development in image mapping methods, the use of unmanned aerial vehicles (UAV) for photogrammetric data acquisition has increased DTM generation from image-based point cloud. The accuracy of the DTM depends on various factors such as data collection method, the distribution of elevation points, the point density, properties of the surface and interpolation methods. In this study, the random data reduction method is compared for DTMs generated from image based point cloud data. The original image based point cloud data set (100%) is reduced to a series of subsets by using random algorithm, representing the 75, 50, 25 and 5% of the original image based point cloud data set. Over the ANS campus of Afyon Kocatepe University as the test area, DTM constructed from the original image based point cloud data set is compared with DTMs interpolated from reduced data sets by Kriging interpolation method. The results show that the random data reduction method can be used to reduce the image based point cloud datasets to 50% density level while still maintaining the quality of DTM.
Keywords: DTM, unmanned aerial vehicle, UAV, random, Kriging.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8101608 A Computationally Efficient Design for Prototype Filters of an M-Channel Cosine Modulated Filter Bank
Authors: Neela. R. Rayavarapu, Neelam Rup Prakash
Abstract:
The paper discusses a computationally efficient method for the design of prototype filters required for the implementation of an M-band cosine modulated filter bank. The prototype filter is formulated as an optimum interpolated FIR filter. The optimum interpolation factor requiring minimum number of multipliers is used. The model filter as well as the image suppressor will be designed using the Kaiser window. The method will seek to optimize a single parameter namely cutoff frequency to minimize the distortion in the overlapping passband.Keywords: Cosine modulated filter bank, interpolated FIR filter, optimum interpolation factor, prototype filter.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15961607 Extended Cubic B-spline Interpolation Method Applied to Linear Two-Point Boundary Value Problems
Authors: Nur Nadiah Abd Hamid, Ahmad Abd. Majid, Ahmad Izani Md. Ismail
Abstract:
Linear two-point boundary value problem of order two is solved using extended cubic B-spline interpolation method. There is one free parameters, λ, that control the tension of the solution curve. For some λ, this method produced better results than cubic B-spline interpolation method.
Keywords: two-point boundary value problem, B-spline, extendedcubic B-spline.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2180