Search results for: blur image
1543 Blur and Ringing Artifact Measurement in Image Compression using Wavelet Transform
Authors: Madhuri Khambete, Madhuri Joshi
Abstract:
Quality evaluation of an image is an important task in image processing applications. In case of image compression, quality of decompressed image is also the criterion for evaluation of given coding scheme. In the process of compression -decompression various artifacts such as blocking artifacts, blur artifact, ringing or edge artifact are observed. However quantification of these artifacts is a difficult task. We propose here novel method to quantify blur and ringing artifact in an image.
Keywords: Blur, Compression, Objective Quality assessment, Ringing artifact.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 48531542 No-Reference Image Quality Assessment using Blur and Noise
Authors: Min Goo Choi, Jung Hoon Jung, Jae Wook Jeon
Abstract:
Assessment for image quality traditionally needs its original image as a reference. The conventional method for assessment like Mean Square Error (MSE) or Peak Signal to Noise Ratio (PSNR) is invalid when there is no reference. In this paper, we present a new No-Reference (NR) assessment of image quality using blur and noise. The recent camera applications provide high quality images by help of digital Image Signal Processor (ISP). Since the images taken by the high performance of digital camera have few blocking and ringing artifacts, we only focus on the blur and noise for predicting the objective image quality. The experimental results show that the proposed assessment method gives high correlation with subjective Difference Mean Opinion Score (DMOS). Furthermore, the proposed method provides very low computational load in spatial domain and similar extraction of characteristics to human perceptional assessment.Keywords: No Reference, Image Quality Assessment, blur, noise.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 38791541 Multiscale Blind Image Restoration with a New Method
Authors: Alireza Mallahzadeh, Hamid Dehghani, Iman Elyasi
Abstract:
A new method, based on the normal shrink and modified version of Katssagelous and Lay, is proposed for multiscale blind image restoration. The method deals with the noise and blur in the images. It is shown that the normal shrink gives the highest S/N (signal to noise ratio) for image denoising process. The multiscale blind image restoration is divided in two sections. The first part of this paper proposes normal shrink for image denoising and the second part of paper proposes modified version of katssagelous and Lay for blur estimation and the combination of both methods to reach a multiscale blind image restoration.Keywords: Multiscale blind image restoration, image denoising, blur estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17221540 Object Tracking in Motion Blurred Images with Adaptive Mean Shift and Wavelet Feature
Authors: Iman Iraei, Mina Sharifi
Abstract:
A method for object tracking in motion blurred images is proposed in this article. This paper shows that object tracking could be improved with this approach. We use mean shift algorithm to track different objects as a main tracker. But, the problem is that mean shift could not track the selected object accurately in blurred scenes. So, for better tracking result, and increasing the accuracy of tracking, wavelet transform is used. We use a feature named as blur extent, which could help us to get better results in tracking. For calculating of this feature, we should use Harr wavelet. We can look at this matter from two different angles which lead to determine whether an image is blurred or not and to what extent an image is blur. In fact, this feature left an impact on the covariance matrix of mean shift algorithm and cause to better performance of tracking. This method has been concentrated mostly on motion blur parameter. transform. The results reveal the ability of our method in order to reach more accurately tracking.Keywords: Mean shift, object tracking, blur extent, wavelet transform, motion blur.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 8111539 Contrast Enhancement in Digital Images Using an Adaptive Unsharp Masking Method
Authors: Z. Mortezaie, H. Hassanpour, S. Asadi Amiri
Abstract:
Captured images may suffer from Gaussian blur due to poor lens focus or camera motion. Unsharp masking is a simple and effective technique to boost the image contrast and to improve digital images suffering from Gaussian blur. The technique is based on sharpening object edges by appending the scaled high-frequency components of the image to the original. The quality of the enhanced image is highly dependent on the characteristics of both the high-frequency components and the scaling/gain factor. Since the quality of an image may not be the same throughout, we propose an adaptive unsharp masking method in this paper. In this method, the gain factor is computed, considering the gradient variations, for individual pixels of the image. Subjective and objective image quality assessments are used to compare the performance of the proposed method both with the classic and the recently developed unsharp masking methods. The experimental results show that the proposed method has a better performance in comparison to the other existing methods.Keywords: Unsharp masking, blur image, sub-region gradient, image enhancement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14111538 Denoising based on Wavelets and Deblurring via Self-Organizing Map for Synthetic Aperture Radar Images
Authors: Mario Mastriani
Abstract:
This work deals with unsupervised image deblurring. We present a new deblurring procedure on images provided by lowresolution synthetic aperture radar (SAR) or simply by multimedia in presence of multiplicative (speckle) or additive noise, respectively. The method we propose is defined as a two-step process. First, we use an original technique for noise reduction in wavelet domain. Then, the learning of a Kohonen self-organizing map (SOM) is performed directly on the denoised image to take out it the blur. This technique has been successfully applied to real SAR images, and the simulation results are presented to demonstrate the effectiveness of the proposed algorithms.Keywords: Blur, Kohonen self-organizing map, noise, speckle, synthetic aperture radar.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17351537 An Adaptive Model for Blind Image Restoration using Bayesian Approach
Authors: S.K. Satpathy, S.K. Nayak, K. K. Nagwanshi, S. Panda, C. Ardil
Abstract:
Image restoration involves elimination of noise. Filtering techniques were adopted so far to restore images since last five decades. In this paper, we consider the problem of image restoration degraded by a blur function and corrupted by random noise. A method for reducing additive noise in images by explicit analysis of local image statistics is introduced and compared to other noise reduction methods. The proposed method, which makes use of an a priori noise model, has been evaluated on various types of images. Bayesian based algorithms and technique of image processing have been described and substantiated with experimentation using MATLAB.Keywords: Image Restoration, Probability DensityFunction (PDF), Neural Networks, Bayesian Classifier.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22471536 Object Speed Estimation by using Fuzzy Set
Authors: Hossein Pazhoumand-Dar, Amir Mohsen Toliyat Abolhassani, Ehsan Saeedi
Abstract:
Speed estimation is one of the important and practical tasks in machine vision, Robotic and Mechatronic. the availability of high quality and inexpensive video cameras, and the increasing need for automated video analysis has generated a great deal of interest in machine vision algorithms. Numerous approaches for speed estimation have been proposed. So classification and survey of the proposed methods can be very useful. The goal of this paper is first to review and verify these methods. Then we will propose a novel algorithm to estimate the speed of moving object by using fuzzy concept. There is a direct relation between motion blur parameters and object speed. In our new approach we will use Radon transform to find direction of blurred image, and Fuzzy sets to estimate motion blur length. The most benefit of this algorithm is its robustness and precision in noisy images. Our method was tested on many images with different range of SNR and is satisfiable.
Keywords: Blur Analysis, Fuzzy sets, Speed estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18791535 Exact Image Super-Resolution for Pure Translational Motion and Shift-Invariant Blur
Authors: Fatih Kara, Cabir Vural
Abstract:
In this work, a special case of the image superresolution problem where the only type of motion is global translational motion and the blurs are shift-invariant is investigated. The necessary conditions for exact reconstruction of the original image by using finite impulse-response reconstruction filters are developed. Given that the conditions are satisfied, a method for exact super-resolution is presented and some simulation results are shown.Keywords: Image processing, image super-resolution, finite impulse-response filters, existence-uniqueness conditions.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 13031534 Image Restoration in Non-Linear Filtering Domain using MDB approach
Authors: S. K. Satpathy, S. Panda, K. K. Nagwanshi, C. Ardil
Abstract:
This paper proposes a new technique based on nonlinear Minmax Detector Based (MDB) filter for image restoration. The aim of image enhancement is to reconstruct the true image from the corrupted image. The process of image acquisition frequently leads to degradation and the quality of the digitized image becomes inferior to the original image. Image degradation can be due to the addition of different types of noise in the original image. Image noise can be modeled of many types and impulse noise is one of them. Impulse noise generates pixels with gray value not consistent with their local neighborhood. It appears as a sprinkle of both light and dark or only light spots in the image. Filtering is a technique for enhancing the image. Linear filter is the filtering in which the value of an output pixel is a linear combination of neighborhood values, which can produce blur in the image. Thus a variety of smoothing techniques have been developed that are non linear. Median filter is the one of the most popular non-linear filter. When considering a small neighborhood it is highly efficient but for large window and in case of high noise it gives rise to more blurring to image. The Centre Weighted Mean (CWM) filter has got a better average performance over the median filter. However the original pixel corrupted and noise reduction is substantial under high noise condition. Hence this technique has also blurring affect on the image. To illustrate the superiority of the proposed approach, the proposed new scheme has been simulated along with the standard ones and various restored performance measures have been compared.
Keywords: Filtering, Minmax Detector Based (MDB), noise, centre weighted mean filter, PSNR, restoration.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 27391533 Single Frame Supercompression of Still Images,Video, High Definition TV and Digital Cinema
Authors: Mario Mastriani
Abstract:
Super-resolution is nowadays used for a high-resolution image produced from several low-resolution noisy frames. In this work, we consider the problem of high-quality interpolation of a single noise-free image. Such images may come from different sources, i.e., they may be frames of videos, individual pictures, etc. On the other hand, in the encoder we apply a downsampling via bidimen-sional interpolation of each frame, and in the decoder we apply a upsampling by which we restore the original size of the image. If the compression ratio is very high, then we use a convolutive mask that restores the edges, eliminating the blur. Finally, both, the encoder and the complete decoder are implemented on General-Purpose computation on Graphics Processing Units (GPGPU) cards. In fact, the mentioned mask is coded inside texture memory of a GPGPU.Keywords: General-Purpose computation on Graphics ProcessingUnits, Image Compression, Interpolation, Super-resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19991532 Video Quality Control Using a ROI and Two- Component Weighted Metrics
Authors: Petra Heribanová, Jaroslav Polec, Michal Martinovič
Abstract:
In this paper we propose a new content-weighted method for full reference (FR) video quality control using a region of interest (ROI) and wherein two-component weighted metrics for Deaf People Video Communication. In our approach, an image is partitioned into region of interest and into region "dry-as-dust", then region of interest is partitioned into two parts: edges and background (smooth regions), while the another methods (metrics) combined and weighted three or more parts as edges, edges errors, texture, smooth regions, blur, block distance etc. as we proposed. Using another idea that different image regions from deaf people video communication have different perceptual significance relative to quality. Intensity edges certainly contain considerable image information and are perceptually significant.
Keywords: Video quality assessment, weighted MSE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19811531 Supercompression for Full-HD and 4k-3D (8k)Digital TV Systems
Authors: Mario Mastriani
Abstract:
In this work, we developed the concept of supercompression, i.e., compression above the compression standard used. In this context, both compression rates are multiplied. In fact, supercompression is based on super-resolution. That is to say, supercompression is a data compression technique that superpose spatial image compression on top of bit-per-pixel compression to achieve very high compression ratios. If the compression ratio is very high, then we use a convolutive mask inside decoder that restores the edges, eliminating the blur. Finally, both, the encoder and the complete decoder are implemented on General-Purpose computation on Graphics Processing Units (GPGPU) cards. Specifically, the mentio-ned mask is coded inside texture memory of a GPGPU.Keywords: General-Purpose computation on Graphics Processing Units, Image Compression, Interpolation, Super-resolution.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 19791530 Tests and Measurements of Image Acquisition Characteristics for Image Sensors
Authors: Seongsoo Lee, Jong-Bae Lee, Wookkang Lee, Duyen Hai Pham
Abstract:
In the image sensors, the acquired image often differs from the real image in luminance or chrominance due to fabrication defects or nonlinear characteristics, which often lead to pixel defects or sensor failure. Therefore, the image acquisition characteristics of image sensors should be measured and tested before they are mounted on the target product. In this paper, the standardized test and measurement methods of image sensors are introduced. It applies standard light source to the image sensor under test, and the characteristics of the acquired image is compared with ideal values.
Keywords: Image Sensor, Image Acquisition Characteristics, Defect, Failure, Standard, Test, Measurement.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16891529 A Comparative Study of Image Segmentation Algorithms
Authors: Mehdi Hosseinzadeh, Parisa Khoshvaght
Abstract:
In some applications, such as image recognition or compression, segmentation refers to the process of partitioning a digital image into multiple segments. Image segmentation is typically used to locate objects and boundaries (lines, curves, etc.) in images. Image segmentation is to classify or cluster an image into several parts (regions) according to the feature of image, for example, the pixel value or the frequency response. More precisely, image segmentation is the process of assigning a label to every pixel in an image such that pixels with the same label share certain visual characteristics. The result of image segmentation is a set of segments that collectively cover the entire image, or a set of contours extracted from the image. Several image segmentation algorithms were proposed to segment an image before recognition or compression. Up to now, many image segmentation algorithms exist and be extensively applied in science and daily life. According to their segmentation method, we can approximately categorize them into region-based segmentation, data clustering, and edge-base segmentation. In this paper, we give a study of several popular image segmentation algorithms that are available.Keywords: Image Segmentation, hierarchical segmentation, partitional segmentation, density estimation.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 29181528 Survey on Image Mining Using Genetic Algorithm
Authors: Jyoti Dua
Abstract:
One image is worth more than thousand words. Images if analyzed can reveal useful information. Low level image processing deals with the extraction of specific feature from a single image. Now the question arises: What technique should be used to extract patterns of very large and detailed image database? The answer of the question is: “Image Mining”. Image Mining deals with the extraction of image data relationship, implicit knowledge, and another pattern from the collection of images or image database. It is nothing but the extension of Data Mining. In the following paper, not only we are going to scrutinize the current techniques of image mining but also present a new technique for mining images using Genetic Algorithm.
Keywords: Image Mining, Data Mining, Genetic Algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 24451527 Performance of Compound Enhancement Algorithms on Dental Radiograph Images
Authors: S.A.Ahmad, M.N.Taib, N.E.A.Khalid, R.Ahmad, H.Taib
Abstract:
The purpose of this research is to compare the original intra-oral digital dental radiograph images with images that are enhanced using a combination of image processing algorithms. Intraoral digital dental radiograph images are often noisy, blur edges and low in contrast. A combination of sharpening and enhancement method are used to overcome these problems. Three types of proposed compound algorithms used are Sharp Adaptive Histogram Equalization (SAHE), Sharp Median Adaptive Histogram Equalization (SMAHE) and Sharp Contrast adaptive histogram equalization (SCLAHE). This paper presents an initial study of the perception of six dentists on the details of abnormal pathologies and improvement of image quality in ten intra-oral radiographs. The research focus on the detection of only three types of pathology which is periapical radiolucency, widen periodontal ligament space and loss of lamina dura. The overall result shows that SCLAHE-s slightly improve the appearance of dental abnormalities- over the original image and also outperform the other two proposed compound algorithms.Keywords: intra-oral dental radiograph, histogram equalization, sharpening, CLAHE.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17841526 A New Approach to Steganography using Sinc-Convolution Method
Authors: Ahmad R. Naghsh-Nilchi, Latifeh Pourmohammadbagher
Abstract:
Both image steganography and image encryption have advantages and disadvantages. Steganograhy allows us to hide a desired image containing confidential information in a covered or host image while image encryption is decomposing the desired image to a non-readable, non-comprehended manner. The encryption methods are usually much more robust than the steganographic ones. However, they have a high visibility and would provoke the attackers easily since it usually is obvious from an encrypted image that something is hidden! The combination of steganography and encryption will cover both of their weaknesses and therefore, it increases the security. In this paper an image encryption method based on sinc-convolution along with using an encryption key of 128 bit length is introduced. Then, the encrypted image is covered by a host image using a modified version of JSteg steganography algorithm. This method could be applied to almost all image formats including TIF, BMP, GIF and JPEG. The experiment results show that our method is able to hide a desired image with high security and low visibility.Keywords: Sinc Approximation, Image Encryption, Sincconvolution, Image Steganography, JSTEG.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 18281525 Effectiveness of Dominant Color Descriptor Technique in Medical Image Retrieval Application
Authors: Mohd Kamir Yusof
Abstract:
This paper presents a dominant color descriptor technique for medical image retrieval. The medical image system will collect and store into medical database. The purpose of dominant color descriptor (DCD) technique is to retrieve medical image and to display similar image using queried image. First, this technique will search and retrieve medical image based on keyword entered by user. After image is found, the system will assign this image as a queried image. DCD technique will calculate the image value of dominant color. Then, system will search and retrieve again medical image based on value of dominant color query image. Finally, the system will display similar images with the queried image to user. Simple application has been developed and tested using dominant color descriptor. Result based on experiment indicates this technique is effective and can be used for medical image retrieval.Keywords: Medical Image Retrieval, Dominant ColorDescriptor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 17421524 Fused Structure and Texture (FST) Features for Improved Pedestrian Detection
Authors: Hussin K. Ragb, Vijayan K. Asari
Abstract:
In this paper, we present a pedestrian detection descriptor called Fused Structure and Texture (FST) features based on the combination of the local phase information with the texture features. Since the phase of the signal conveys more structural information than the magnitude, the phase congruency concept is used to capture the structural features. On the other hand, the Center-Symmetric Local Binary Pattern (CSLBP) approach is used to capture the texture information of the image. The dimension less quantity of the phase congruency and the robustness of the CSLBP operator on the flat images, as well as the blur and illumination changes, lead the proposed descriptor to be more robust and less sensitive to the light variations. The proposed descriptor can be formed by extracting the phase congruency and the CSLBP values of each pixel of the image with respect to its neighborhood. The histogram of the oriented phase and the histogram of the CSLBP values for the local regions in the image are computed and concatenated to construct the FST descriptor. Several experiments were conducted on INRIA and the low resolution DaimlerChrysler datasets to evaluate the detection performance of the pedestrian detection system that is based on the FST descriptor. A linear Support Vector Machine (SVM) is used to train the pedestrian classifier. These experiments showed that the proposed FST descriptor has better detection performance over a set of state of the art feature extraction methodologies.Keywords: Pedestrian detection, phase congruency, local phase, LBP features, CSLBP features, FST descriptor.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14891523 Blind Low Frequency Watermarking Method
Authors: Dimitar Taskovski, Sofija Bogdanova, Momcilo Bogdanov
Abstract:
We present a low frequency watermarking method adaptive to image content. The image content is analyzed and properties of HVS are exploited to generate a visual mask of the same size as the approximation image. Using this mask we embed the watermark in the approximation image without degrading the image quality. Watermark detection is performed without using the original image. Experimental results show that the proposed watermarking method is robust against most common image processing operations, which can be easily implemented and usually do not degrade the image quality.Keywords: Blind, digital watermarking, low frequency, visualmask.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 15421522 A Comparative Study of Image Segmentation using Edge-Based Approach
Authors: Rajiv Kumar, Arthanariee A. M.
Abstract:
Image segmentation is the process to segment a given image into several parts so that each of these parts present in the image can be further analyzed. There are numerous techniques of image segmentation available in literature. In this paper, authors have been analyzed the edge-based approach for image segmentation. They have been implemented the different edge operators like Prewitt, Sobel, LoG, and Canny on the basis of their threshold parameter. The results of these operators have been shown for various images.
Keywords: Edge Operator, Edge-based Segmentation, Image Segmentation, Matlab 10.4.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 36061521 Subjective Versus Objective Assessment for Magnetic Resonance Images
Authors: Heshalini Rajagopal, Li Sze Chow, Raveendran Paramesran
Abstract:
Magnetic Resonance Imaging (MRI) is one of the most important medical imaging modality. Subjective assessment of the image quality is regarded as the gold standard to evaluate MR images. In this study, a database of 210 MR images which contains ten reference images and 200 distorted images is presented. The reference images were distorted with four types of distortions: Rician Noise, Gaussian White Noise, Gaussian Blur and DCT compression. The 210 images were assessed by ten subjects. The subjective scores were presented in Difference Mean Opinion Score (DMOS). The DMOS values were compared with four FR-IQA metrics. We have used Pearson Linear Coefficient (PLCC) and Spearman Rank Order Correlation Coefficient (SROCC) to validate the DMOS values. The high correlation values of PLCC and SROCC shows that the DMOS values are close to the objective FR-IQA metrics.Keywords: Medical Resonance (MR) images, Difference Mean Opinion Score (DMOS), Full Reference Image Quality Assessment (FR-IQA).
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 22181520 Object-Based Image Indexing and Retrieval in DCT Domain using Clustering Techniques
Authors: Hossein Nezamabadi-pour, Saeid Saryazdi
Abstract:
In this paper, we present a new and effective image indexing technique that extracts features directly from DCT domain. Our proposed approach is an object-based image indexing. For each block of size 8*8 in DCT domain a feature vector is extracted. Then, feature vectors of all blocks of image using a k-means algorithm is clustered into groups. Each cluster represents a special object of the image. Then we select some clusters that have largest members after clustering. The centroids of the selected clusters are taken as image feature vectors and indexed into the database. Also, we propose an approach for using of proposed image indexing method in automatic image classification. Experimental results on a database of 800 images from 8 semantic groups in automatic image classification are reported.
Keywords: Object-based image retrieval, DCT domain, Image indexing, Image classification.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 20251519 Prediction of a Human Facial Image by ANN using Image Data and its Content on Web Pages
Authors: Chutimon Thitipornvanid, Siripun Sanguansintukul
Abstract:
Choosing the right metadata is a critical, as good information (metadata) attached to an image will facilitate its visibility from a pile of other images. The image-s value is enhanced not only by the quality of attached metadata but also by the technique of the search. This study proposes a technique that is simple but efficient to predict a single human image from a website using the basic image data and the embedded metadata of the image-s content appearing on web pages. The result is very encouraging with the prediction accuracy of 95%. This technique may become a great assist to librarians, researchers and many others for automatically and efficiently identifying a set of human images out of a greater set of images.Keywords: Metadata, Prediction, Multi-layer perceptron, Human facial image, Image mining.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 12141518 A Quantum Algorithm of Constructing Image Histogram
Authors: Yi Zhang, Kai Lu, Ying-hui Gao, Mo Wang
Abstract:
Histogram plays an important statistical role in digital image processing. However, the existing quantum image models are deficient to do this kind of image statistical processing because different gray scales are not distinguishable. In this paper, a novel quantum image representation model is proposed firstly in which the pixels with different gray scales can be distinguished and operated simultaneously. Based on the new model, a fast quantum algorithm of constructing histogram for quantum image is designed. Performance comparison reveals that the new quantum algorithm could achieve an approximately quadratic speedup than the classical counterpart. The proposed quantum model and algorithm have significant meanings for the future researches of quantum image processing.Keywords: Quantum Image Representation, Quantum Algorithm, Image Histogram.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23561517 Modified Vector Quantization Method for Image Compression
Authors: K.Somasundaram, S.Domnic
Abstract:
A low bit rate still image compression scheme by compressing the indices of Vector Quantization (VQ) and generating residual codebook is proposed. The indices of VQ are compressed by exploiting correlation among image blocks, which reduces the bit per index. A residual codebook similar to VQ codebook is generated that represents the distortion produced in VQ. Using this residual codebook the distortion in the reconstructed image is removed, thereby increasing the image quality. Our scheme combines these two methods. Experimental results on standard image Lena show that our scheme can give a reconstructed image with a PSNR value of 31.6 db at 0.396 bits per pixel. Our scheme is also faster than the existing VQ variants.Keywords: Image compression, Vector Quantization, Residual Codebook.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 14391516 Image Similarity: A Genetic Algorithm Based Approach
Authors: R. C. Joshi, Shashikala Tapaswi
Abstract:
The paper proposes an approach using genetic algorithm for computing the region based image similarity. The image is denoted using a set of segmented regions reflecting color and texture properties of an image. An image is associated with a family of image features corresponding to the regions. The resemblance of two images is then defined as the overall similarity between two families of image features, and quantified by a similarity measure, which integrates properties of all the regions in the images. A genetic algorithm is applied to decide the most plausible matching. The performance of the proposed method is illustrated using examples from an image database of general-purpose images, and is shown to produce good results.Keywords: Image Features, color descriptor, segmented classes, texture descriptors, genetic algorithm.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 23261515 A Novel Dual-Purpose Image Watermarking Technique
Authors: Maha Sharkas, Dahlia R. ElShafie, Nadder Hamdy
Abstract:
Image watermarking has proven to be quite an efficient tool for the purpose of copyright protection and authentication over the last few years. In this paper, a novel image watermarking technique in the wavelet domain is suggested and tested. To achieve more security and robustness, the proposed techniques relies on using two nested watermarks that are embedded into the image to be watermarked. A primary watermark in form of a PN sequence is first embedded into an image (the secondary watermark) before being embedded into the host image. The technique is implemented using Daubechies mother wavelets where an arbitrary embedding factor α is introduced to improve the invisibility and robustness. The proposed technique has been applied on several gray scale images where a PSNR of about 60 dB was achieved.Keywords: Image watermarking, Multimedia Security, Wavelets, Image Processing.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 16991514 Objective Performance of Compressed Image Quality Assessments
Authors: Ratchakit Sakuldee, Somkait Udomhunsakul
Abstract:
Measurement of the quality of image compression is important for image processing application. In this paper, we propose an objective image quality assessment to measure the quality of gray scale compressed image, which is correlation well with subjective quality measurement (MOS) and least time taken. The new objective image quality measurement is developed from a few fundamental of objective measurements to evaluate the compressed image quality based on JPEG and JPEG2000. The reliability between each fundamental objective measurement and subjective measurement (MOS) is found. From the experimental results, we found that the Maximum Difference measurement (MD) and a new proposed measurement, Structural Content Laplacian Mean Square Error (SCLMSE), are the suitable measurements that can be used to evaluate the quality of JPEG200 and JPEG compressed image, respectively. In addition, MD and SCLMSE measurements are scaled to make them equivalent to MOS, given the rate of compressed image quality from 1 to 5 (unacceptable to excellent quality).
Keywords: JPEG, JPEG2000, objective image quality measurement, subjective image quality measurement, correlation coefficients.
Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2188