
 

 

  
    Abstract—A new method, based on the normal shrink and 
modified version of Katssagelous and Lay, is proposed for multiscale 
blind image restoration. The method deals with the noise and blur in 
the images. It is shown that the normal shrink gives the highest S/N 
(signal to noise ratio) for image denoising process. The multiscale 
blind image restoration is divided in two sections. The first part of 
this paper proposes normal shrink for image denoising and the 
second part of paper proposes modified version of katssagelous and 
Lay for blur estimation and the combination of both methods to reach 
a multiscale blind image restoration.  
 
    Keywords—Multiscale blind image restoration, image denoising, 
blur estimation.              

I. INTRODUCTION 
MAGE  are the main sources of information in different 
field such as medical imaging, astronomy, public security, 

and satellite imaging. But, due to some reasons, observed 
images are degraded which are mainly caused by blur and 
noise. Therefore, image restoration is necessary. Many 
conventional approaches have been developed to restore the 
original image require the prior knowledge of blur and some 
features of noise [7].  Unfortunately in most cases such 
knowledge is not available and the blind image restoration 
should be used to restore original image. 

Blind restoration is a far more complicated problem than 
simple image restoration. One of the most important tools for 
blind image restoration is wavelets. Wavelets are 
mathematical functions that cut up data into different 
frequency components and then each component is studied 
with different resolution matched to its scale [2] since 
Gaussian noise is one of the factor that was caused the image 
was degraded. Then, removing noise is necessary. For 
removing noise we use from Normal shrink in the scale of 
wavelet. In the second part of paper, we use from modified 
method of Katssagelous and Lay for blur estimation. Finally 
we use both methods for Multiscale blind image restoration. 

Several blind restoration algorithms have been proposed in 
the past. Multiscale Blind image Restoration using a wavelet 
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decomposition was proposed by Sze-Ho in 1996[3]. Spatially 
adaptive wavelet-based Multiscale image restoration was 
proposed by Mark.R.banham in 1996[4].                             

Blind image restoration for MMW radiometer based on 
wavelet techniques was proposed by Hyuk Park in 2005[1]. 
Adaptive Wavelet thresholding for image denoising and 
compression was proposed in 2000 [5] and some surveys can 
be found in [6].  

This paper is structured as follows: in section II the image 
restoration formulation is reviewed. Section III deales with the 
wavelet threshold and section IV describes blur estimation. In 
section V The proposed new method for multiscaled blind 
image restoration is described. Sections VI and VII describe 
the experimental results and conclusions respectively. 

II. FORMULATION 
The process of image degradation is shown in Fig. 1. 

 

 
 

Fig 1 Block diagram degraded model 
 
Where ),( yxf represents an original image and ),( yxY  is 
the degraded image  ، ),( yxV represents an additive noise 
(usually, noise is Gaussian noise with zero mean)  ، ),( yxh is 
the point spread function of blur. For more details, the reader 
is referred to [7]: 
 
 ),(),(),(),( yxVyxhyxfyxY +⊗=                        (1) 

   
The expression of the equation in the frequency domain by the 
Fourier transform is 
 

),(),(),(),( vuVvuHvuFvuY +=                           (2) 
    

In the blind image restoration we should identify PSF and 
noise as estimated image get similar original image 
approximately. 

III. WAVELET THRESHOLD 
A.  Description of Wavelet Threshold 
Let the original image be },...,1,),({ Nyxyxf = where 

N is some integer power of 2. The original image is corrupted 
by additive noise and one observes 
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),(),(),( yxVyxfyxY += Nyx ,...,1, =                  (3) 
                                                                  

Where ),( yxV are independent and identically distributed 

( )iid  as normal ( )2,0 σN  and independent of ),( yxf . The 
goal is to remove the noise from ),( yxY and to obtain an 

estimate )},({ yxf which minimize the mean square error 
(MSE)[8]. 

Let W and W-1 denote the two dimensional orthogonal 
discrete wavelet transform (DWT) matrix and its inverse 
respectively. Then R=WY represents the matrix of wavelet 
coefficients of Y having four subbands (LL, LH, HL, and HH) 
[9].The sub-bands kLH  , kHL  , kHH are called the details, 

where k is the scale varying from J,...,2,1 and J is the total 
number of decompositions. the size of the subbands at scale k 
is N/2k × N/2k. the subbands LLJ is the low-resolution residue. 
The wavelet thresholding procedure removes noise by 
thresholding only the wavelet coefficients of the detail 
subbands whereas keeping the low resolution coefficients 
fixed. 
 

 
Fig. 2 Subbands of the 2-D orthogonal wavelet transform 

 
B. Estimation of parameters for Normal Shrink 
In this section we calculate the value of threshold by 

Normal shrink [10]. The variance of the every subbands that 
was computed by using equation (4).The value of Threshold is 
different for every scale and was computed by (5) 

∑
=

=
M

m
mY A

M 1

22 1σ                                                             (4)                                            

NT = 
Yσ

σα 2

                                                                        (5)   

Scale parameter α is computed once for each scale using the 
following equation (6). 
 

)log(
J

LK=α                                                               (6)                                                                       

 

kL  is the length of the subband at thK scale and mA is 
coefficient of wavelet in every scale and M is total number of 
coefficient of wavelet. J is the total number of decompositions 

2σ  Is the noise variance, which is estimated from the 
subband HH1.                                                                                         

2σ = ⎟
⎠
⎞

⎜
⎝
⎛

6745.0
1 }{ 2

,kjCMAD    ,       0≤k≤2J                   (7)  

MAD is median absolute deviation and kjC , is wavelet 

coefficient HH1. 
Therefore we can summarize the process Normal shrink: 

A) Perform Multiscale decomposition of the image corrupted 
by Gaussian noise using wavelet transform. 
B) Estimate the noise variance ( 2σ ) using equation (7) and 
for each scale compute the scale parameter (α) using equation 
(6). 
C) For details of total subbands at first compute the standard 
deviation Yσ after compute threshold TN by using equation 
(5). finally apply soft thresholding to the noisy coefficients.  
D) Invert the multiscale decomposition to reconstruct the 
denoised image f .  

IV. BLUR ESTIMATION 
 

A.  Formulation of Blur Estimation  
In this section we give blur estimation by Katssagelous and 

Lay [11].  
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    (12) 
In (8) ),( nmY  and ),()(

/ nmE P
Yf are respectively the 2D 

STDF ′ (Discrete Fourier Transform) of the observed image 
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),( yxY and restored image. Re[η], η* and |η| denote real part, 
complex conjugation and the magnitude of the complex 
number η respectively. 

),()1( nmS P
f

+  and ),()1( nmH P+ represent respectively the 
power spectral density of the input signal and the Fourier 
transform of the PSF at the (p+1) iteration. The iterative 
algorithm developed in [11]. (Equations 8, 9, 10, 11, and 12) 
compute the restored image and PSF. 

The Blackman-Tukey algorithm was used to compute an 
estimate of the power spectral density of Y, which in turn was 
used as )0(

fS , initial estimate of the power spectral density of 

x. the 2D impulse
⎩
⎨
⎧

∀=
==∀=

elsewhereyxh
yxyxh

0),(
01),(

 was used 

as )( )0(h , the initial estimate of PSF.   
 

B.  Modified Blur Estimation 
In the pervious section we introduce the method of 

Katssagelous and lay for estimation blur. In this section, we 
introduced a small modification on pervious method. We 
suppose the degraded image be                                            
 ),(),(),( yxhyxfyxY ⊗=  
We want to identify PSF. Therefore we modify algorithm as 
follows  
 

),(
),(),( )(
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We can use the equation (15) to identify PSF and then, by 
using the equation (13) restore image. 

V. NEW METHOD FOR MULTISCALE BLIND IMAGE 
RESTORATION 

In the pervious sections, we identify noise and blur. Let the 
degraded image be: 

),(),(),(),( yxVyxhyxfyxY +⊗=  
In this section we want to use two pervious methods for blind 
image restoration. 

At first we apply Normal shrink for removing noise(x1) 
then we apply modified method for removing blur (the input 
of modified blur estimation is output Normal shrink). Finally 
image restoration(x2) was obtained. 
 

 
Fig. 3 Multiscale blind image restoration in two steps 

 

VI. EXPERIMENTAL RESULTS 
Test 1 
Our first test consists of an image of cameraman of size 

(256×256). The kind of noise is Gaussian with variance 0.05. 
In the test, Gaussian noise is added to original image. We try 
to restore image with different methods. The results show 
median filter and wiener filter denoise weak as well as they 
remove a lot of details of original image during denoising. 
Global thresholding use wavelet Transform. In this method, 
all of subband has one threshold therefore because of lack of 
exact threshold, the denoised image get blurred. The result of 
soft and hard thresholding also is not satisfactory. The result 
shows normal shrink is the best method. Because this method 
define threshold for every subband besides the threshold is 
proportional to distribution coefficient of wavelet in every 
scale. 

We can use from MSE and SNR as global measure of 
objective improvement. The value of MSE represents mean 
square error and SNR shows the value of removing noise. The 
equations are as follows: 
                                                                  

 [ ]
⎭
⎬
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⎨
⎧
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For an N×N image, where ),( yxf and ),( yxf are the 
original image and restored image. The results bring in the 
Table I. 
 

TABLE I 
COMPARISON DIFFERENT METHODS FOR REMOVING NOISE  

SNR MSE Method 
8.3127 58.3180 Without filtering 
14.1618 52.4689 Median filter 
14.5125 52.1183 Wiener filter 
14.8828 51.7479 Soft threshold 
15.7343 50.8965 Hard threshold 
15.0699 51.5608 Global threshold 
16.0426 50.5881 Normal shrink 
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Fig. 4 a) Original image. b) Gaussian noise is added to original 

image. c) Image denoising with median filter. d) Image denoising 
with wiener filter. e) Image denoising with global thresholding. f) 

Image denoising with stationary wavelet transform with hard 
threshold. g) Image denoising with stationary wavelet transform with 

soft threshold. h) Image denoising with Normal Shrink 
 
Test 2 
In the pervious test no blur was added to the original image, 

our second test consists of an image cameraman of size 
(256×256). Suppose PSF is a Gaussian blur with variance 
0.02 to a support of size (9×9). The blurred image was 
obtained by convoluting the original image and the PSF. 
Gaussian, zero mean noise is added to the blurred noise. The 
proposed algorithm derived in section 4 is used to this test and 
the results are shown in Fig. 5. 

 
 

Fig. 5 1. Degraded image (blur + noise) 2. Multiscale Blind image 
restoration 

VII. CONCLUSION 
A new method based on the combination of normal shrink 

and modified method of katssagelous and Lay is introduced. 
In this method normal shrink is used for removing noise and it 
gives the highest S/N. then modified blur estimation for 
removing blur of image was carried out to obtain the best 
possible image. 
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