Publications | Civil and Environmental Engineering
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1530

World Academy of Science, Engineering and Technology

[Civil and Environmental Engineering]

Online ISSN : 1307-6892

330 Neural Network Evaluation of FRP Strengthened RC Buildings Subjected to Near-Fault Ground Motions having Fling Step

Authors: Alireza Mortezaei, Kimia Mortezaei

Abstract:

Recordings from recent earthquakes have provided evidence that ground motions in the near field of a rupturing fault differ from ordinary ground motions, as they can contain a large energy, or “directivity" pulse. This pulse can cause considerable damage during an earthquake, especially to structures with natural periods close to those of the pulse. Failures of modern engineered structures observed within the near-fault region in recent earthquakes have revealed the vulnerability of existing RC buildings against pulse-type ground motions. This may be due to the fact that these modern structures had been designed primarily using the design spectra of available standards, which have been developed using stochastic processes with relatively long duration that characterizes more distant ground motions. Many recently designed and constructed buildings may therefore require strengthening in order to perform well when subjected to near-fault ground motions. Fiber Reinforced Polymers are considered to be a viable alternative, due to their relatively easy and quick installation, low life cycle costs and zero maintenance requirements. The objective of this paper is to investigate the adequacy of Artificial Neural Networks (ANN) to determine the three dimensional dynamic response of FRP strengthened RC buildings under the near-fault ground motions. For this purpose, one ANN model is proposed to estimate the base shear force, base bending moments and roof displacement of buildings in two directions. A training set of 168 and a validation set of 21 buildings are produced from FEA analysis results of the dynamic response of RC buildings under the near-fault earthquakes. It is demonstrated that the neural network based approach is highly successful in determining the response.

Keywords: Seismic evaluation, FRP, neural network, near-fault ground motion

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1739
329 Some Factors Affecting the Compressive Behaviour of Structural Masonry at Small Scales

Authors: A. Mohammed, T. G. Hughes

Abstract:

This paper presents part of a research into the small scale modelling of masonry. Small scale testing of masonry has been carried out by many authors, but few have attempted a systematic determination of the parameters that affect masonry at a small scale. The effect of increasing mortar strength and different sand gradings under compression were investigated. The results show masonry strength at small scale is influenced by increasing mortar strength and different sand gradings.

Keywords: Compression, masonry, models, mortar, sand gradings

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2544
328 Properties of SMA Mixtures Containing Waste Polyethylene Terephthalate

Authors: Taher Baghaee Moghaddam, Mohamed Rehan Karim

Abstract:

Utilization of waste material in asphalt pavement would be beneficial in order to find an alternative solution to increase service life of asphalt pavement and reduce environmental pollution as well. One of these waste materials is Polyethylene Terephthalate (PET) which is a type of polyester material and is produced in a large extent. This research program is investigating the effects of adding waste PET particles into the asphalt mixture with a maximum size of 2.36 mm. Different percentages of PET were added into the mixture during dry process. Gap-graded mixture (SMA 14) and PG 80-100 asphalt binder have been used for this study. To evaluate PET reinforced asphalt mixture different laboratory investigations have been conducted on specimens. Marshall Stability test was carried out. Besides, stiffness modulus test and indirect tensile fatigue test were conducted on specimens at optimum asphalt content. It was observed that in many cases PET reinforced SMA mixture had better mechanical properties in comparison with control mixture.

Keywords: Asphalt mixture, Environment, Mix properties, Polyethylene terephthalate

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2100
327 Assessment of Compaction Temperatures on Hot Mix Asphalt (HMA) Properties

Authors: Houman Saedi

Abstract:

Hot Mix Asphalt (HMA) is one of the most commonest constructed asphalts in Iran and the quality control of constructed roads with HMA have been always paid due attention by researchers. The quality control of constructed roads with this method is being usually carried out by measuring volumetric parameters of HMA marshall samples. One of the important parameters that has a critical role in changing these volumetric parameters is “compaction temperature"; which as a result of its changing, volumetric parameters of Marshall Samples and subsequently constructed asphalt is encountered with variations. In this study, considering the necessity of preservation of the compaction temperature, the effect of various temperatures on Hot Mix Asphalt (HMA) samples properties has been evaluated. As well, to evaluate the effect of this parameter on different grading, two different grading (Top coat index grading and binder index grading) have been used and samples were compacted at 5 various temperatures.

Keywords: Compaction Temperature, HMA, Volumetric Parameters, Marshall Method

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2939
326 Low-Cost Eco-Friendly Building Material: A Case Study in Ethiopia

Authors: W. Z. Taffese

Abstract:

This work presents a low-cost and eco-friendly building material named Agrostone panel. Africa-s urban population is growing at an annual rate of 2.8% and 62% of its population will live in urban areas by 2050. As a consequence, many of the least urbanized and least developed African countries- will face serious challenges in providing affordable housing to the urban dwellers. Since the cost of building materials accounts for the largest proportion of the overall construction cost, innovating low-cost building material is vital. Agrostone panel is used in housing projects in Ethiopia. It uses raw materials of agricultural/industrial wastes and/or natural minerals as a filler, magnesium-based chemicals as a binder and fiberglass as reinforcement. Agrostone panel reduces the cost of wall construction by 50% compared with the conventional building materials. The pros and cons of Agrostone panel as well as the use of other waste materials as a raw material to make the panel more sustainable, low-cost and better properties are discussed.

Keywords: Agrostone Panel, Low-cost and sustainable Building Materials, Agro-waste for construction

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 9807
325 Effect of Ground Subsidence on Load Sharing and Settlement of Raft and Piled Raft Foundations

Authors: T.V. Tran, S. Teramoto, M. Kimura, T. Boonyatee, Le Ba Vinh

Abstract:

In this paper, two centrifugal model tests (case 1: raft foundation, case 2: 2x2 piled raft foundation) were conducted in order to evaluate the effect of ground subsidence on load sharing among piles and raft and settlement of raft and piled raft foundations. For each case, two conditions consisting of undrained (without groundwater pumping) and drained (with groundwater pumping) conditions were considered. Vertical loads were applied to the models after the foundations were completely consolidated by selfweight at 50g. The results show that load sharing by the piles in piled raft foundation (piled load share) for drained condition decreases faster than that for undrained condition. Settlement of both raft and piled raft foundations for drained condition increases more quickly than that for undrained condition. In addition, the settlement of raft foundation increases more largely than the settlement of piled raft foundation for drained condition.

Keywords: Ground subsidence, Piled raft, Load sharing, Centrifugal model test.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2926
324 A Study for Carbonation Degree on Concrete using a Phenolphthalein Indicator and Fourier-Transform Infrared Spectroscopy

Authors: Ho Jae Lee, Do Gyeum Kim, Jang Hwa Lee, Myoung Suk Cho

Abstract:

A concrete structure is designed and constructed for its purpose of use, and is expected to maintain its function for the target durable years from when it was planned. Nevertheless, as time elapses the structure gradually deteriorates and then eventually degrades to the point where the structure cannot exert the function for which it was planned. The performance of concrete that is able to maintain the level of the performance required over the designed period of use as it has less deterioration caused by the elapse of time under the designed condition is referred to as Durability. There are a number of causes of durability degradation, but especially chloride damage, carbonation, freeze-thaw, etc are the main causes. In this study, carbonation, one of the main causes of deterioration of the durability of a concrete structure, was investigated via a microstructure analysis technique. The method for the measurement of carbonation was studied using the existing indicator method, and the method of measuring the progress of carbonation in a quantitative manner was simultaneously studied using a FT-IR (Fourier-Transform Infrared) Spectrometer along with the microstructure analysis technique.

Keywords: Concrete, Carbonation, Microsturcture, FT-IR

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4643
323 Analytical Study on a Longitudinal Joints of the Slab-Type Modular Bridges

Authors: Sang-Yoon Lee, Jung-Mi Lee, Hyeong-Yeol Kim, Jae-Joon Song

Abstract:

In this study, a longitudinal joint connection was proposed for the short-span slab-type modular bridges with rapid construction. The slab-type modular bridge consists of a number of precast slab modules and has the joint connection between the modules in the longitudinal direction of the bridge. A finite element based parameter analysis was conducted to design the shape and the dimensions of the longitudinal joint connection. Numbers of shear keys within the joint, height and depth of the shear key, tooth angle, and the spacing were considered as the design parameters. Using the local cracking load at the corner of the shear key and the cross-sectional area of the joint, an efficiency factor was proposed to evaluate the effectiveness of the longitudinal joint connection. The dimensions of shear key were determined by comparing the cracking loads and the efficiency factors obtained from the finite element analysis.

Keywords: precast, slab bridge, modular bridge, shear key

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1854
322 Development of a Support Tool for Cost and Schedule Integration Managment at Program Level

Authors: H. J. Yang, R. Z. Jin, I. J. Park, C. T. Hyun

Abstract:

There has been gradual progress of late in construction projects, particularly in big-scale megaprojects. Due to the long-term construction period, however, with large-scale budget investment, lack of construction management technologies, and increase in the incomplete elements of project schedule management, a plan to conduct efficient operations and to ensure business safety is required. In particular, as the project management information system (PMIS) is meant for managing a single project centering on the construction phase, there is a limitation in the management of program-scale businesses like megaprojects. Thus, a program management information system (PgMIS) that includes program-level management technologies is needed to manage multiple projects. In this study, a support tool was developed for managing the cost and schedule information occurring in the construction phase, at the program level. In addition, a case study on the developed support tool was conducted to verify the usability of the system. With the use of the developed support tool program, construction managers can monitor the progress of the entire project and of the individual subprojects in real time.

Keywords: Cost∙Schedule integration management, Supporting Tool, UI, WBS, CBS, introduce PgMIS (Program Management Information System), PMIS (Project Management Information System)

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1461
321 Artificial Neural Networks Modeling in Water Resources Engineering: Infrastructure and Applications

Authors: M. R. Mustafa, M. H. Isa, R. B. Rezaur

Abstract:

The use of artificial neural network (ANN) modeling for prediction and forecasting variables in water resources engineering are being increasing rapidly. Infrastructural applications of ANN in terms of selection of inputs, architecture of networks, training algorithms, and selection of training parameters in different types of neural networks used in water resources engineering have been reported. ANN modeling conducted for water resources engineering variables (river sediment and discharge) published in high impact journals since 2002 to 2011 have been examined and presented in this review. ANN is a vigorous technique to develop immense relationship between the input and output variables, and able to extract complex behavior between the water resources variables such as river sediment and discharge. It can produce robust prediction results for many of the water resources engineering problems by appropriate learning from a set of examples. It is important to have a good understanding of the input and output variables from a statistical analysis of the data before network modeling, which can facilitate to design an efficient network. An appropriate training based ANN model is able to adopt the physical understanding between the variables and may generate more effective results than conventional prediction techniques.

Keywords: ANN, discharge, modeling, prediction, sediment,

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5683
320 Stress Analysis of Non-persistent Rock Joints under Biaxial Loading

Authors: Omer S. Mughieda

Abstract:

Two-dimensional finite element model was created in this work to investigate the stresses distribution within rock-like samples with offset open non-persistent joints under biaxial loading. The results of this study have explained the fracture mechanisms observed in tests on rock-like material with open non-persistent offset joints [1]. Finite element code SAP2000 was used to study the stresses distribution within the specimens. Four-nodded isoperimetric plain strain element with two degree of freedom per node, and the three-nodded constant strain triangular element with two degree of freedom per node were used in the present study.The results of the present study explained the formation of wing cracks at the tip of the joints for low confining stress as well as the formation of wing cracks at the middle of the joint for the higher confining stress. High shear stresses found in the numerical study at the tip of the joints explained the formation of secondary cracks at the tip of the joints in the experimental study. The study results coincide with the experimental observations which showed that for bridge inclination of 0o, the coalescence occurred due to shear failure and for bridge inclination of 90o the coalescence occurred due to tensile failure while for the other bridge inclinations coalescence occurred due to mixed tensile and shear failure.

Keywords: Finite element, open offset rock joint, SAP2000, biaxial loading.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2148
319 Strengthening of RC Beams with Large Openings in Shear by CFRP Laminates: 2D Nonlinear FE Analysis

Authors: S.C. Chin, N. Shafiq, M.F. Nuruddin

Abstract:

To date, theoretical studies concerning the Carbon Fiber Reinforced Polymer (CFRP) strengthening of RC beams with openings have been rather limited. In addition, various numerical analyses presented so far have effectively simulated the behaviour of solid beam strengthened by FRP material. In this paper, a two dimensional nonlinear finite element analysis is presented to validate against the laboratory test results of six RC beams. All beams had the same rectangular cross-section geometry and were loaded under four point bending. The crack pattern results of the finite element model show good agreement with the crack pattern of the experimental beams. The load midspan deflection curves of the finite element models exhibited a stiffer result compared to the experimental beams. The possible reason may be due to the perfect bond assumption used between the concrete and steel reinforcement.

Keywords: CFRP, large opening, RC beam, strengthening

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1818
318 Tension Stiffening Parameter in Composite Concrete Reinforced with Inoxydable Steel: Laboratory and Finite Element Analysis

Authors: S. Alih, A. Khelil

Abstract:

In the present work, behavior of inoxydable steel as reinforcement bar in composite concrete is being investigated. The bar-concrete adherence in reinforced concrete (RC) beam is studied and focus is made on the tension stiffening parameter. This study highlighted an approach to observe this interaction behavior in bending test instead of direct tension as per reported in many references. The approach resembles actual loading condition of the structural RC beam. The tension stiffening properties are then applied to numerical finite element analysis (FEA) to verify their correlation with laboratory results. Comparison with laboratory shows a good correlation between the two. The experimental settings is able to determine tension stiffening parameters in RC beam and the modeling strategies made in ABAQUS can closely represent the actual condition. Tension stiffening model used can represent the interaction properties between inoxydable steel and concrete.

Keywords: Inoxydable steel, Finite element modeling, Reinforced concrete beam, Tension-stiffening.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4296
317 An Overview of Issues to Consider Before Introducing Performance-Based Road Maintenance Contracting

Authors: M. Sultana, A. Rahman, S. Chowdhury

Abstract:

Road authorities have confronted problems to maintaining the serviceability of road infrastructure systems by using various traditional methods of contracting. As a solution to these problems, many road authorities have started contracting out road maintenance works to the private sector based on performance measures. This contracting method is named Performance-Based Maintenance Contracting (PBMC). It is considered more costeffective than other traditional methods of contracting. It has a substantial success records in many developed and developing countries over the last two decades. This paper discusses and analyses the potential issues to be considered before the introduction of PBMC in a country.

Keywords: Contracting, Performance-Based Maintenance, Road infrastructure

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1751
316 Developing Damage Assessment Model for Bridge Surroundings: A Study of Disaster by Typhoon Morakot in Taiwan

Authors: Jieh-Haur Chen, Pei-Fen Huang

Abstract:

This paper presents an integrated model that automatically measures the change of rivers, damage area of bridge surroundings, and change of vegetation. The proposed model is on the basis of a neurofuzzy mechanism enhanced by SOM optimization algorithm, and also includes three functions to deal with river imagery. High resolution imagery from FORMOSAT-2 satellite taken before and after the invasion period is adopted. By randomly selecting a bridge out of 129 destroyed bridges, the recognition results show that the average width has increased 66%. The ruined segment of the bridge is located exactly at the most scour region. The vegetation coverage has also reduced to nearly 90% of the original. The results yielded from the proposed model demonstrate a pinpoint accuracy rate at 99.94%. This study brings up a successful tool not only for large-scale damage assessment but for precise measurement to disasters.

Keywords: remote sensing image, damage assessment, typhoon disaster, bridge, ANN, fuzzy, SOM, optimization.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1682
315 The Effect of Frame Geometry on the Seismic Response of Self-Centering Concentrically- Braced Frames

Authors: David A. Roke, M. R. Hasan

Abstract:

Conventional concentrically-braced frame (CBF) systems have limited drift capacity before brace buckling and related damage leads to deterioration in strength and stiffness. Self-centering concentrically-braced frame (SC-CBF) systems have been developed to increase drift capacity prior to initiation of damage and minimize residual drift. SC-CBFs differ from conventional CBFs in that the SC-CBF columns are designed to uplift from the foundation at a specified level of lateral loading, initiating a rigid-body rotation (rocking) of the frame. Vertically-aligned post-tensioning bars resist uplift and provide a restoring force to return the SC-CBF columns to the foundation (self-centering the system). This paper presents a parametric study of different prototype buildings using SC-CBFs. The bay widths of the SC-CBFs have been varied in these buildings to study different geometries. Nonlinear numerical analyses of the different SC-CBFs are presented to illustrate the effect of frame geometry on the behavior and dynamic response of the SC-CBF system.

Keywords: Earthquake resistant structures, nonlinear analysis, seismic analysis, self-centering structural systems.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1919
314 An Overview of the Factors Affecting Microbial-Induced Calcite Precipitation and its Potential Application in Soil Improvement

Authors: Wei-Soon Ng, Min-Lee Lee, Siew-Ling Hii

Abstract:

Microbial-induced calcite precipitation (MICP) is a relatively green and sustainable soil improvement technique. It utilizes biochemical process that exists naturally in soil to improve engineering properties of soils. The calcite precipitation process is uplifted by the mean of injecting higher concentration of urease positive bacteria and reagents into the soil. The main objective of this paper is to provide an overview of the factors affecting the MICP in soil. Several factors were identified including nutrients, bacteria type, geometric compatibility of bacteria, bacteria cell concentration, fixation and distribution of bacteria in soil, temperature, reagents concentration, pH, and injection method. These factors were found to be essential for promoting successful MICP soil treatment. Furthermore, a preliminary laboratory test was carried out to investigate the potential application of the technique in improving the shear strength and impermeability of a residual soil specimen. The results showed that both shear strength and impermeability of residual soil improved significantly upon MICP treatment. The improvement increased with increasing soil density.

Keywords: Bacteria, biocementation, bioclogging, calcite precipitation, soil improvement.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 5950
313 Resource Leveling in Construction Projects using Re- Modified Minimum Moment Approach

Authors: Abhay Tawalare, Rajesh Lalwani

Abstract:

An attempt in this paper proposes a re-modification to the minimum moment approach of resource leveling which is a modified minimum moment approach to the traditional method by Harris. The method is based on critical path method. The new approach suggests the difference between the methods in the selection criteria of activity which needs to be shifted for leveling resource histogram. In traditional method, the improvement factor found first to select the activity for each possible day of shifting. In modified method maximum value of the product of Resources Rate and Free Float was found first and improvement factor is then calculated for that activity which needs to be shifted. In the proposed method the activity to be selected first for shifting is based on the largest value of resource rate. The process is repeated for all the remaining activities for possible shifting to get updated histogram. The proposed method significantly reduces the number of iterations and is easier for manual computations.

Keywords: Re-Modified, Resource Leveling, Resources Rate, Free Float, Resource Histogram

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 3827
312 Experimental and Analytical Study of Scrap Tire Rubber Pad for Seismic Isolation

Authors: Huma Kanta Mishra, Akira Igarashi

Abstract:

A seismic isolation pad produced by utilizing the scrap tire rubber which contains interleaved steel reinforcing cords has been proposed. The steel cords are expected to function similar to the steel plates used in conventional laminated rubber bearings. The scrap tire rubber pad (STRP) isolator is intended to be used in low rise residential buildings of highly seismic areas of the developing countries. Experimental investigation was conducted on unbonded STRP isolators, and test results provided useful information including stiffness, damping values and an eventual instability of the isolation unit. Finite element analysis (FE analysis) of STRP isolator was carried out on properly bonded samples. These types of isolators provide positive incremental force resisting capacity up to shear strain level of 155%. This paper briefly discusses the force deformation behavior of bonded STRP isolators including stability of the isolation unit.

Keywords: base isolation, buckling load, finite element analysis, STRP isolators.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2952
311 Comparison of Eurocodes EN310 and EN789 in Determining the Bending Strength and Modulus of Elasticity of Red Seraya Plywood Panel

Authors: S.F. Tsen, M. Zamin Jumaat

Abstract:

The characteristic bending strength (MOR) and mean modulus of elasticity (MOE) of tropical hardwood red seraya (Shorea spp.) plywood were determined using European Standard EN310 and EN789. The thickness of the test specimen was 4.0mm, 7.0mm, 9.0mm, 12.0mm and 15.0mm. The experiment found that the MOR of red seraya plywood in EN310 is about 12% to 20% and 7% to 24% higher than EN789 whereas MOE were about 28% to 41% and 30% to 36% lower than those obtained from EN 789 for test specimens parallel and perpendicular to the grain direction. The linear regression shows that MOR and MOE for EN789 is about 0.8 times less and 1.5 times more than EN310. The experiment also found that the MOR and MOE of EN310 and EN789 also depend on the wood species that used in the experiment.

Keywords: Bending strength, Modulus of elasticity, EN310, EN789

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4332
310 Comparative Embodied Carbon Analysis of the Prefabrication Elements Compared with In-situ Elements in Residential Building Development of Hong Kong

Authors: Felix Wong, YT Tang

Abstract:

This paper reviews the greenhouse gas emissions of prefabrication elements for residential development in Hong Kong. Prefabrication becomes a common practice in residential development in Hong Kong and is considered as a green approach. In Hong Kong, prefabrication took place at factories in Pearl River Delta. Although prefabrication reduces construction wastage, it might generate more greenhouse gas emission from transportation and manufacturing processes. This study attempts to measure the “cradle to site" greenhouse gas emission from prefabrication elements for a public housing development in Kai Tak area. The findings could help further reduction of greenhouse gas emissions through process improvement.

Keywords: Prefabrication, greenhouse gas emission, cradle-tosite, residential development.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1810
309 Effect of Greywater Irrigation on Air-Water Interfacial area in Porous Medium

Authors: A. H. M. Faisal Anwar

Abstract:

In this study, the effect of greywater irrigation on airwater interfacial area is investigated. Several soil column experiments were conducted for different greywater irrigation to develop the pressure-saturation curves. Surface tension was measured for different greywater concentration and fitted for Gibbs adsorption equation. Pressure-saturation curves show that the reduction of capillary rise stops when it reaches its critical micelle concentration (CMC). A simple theory is derived from pressure-saturation curves for calculating air-water interfacial area in porous medium during greywater irrigation by introducing a term 'hydraulic radius' for the pores. This term diminishes any effect of pore shapes on the air-water interfacial area. The air-water interfacial area was calculated using the pressure-saturation curves and found that it decreases with increasing moisture content. But no significant effect was observed on air-water interfacial area for different greywater irrigation. A maximum of 10% variation in interfacial area was observed at the residual saturation zone.

Keywords: Greywater, Irrigation, Interfacial area, Surface tension, Porous medium.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1702
308 Damage Evolution of Underground Structural Reinforced Concrete Small-Scale Static-Loading Experiments

Authors: Ahmed Mohammed Youssef Mohammed, Mohammad Reza Okhovat, Koichi Maekawa

Abstract:

Small-scale RC models of both piles and tunnel ducts were produced as mockups of reality and loaded under soil confinement conditionsto investigate the damage evolution of structural RC interacting with soil. Experimental verifications usinga 3D nonlinear FE analysis program called COM3D, which was developed at the University of Tokyo, are introduced. This analysis has been used in practice for seismic performance assessment of underground ducts and in-ground LNG storage tanks in consideration of soil-structure interactionunder static and dynamic loading. Varying modes of failure of RCpilessubjected to different magnitudes of soil confinement were successfully reproduced in the proposed small-scale experiments and numerically simulated as well. Analytical simulation was applied to RC tunnel mockups under a wide variety of depth and soil confinement conditions, and reasonable matching was confirmed.

Keywords: Soil-Structure Interaction, RC pile, RC Tunnel

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2286
307 Mass Transfer Modeling of Nitrate in an Ion Exchange Selective Resin

Authors: A. A. Hekmatzadeh, A. Karimi-Jashani, N. Talebbeydokhti

Abstract:

The rate of nitrate adsorption by a nitrate selective ion exchange resin was investigated in a well-stirred batch experiments. The kinetic experimental data were simulated with diffusion models including external mass transfer, particle diffusion and chemical adsorption. Particle pore volume diffusion and particle surface diffusion were taken into consideration separately and simultaneously in the modeling. The model equations were solved numerically using the Crank-Nicholson scheme. An optimization technique was employed to optimize the model parameters. All nitrate concentration decay data were well described with the all diffusion models. The results indicated that the kinetic process is initially controlled by external mass transfer and then by particle diffusion. The external mass transfer coefficient and the coefficients of pore volume diffusion and surface diffusion in all experiments were close to each other with the average value of 8.3×10-3 cm/S for external mass transfer coefficient. In addition, the models are more sensitive to the mass transfer coefficient in comparison with particle diffusion. Moreover, it seems that surface diffusion is the dominant particle diffusion in comparison with pore volume diffusion.

Keywords: External mass transfer, pore volume diffusion, surface diffusion, mass action law isotherm.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2240
306 Determination of Required Ion Exchange Solution for Stabilizing Clayey Soils with Various PI

Authors: R. Ziaie Moayed, F. Allahyari

Abstract:

Soil stabilization has been widely used to improve soil strength and durability or to prevent erosion and dust generation. Generally to reduce problems of clayey soils in engineering work and to stabilize these soils additional materials are used. The most common materials are lime, fly ash and cement. Using this materials, although improve soil property , but in some cases due to financial problems and the need to use special equipment are limited .One of the best methods for stabilization clayey soils is neutralization the clay particles. For this purpose we can use ion exchange materials. Ion exchange solution like CBR plus can be used for soil stabilization. One of the most important things in using CBR plus is determination the amount of this solution for various soils with different properties. In this study a laboratory experiment is conduct to evaluate the ion exchange capacity of three soils with various plasticity index (PI) to determine amount or required CBR plus solution for soil stabilization.

Keywords: CBR plus, clayey soils, ion exchange, soil stabilization

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2450
305 Seismic Vulnerability Assessment of Buildings in Algiers Area

Authors: F. Lazzali, M. Farsi

Abstract:

Several models of vulnerability assessment have been proposed. The selection of one of these models depends on the objectives of the study. The classical methodologies for seismic vulnerability analysis, as a part of seismic risk analysis, have been formulated with statistical criteria based on a rapid observation. The information relating to the buildings performance is statistically elaborated. In this paper, we use the European Macroseismic Scale EMS-98 to define the relationship between damage and macroseismic intensity to assess the seismic vulnerability. Applying to Algiers area, the first step is to identify building typologies and to assign vulnerability classes. In the second step, damages are investigated according to EMS-98.

Keywords: Damage, EMS-98, inventory building, vulnerability classes

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 1816
304 Establishing a New Simple Formula for Buckling Length Factor (K) of Rigid Frames Columns

Authors: Ehab Hasan Ahmed Hasan Ali

Abstract:

The calculation of buckling length factor (K) for steel frames columns is a major and governing processes to determine the dimensions steel frame columns cross sections during design. The buckling length of steel frames columns has a direct effect on the cost (weight) of using cross section. A new formula is required to determine buckling length factor (K) by simplified way. In this research a new formula for buckling length factor (K) was established to determine by accurate method for a limited interval of columns ends rigidity (GA, GB). The new formula can be used ease to evaluate the buckling length factor without needing to complicated equations or difficult charts.

Keywords: Buckling length, New formula, Curve fitting, Simplification, Steel column design.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2258
303 Threshold Submergence of Flow over PK Weirs

Authors: A. Javaheri, A. R. Kabiri-Samani

Abstract:

In this study an extensive experimental research is carried out to develop a better understanding of the effects of Piano Key (PK) weir geometry on weir flow threshold submergence. Experiments were conducted in a 12 m long, 0.4 m wide and 0.7 m deep rectangular glass wall flume. The main objectives were to investigate the effect of the PK weir geometries including the weir length, weir height, inlet-outlet key widths, upstream and downstream apex overhangs, and slopped floors on threshold submergence and study the hydraulic flow characteristics. From the experimental results, a practical formula is proposed to evaluate the flow threshold submergence over PK weirs.

Keywords: Model experimentation, flow characteristics, Piano Key weir, threshold submergence.

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2182
302 A Hidden Markov Model for Modeling Pavement Deterioration under Incomplete Monitoring Data

Authors: Nam Lethanh, Bryan T. Adey

Abstract:

In this paper, the potential use of an exponential hidden Markov model to model a hidden pavement deterioration process, i.e. one that is not directly measurable, is investigated. It is assumed that the evolution of the physical condition, which is the hidden process, and the evolution of the values of pavement distress indicators, can be adequately described using discrete condition states and modeled as a Markov processes. It is also assumed that condition data can be collected by visual inspections over time and represented continuously using an exponential distribution. The advantage of using such a model in decision making process is illustrated through an empirical study using real world data.

Keywords: Deterioration modeling, Exponential distribution, Hidden Markov model, Pavement management

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 2305
301 Evaluation on Bearing Capacity of Ring Foundations on two-Layered Soil

Authors: R. Ziaie Moayed, V. Rashidian, E. Izadi

Abstract:

This paper utilizes a finite element analysis to study the bearing capacity of ring footings on a two-layered soil. The upper layer, that the footing is placed on it, is soft clay and the underneath layer is a cohesionless sand. For modeling soils, Mohr–Coulomb plastic yield criterion is employed. The effects of two factors, the clay layer thickness and the ratio of internal radius of the ring footing to external radius of the ring, have been analyzed. It is found that the bearing capacity decreases as the value of ri / ro increases. Although, as the clay layer thickness increases the bearing capacity was alleviated gradually.

Keywords: Bearing capacity, Ring footing, Two-layered soil

Procedia APA BibTeX Chicago EndNote Harvard JSON MLA RIS XML ISO 690 PDF Downloads 4042