Search results for: wave manipulation
1756 Near Shore Wave Manipulation for Electricity Generation
Authors: K. D. R. Jagath-Kumara, D. D. Dias
Abstract:
The sea waves carry thousands of GWs of power globally. Although there are a number of different approaches to harness offshore energy, they are likely to be expensive, practically challenging and vulnerable to storms. Therefore, this paper considers using the near shore waves for generating mechanical and electrical power. It introduces two new approaches, the wave manipulation and using a variable duct turbine, for intercepting very wide wave fronts and coping with the fluctuations of the wave height and the sea level, respectively. The first approach effectively allows capturing much more energy yet with a much narrower turbine rotor. The second approach allows using a rotor with a smaller radius but captures energy of higher wave fronts at higher sea levels yet preventing it from totally submerging. To illustrate the effectiveness of the approach, the paper contains a description and the simulation results of a scale model of a wave manipulator. Then, it includes the results of testing a physical model of the manipulator and a single duct, axial flow turbine, in a wave flume in the laboratory. The paper also includes comparisons of theoretical predictions, simulation results and wave flume tests with respect to the incident energy, loss in wave manipulation, minimal loss, brake torque and the angular velocity.Keywords: near-shore sea waves, renewable energy, wave energy conversion, wave manipulation
Procedia PDF Downloads 4831755 Passive Non-Prehensile Manipulation on Helix Path Based on Mechanical Intelligence
Authors: Abdullah Bajelan, Adel Akbarimajd
Abstract:
Object manipulation techniques in robotics can be categorized in two major groups including manipulation with grasp and manipulation without grasp. The original aim of this paper is to develop an object manipulation method where in addition to being grasp-less, the manipulation task is done in a passive approach. In this method, linear and angular positions of the object are changed and its manipulation path is controlled. The manipulation path is a helix track with constant radius and incline. The method presented in this paper proposes a system which has not the actuator and the active controller. So this system requires a passive mechanical intelligence to convey the object from the status of the source along the specified path to the goal state. This intelligent is created based on utilizing the geometry of the system components. A general set up for the components of the system is considered to satisfy the required conditions. Then after kinematical analysis, detailed dimensions and geometry of the mechanism is obtained. The kinematical results are verified by simulation in ADAMS.Keywords: mechanical intelligence, object manipulation, passive mechanism, passive non-prehensile manipulation
Procedia PDF Downloads 4821754 Electromagnetic Wave Propagation Equations in 2D by Finite Difference Method
Authors: N. Fusun Oyman Serteller
Abstract:
In this paper, the techniques to solve time dependent electromagnetic wave propagation equations based on the Finite Difference Method (FDM) are proposed by comparing the results with Finite Element Method (FEM) in 2D while discussing some special simulation examples. Here, 2D dynamical wave equations for lossy media, even with a constant source, are discussed for establishing symbolic manipulation of wave propagation problems. The main objective of this contribution is to introduce a comparative study of two suitable numerical methods and to show that both methods can be applied effectively and efficiently to all types of wave propagation problems, both linear and nonlinear cases, by using symbolic computation. However, the results show that the FDM is more appropriate for solving the nonlinear cases in the symbolic solution. Furthermore, some specific complex domain examples of the comparison of electromagnetic waves equations are considered. Calculations are performed through Mathematica software by making some useful contribution to the programme and leveraging symbolic evaluations of FEM and FDM.Keywords: finite difference method, finite element method, linear-nonlinear PDEs, symbolic computation, wave propagation equations
Procedia PDF Downloads 1471753 Fast-Forward Problem in Asymmetric Double-Well Potential
Authors: Iwan Setiawan, Bobby Eka Gunara, Katshuhiro Nakamura
Abstract:
The theory to accelerate system on quantum dynamics has been constructed to get the desired wave function on shorter time. This theory is developed on adiabatic quantum dynamics which any regulation is done on wave function that satisfies Schrödinger equation. We show accelerated manipulation of WFs with the use of a parameter-dependent in asymmetric double-well potential and also when it’s influenced by electromagnetic fields.Keywords: driving potential, Adiabatic Quantum Dynamics, regulation, electromagnetic field
Procedia PDF Downloads 3411752 Political Manipulation in Global Discourse
Authors: Gohar Madoyan, Kristine Harutyunyan, Gevorg Barseghyan
Abstract:
It is common knowledge that linguistic manipulation is and has always been a powerful instrument of political discourse. Politicians from different countries and through centuries have successfully used linguistic means to persuade the public. Yet, this persuasion should be linguistically unobtrusive. Small changes in wording may result in a huge difference in perception by the audience. Thus, manipulation is a strategy that is mostly used to convey a certain message to the manipulators, who should be aware of the vulnerabilities of their audience and who must use them to achieve control. Political manipulation, though commonly observed in the 21st century, can easily be traced back to ancient rhetoric, which warns us to choose words carefully while addressing the audience. On the other hand, modern manipulative techniques have become more sophisticated, making use of all scientific advances.Keywords: manipulators, politics, persuasion, political discourse, linguo-stylistic analysis, rhetoric
Procedia PDF Downloads 841751 Solution of the Nonrelativistic Radial Wave Equation of Hydrogen Atom Using the Green's Function Approach
Authors: F. U. Rahman, R. Q. Zhang
Abstract:
This work aims to develop a systematic numerical technique which can be easily extended to many-body problem. The Lippmann Schwinger equation (integral form of the Schrodinger wave equation) is solved for the nonrelativistic radial wave of hydrogen atom using iterative integration scheme. As the unknown wave function appears on both sides of the Lippmann Schwinger equation, therefore an approximate wave function is used in order to solve the equation. The Green’s function is obtained by the method of Laplace transform for the radial wave equation with excluded potential term. Using the Lippmann Schwinger equation, the product of approximate wave function, the Green’s function and the potential term is integrated iteratively. Finally, the wave function is normalized and plotted against the standard radial wave for comparison. The outcome wave function converges to the standard wave function with the increasing number of iteration. Results are verified for the first fifteen states of hydrogen atom. The method is efficient and consistent and can be applied to complex systems in future.Keywords: Green’s function, hydrogen atom, Lippmann Schwinger equation, radial wave
Procedia PDF Downloads 3951750 The Immediate Effects of Thrust Manipulation for Thoracic Hyperkyphosis
Authors: Betul Taspinar, Eda O. Okur, Ismail Saracoglu, Ismail Okur, Ferruh Taspinar
Abstract:
Thoracic hyperkyphosis, is a well-known spinal phenomenon, refers to an excessive curvature (> 40 degrees) of the thoracic spine. The aim of this study was to explore the effectiveness of thrust manipulation on thoracic spine alignment. 31 young adults with hyperkyphosis diagnosed with Spinal Mouse® device were randomly assigned either thrust manipulation group (n=16, 11 female, 5 male) or sham manipulation group (n=15, 8 female, 7 male). Thrust and sham manipulations were performed by a blinded physiotherapist who is a certificated expert in musculoskeletal physiotherapy. Thoracic kyphosis degree was measured after the interventions via Spinal Mouse®. Wilcoxon test was used to analyse the data obtained before and after the manipulation for each group, whereas Mann-Whitney U test was used to compare the groups. The mean of baseline thoracic kyphosis degrees in thrust and sham groups were 50.69 o ± 7.73 and 48.27o ± 6.43, respectively. There was no statistically significant difference between groups in terms of initial thoracic kyphosis degrees (p=0.51). After the interventions, the mean of thoracic kyphosis degree in thrust and sham groups were measured as 44.06o ± 6.99 and 48.93o ± 6.57 respectively (p=0.03). There was no statistically significant difference between before and after interventions in sham group (p=0.33), while the mean of thoracic kyphosis degree in thrust group decreased significantly (p=0.00). Thrust manipulation can attenuate thoracic hyperkyphosis immediately in young adults by not using placebo effect. Manipulation might provide accurate proprioceptive (sensory) input to the spine joints and reduce kyphosis by restoring normal segment mobility. Therefore thoracic manipulation might be included in the physiotherapy programs to treat hyperkyphosis.Keywords: hyperkyphosis, manual therapy, spinal mouse, physiotherapy
Procedia PDF Downloads 3451749 Investigation of Stoneley Waves in Multilayered Plates
Authors: Bing Li, Tong Lu, Lei Qiang
Abstract:
Stoneley waves are interface waves that propagate at the interface between two solid media. In this study, the dispersion characteristics and wave structures of Stoneley waves in elastic multilayered plates are displayed and investigated. With a perspective of bulk wave, a reasonable assumption of the potential function forms of the expansion wave and shear wave in nth layer medium is adopted, and the characteristic equation of Stoneley waves in a three-layered plate is given in a determinant form. The dispersion curves and wave structures are solved and presented in both numerical and simulation results. It is observed that two Stoneley wave modes exist in a three-layered plate, that conspicuous dispersion occurs on low frequency band, that the velocity of each Stoneley wave mode approaches the corresponding Stoneley wave velocity at interface between two half infinite spaces. The wave structures reveal that the in-plane displacement of Stoneley waves are relatively high at interfaces, which shows great potential for interface defects detection.Keywords: characteristic equation, interface waves, potential function, Stoneley waves, wave structure
Procedia PDF Downloads 3201748 Effect of Blade Layout on Unidirectional Rotation of a Vertical-Axis Rotor in Waves
Authors: Yingchen Yang
Abstract:
Ocean waves are a rich renewable energy source that is nearly untapped to date, even though many wave energy conversion (WEC) technologies are currently under development. The present work discusses a vertical-axis WEC rotor for power generation. The rotor was specially designed to allow easy rearrangement of the same blades to achieve different rotor configurations and result in different wave-rotor interaction behaviors. These rotor configurations were tested in a wave tank under various wave conditions. The testing results indicate that all the rotor configurations perform unidirectional rotation about the vertical axis in waves, but the response characteristics are somewhat different. The rotor's unidirectional rotation about its vertical axis is essential in wave energy harvesting since it makes the rotor respond well in a wide range of the wave frequency and in any wave propagation directions. Result comparison among different configurations leads to a preferred rotor design for further hydrodynamic optimization.Keywords: unidirectional rotation, vertical axis rotor, wave energy conversion, wave-rotor interaction
Procedia PDF Downloads 1721747 Streamlining Coastal Defense: Investigating the Impact of Seawall Geometry on Wave Loads
Authors: Ahmadreza Ebadati, Asaad Y. Shamseldin, Amin Ghadirian
Abstract:
Seawall geometry plays a crucial role in mitigating wave impacts, though detailed exploration of its manipulation is limited. This study delves into the effects of varying cross-shore seawall geometry on the dynamics of wave impacts, with a particular focus on vertical seawalls. Inspired by foundational insights linking seawall shape to hydraulic efficiency, this investigation centres on how alterations in seawall geometry can influence wave energy dissipation and subsequent wave impacts. The study investigates the 2D interaction of regular waves with a period of 2.1s with a vertical seawall and berm featuring small-scale cross-shore protrusions and recesses. Utilising OpenFOAM® simulations and a k-ω SST turbulence model, this investigation compares results to a base case simulation, which is partially calibrated with experimental data from a flume study. The analysis evaluates various geometric modifications, specifically interchanged protrusions and recesses at different heights and orientations along the seawall. Findings suggest that specific configurations, such as interchanged protrusions and recesses, can mitigate initial impact forces, while certain arrangements may intensify subsequent impacts. Key insights include the identification of geometry configurations that can effectively reduce the force impulse of slamming waves on coastal structures and potentially decrease the frequency and cost of seawall maintenance. This research contributes to the field by advancing the understanding of how seawall geometry influences wave forces and by providing actionable insights for the design of more resilient seawall structures. Further exploration of seawall geometry variation is recommended, advocating additional case studies to optimise designs tailored to specific coastal environments.Keywords: seawall geometry, wave impact loads, numerical simulation, coastal engineering, wave-structure interaction
Procedia PDF Downloads 501746 Solar Wind Turbulence and the Role of Circularly Polarized Dispersive Alfvén Wave
Authors: Swati Sharma, R. P. Sharma
Abstract:
We intend to study the nonlinear evolution of the parallel propagating finite frequency Alfvén wave (also called Dispersive Alfvén wave/Hall MHD wave) propagating in the solar wind regime of the solar region when a perpendicularly propagating magnetosonic wave is present in the background. The finite frequency Alfvén wave behaves differently from the usual non-dispersive behavior of the Alfvén wave. To study the nonlinear processes (such as filamentation) taking place in the solar regions such as solar wind, the dynamical equation of both the waves are derived. Numerical simulation involving finite difference method for the time domain and pseudo spectral method for the spatial domain is then performed to analyze the transient evolution of these waves. The power spectra of the Dispersive Alfvén wave is also investigated. The power spectra shows the distribution of the magnetic field intensity of the Dispersive Alfvén wave over different wave numbers. For DAW the spectra shows a steepening for scales larger than the proton inertial length. This means that the wave energy gets transferred to the solar wind particles as the wave reaches higher wave numbers. This steepening of the power spectra can be explained on account of the finite frequency of the Alfvén wave. The obtained results are consistent with the observations made by CLUSTER spacecraft.Keywords: solar wind, turbulence, dispersive alfven wave
Procedia PDF Downloads 6011745 Legal Study on the Construction of Olympic and Paralympic Soft Law about Manipulation of Sports Competition
Authors: Clemence Collon, Didier Poracchia
Abstract:
The manipulation of sports competitions is a new type of sports integrity problem. While doping has become an organized, institutionalized struggle, the manipulation of sports competitions is gradually building up. This study aims to describe and understand how the soft Olympic and Paralympic law was gradually built. It also summarizes the legal tools for prevention, detection, and sanction developed by the international Olympic movement. Then, it analyzes the impact of this soft law on the law of the States, in particular in French law. This study is mainly based on an analysis of existing legal literature and non-binding law in the International Olympic and Paralympic movement and on the French National Olympic Committee. Interviews were carried out with experts from the Olympic movement or experts working on combating the manipulation of sports competitions; the answers are also used in this article. The International Olympic Committee has created a supranational legal base to fight against the manipulation of sports competitions. This legal basis must be respected by sports organizations. The Olympic Charter, the Olympic Code of Ethics, the Olympic Movement Code on the prevention of the manipulation of sports competitions, the rules of standards, the basic universal principles, the manuals, the declarations have been published in this perspective. This sports soft law has influences or repercussions in each state. Many states take this new form of integrity problem into account by creating state laws or measures in favor of the fight against sports manipulations. France has so far only a legal basis for manipulation related to betting on sports competitions through the infraction of sports corruption included in the penal code and also created a national platform with various actors to combat this cheating. This legal study highlights the progressive construction of the sports law rules of the Olympic movement in the fight against the manipulation of sports competitions linked to sports betting and their impact on the law of the states.Keywords: integrity, law and ethics, manipulation of sports competitions, olympic, sports law
Procedia PDF Downloads 1551744 A FE-Based Scheme for Computing Wave Interaction with Nonlinear Damage and Generation of Harmonics in Layered Composite Structures
Authors: R. K. Apalowo, D. Chronopoulos
Abstract:
A Finite Element (FE) based scheme is presented for quantifying guided wave interaction with Localised Nonlinear Structural Damage (LNSD) within structures of arbitrary layering and geometric complexity. The through-thickness mode-shape of the structure is obtained through a wave and finite element method. This is applied in a time domain FE simulation in order to generate time harmonic excitation for a specific wave mode. Interaction of the wave with LNSD within the system is computed through an element activation and deactivation iteration. The scheme is validated against experimental measurements and a WFE-FE methodology for calculating wave interaction with damage. Case studies for guided wave interaction with crack and delamination are presented to verify the robustness of the proposed method in classifying and identifying damage.Keywords: layered structures, nonlinear ultrasound, wave interaction with nonlinear damage, wave finite element, finite element
Procedia PDF Downloads 1631743 Case-Wise Investigation of Body-Wave Propagation in a Cross-Anisotropic Soil Exhibiting Inhomogeneity along Depth
Authors: Sumit Kumar Vishawakarma, Tapas Ranjan Panihari
Abstract:
The article investigates the propagation behavior of SV-wave, SH-wave, and P-wave in a continuously inhomogeneous cross-anisotropic material, where the material properties such as Young's moduli, shear modulus, and density vary as an arbitrary continuous function of depth. In the considered model, Hook's law, strain-displacement relations along with equilibrium equations have been used to derive the governing equation. The mathematical formulation of this physical problem gives rise to an eigenvalue problem with displacement components as fundamental variables. This leads to achieving the closed-form expressions for quasi-wave velocities of SV-wave, SH-wave, and P-wave in the considered framework. These characteristics of wave propagation along with the above-stated variation have been scrutinized based on their numerical results. This parametric study reveals that wave velocity remarkably fluctuates as the magnitude of inhomogeneity parameters increases and decreases. The prominent effect has been shown depicting the dependence of wave velocity on the degree of material anisotropy. The influence of phase angle and depth of the medium has been remarkably established. The present study may facilitate the theoretical foundation and practical application in the field of earthquake source mechanisms.Keywords: cross-anisotropic, inhomogeneity, P-wave, SH-wave, SV-wave, shear modulus, Young’s modulus
Procedia PDF Downloads 1201742 Wave Energy: Efficient Conversion of the Big Waves
Authors: Md. Moniruzzaman
Abstract:
The energy of ocean waves across a large part of the earth is inexhaustible. The whole world will benefit if this endless energy can be used in an easy way. The coastal countries will easily be able to meet their own energy needs. The purpose of this article is to use the infinite energy of the ocean wave in a simple way. i.e. a method of efficient use of wave energy. The paper starts by discussing various forces acting on a floating object and, afterward, about the method. And then a calculation for a 73.39MW hydropower from the tidal wave. Used some sketches/pictures. Finally, the conclusion states the possibilities and advantages.Keywords: anchor, electricity, floating object, pump, ship city, wave energy
Procedia PDF Downloads 861741 Experimental Investigation for the Overtopping Wave Force of the Vertical Breakwater
Authors: Jin Song Gui, Han Li, Rui Jin Zhang, Heng Jiang Cai
Abstract:
There is a large deviation between the measured wave power at the vertical breast wall and the calculated one according to current specification in the case of overtopping. In order to investigate the reasons for the deviation, the wave forces of vertical breast wall under overtopping conditions have been measured through physical model experiment and compared with the calculated results. The effect of water depth, period and the wave height on the wave forces of the vertical breast wall have been also investigated. The distribution of wave pressure under different wave actions was tested based on the force sensor which is installed in the vertical breakwater. By comparing and analyzing the measured values and norms calculated values, the applicability of the existing norms recommended method were discussed and a reference for the design of vertical breakwater was provided. Experiment results show that with the decrease of the water depth, the gap is growing between the actual wave forces and the specification values, and there are no obvious regulations between these two values with the variation of period while wave force greatly reduces with the overtopping reducing. The amount of water depth and wave overtopping has a significant impact on the wave force of overtopping section while the period has no obvious influence on the wave force. Finally, some favorable recommendations for the overtopping wave force design of the vertical breakwater according to the model experiment results are provided.Keywords: overtopping wave, physical model experiment, vertical breakwater, wave forces
Procedia PDF Downloads 3031740 Induced Pulsation Attack Against Kalman Filter Driven Brushless DC Motor Control System
Authors: Yuri Boiko, Iluju Kiringa, Tet Yeap
Abstract:
We use modeling and simulation tools, to introduce a novel bias injection attack, named the ’Induced Pulsation Attack’, which targets Cyber Physical Systems with closed-loop controlled Brushless DC (BLDC) motor and Kalman filter driver in the feedback loop. This attack involves engaging a linear function with a constant gradient to distort the coefficient of the injected bias, which falsifies the Kalman filter estimates of the rotor’s angular speed. As a result, this manipulation interaction inside the control system causes periodic pulsations in a form of asymmetric sine wave of both current and voltage in the circuit windings, with a high magnitude. It is shown that by varying the gradient of linear function, one can control both the frequency and structure of the induced pulsations. It is also demonstrated that terminating the attack at any point leads to additional compensating effort from the controller to restore the speed to its equilibrium value. This compensation effort produces an exponentially decaying wave, which we call the ’attack withdrawal syndrome’ wave. The conditions for maximizing or minimizing the impact of the attack withdrawal syndrome are determined. Linking the termination of the attack to the end of the full period of the induced pulsation wave has been shown to nullify the attack withdrawal syndrome wave, thereby improving the attack’s covertness.Keywords: cyber-attack, induced pulsation, bias injection, Kalman filter, BLDC motor, control system, closed loop, P- controller, PID-controller, saw-function, cyber-physical system
Procedia PDF Downloads 711739 Discarding or Correcting Outlier Scores vs. Excluding Outlier Jurors to Reduce Manipulation in Classical Music Competitions.
Authors: Krzysztof Kontek, Kevin Kenner
Abstract:
This paper, written by an economist and pianist, aims to compare and analyze different methods of reducing manipulation in classical music competitions by focusing on outlier scores and outlier jurors. We first examine existing methods in competition practice and statistical literature for discarding or correcting jurors' scores that deviate significantly from the mean or median of all scores. We then introduce a method that involves eliminating all scores of outlier jurors, i.e., those jurors whose ratings significantly differ from those of other jurors. The properties of these standard and proposed methods are discussed in hypothetical voting scenarios, where one or more jurors assign scores that deviate considerably from the scores awarded by other jurors. Finally, we present examples of applying various methods to real-world data from piano competitions, demonstrating the potential effectiveness and implications of each approach in reducing manipulation within these events.Keywords: voting systems, manipulation, outlier scores, outlier jurors
Procedia PDF Downloads 841738 Estimation of Fourier Coefficients of Flux Density for Surface Mounted Permanent Magnet (SMPM) Generators by Direct Search Optimization
Authors: Ramakrishna Rao Mamidi
Abstract:
It is essential for Surface Mounted Permanent Magnet (SMPM) generators to determine the performance prediction and analyze the magnet’s air gap flux density wave shape. The flux density wave shape is neither a pure sine wave or square wave nor a combination. This is due to the variation of air gap reluctance between the stator and permanent magnets. The stator slot openings and the number of slots make the wave shape highly complicated. To reduce the complexity of analysis, approximations are made to the wave shape using Fourier analysis. In contrast to the traditional integration method, the Fourier coefficients, an and bn, are obtained by direct search method optimization. The wave shape with optimized coefficients gives a wave shape close to the desired wave shape. Harmonics amplitudes are worked out and compared with initial values. It can be concluded that the direct search method can be used for estimating Fourier coefficients for irregular wave shapes.Keywords: direct search, flux plot, fourier analysis, permanent magnets
Procedia PDF Downloads 2161737 3-D Numerical Model for Wave-Induced Seabed Response around an Offshore Pipeline
Authors: Zuodong Liang, Dong-Sheng Jeng
Abstract:
Seabed instability around an offshore pipeline is one of key factors that need to be considered in the design of offshore infrastructures. Unlike previous investigations, a three-dimensional numerical model for the wave-induced soil response around an offshore pipeline is proposed in this paper. The numerical model was first validated with 2-D experimental data available in the literature. Then, a parametric study will be carried out to examine the effects of wave, seabed characteristics and confirmation of pipeline. Numerical examples demonstrate significant influence of wave obliquity on the wave-induced pore pressures and the resultant seabed liquefaction around the pipeline, which cannot be observed in 2-D numerical simulation.Keywords: pore pressure, 3D wave model, seabed liquefaction, pipeline
Procedia PDF Downloads 3731736 Numerical Investigation of Wave Run-Up on Curved Dikes
Authors: Suba Periyal Subramaniam, Babette Scheres, Altomare Corrado, Holger Schuttrumpf
Abstract:
Due to the climatic change and the usage of coastal areas, there is an increasing risk of dike failures along the coast worldwide. Wave run-up plays a key role in planning and design of a coastal structure. The coastal dike lines are bent either due to geological characteristics or due to influence of anthropogenic activities. The effect of the curvature of coastal dikes on wave run-up and overtopping is not yet investigated. The scope of this research is to find the effects of the dike curvature on wave run-up by employing numerical model studies for various dike opening angles. Numerical simulation is carried out using DualSPHysics, a meshless method, and OpenFOAM, a mesh-based method. The numerical results of the wave run-up on a curved dike and the wave transformation process for various opening angles, wave attacks, and wave parameters will be compared and discussed. This research aims to contribute a more precise analysis and understanding the influence of the curvature in the dike line and thus ensuring a higher level of protection in the future development of coastal structures.Keywords: curved dikes, DualSPHysics, OpenFOAM, wave run-up
Procedia PDF Downloads 1491735 Manipulation of Ideological Items in the Audiovisual Translation of Voiced-Over Documentaries in the Arab World
Authors: S. Chabbak
Abstract:
In a widely globalized world, the influence of audiovisual translation on the culture and identity of audiences is unmistakable. However, in the Arab World, there is a noticeable disproportion between this growing influence and the research carried out in the field. As a matter of fact, the voiced-over documentary is one of the most abundantly translated genres in the Arab World that carries lots of ideological elements which are in many cases rendered by manipulation. However, voiced-over documentaries have hardly received any focused attention from researchers in the Arab World. This paper attempts to scrutinize the process of translation of voiced-over documentaries in the Arab World, from French into Arabic in the present case study, by sub-categorizing the ideological items subject to manipulation, identifying the techniques utilized in their translation and exploring the potential extra-linguistic factors that prompt translation agents to opt for manipulative translation. The investigation is based on a corpus of 94 episodes taken from a series entitled 360° GEO Reports, produced by the French German network ARTE in French, and acquired, translated and aired by Al Jazeera Documentary Channel for Arab audiences. The results yielded 124 cases of manipulation in four sub-categories of ideological items, and the use of 10 different oblique procedures in the process of manipulative translation. The study also revealed that manipulation is in most of the instances dictated by the editorial line of the broadcasting channel, in addition to the religious, geopolitical and socio-cultural peculiarities of the target culture.Keywords: audiovisual translation, ideological items, manipulation, voiced-over documentaries
Procedia PDF Downloads 2121734 Creative Accounting as a Financial Numbers Game
Authors: Feddaoui Amina
Abstract:
Through this study we will try to shed light on the theoretical framework proposed for understanding creative accounting as a financial numbers game and one of the most important techniques of accounts manipulation, its main actors and its practices. We will discover the role of the modified Jones model (1995) in detecting creative accounting practices using discretionary accruals. Finally we will try to confirm the importance and the need to address this type of practices using corporate governance as a main control system and an important defense line to reduce these dangerous accounts manipulation.Keywords: financial numbers game, creative accounting, modified Jones model, accounts manipulation
Procedia PDF Downloads 4771733 Modeling of Long Wave Generation and Propagation via Seabed Deformation
Authors: Chih-Hua Chang
Abstract:
This study uses a three-dimensional (3D) fully nonlinear model to simulate the wave generation problem caused by the movement of the seabed. The numerical model is first simplified into two dimensions and then compared with the existing two-dimensional (2D) experimental data and the 2D numerical results of other shallow-water wave models. Results show that this model is different from the earlier shallow-water wave models, with the phase being closer to the experimental results of wave propagation. The results of this study are also compared with those of the 3D experimental results of other researchers. Satisfactory results can be obtained in both the waveform and the flow field. This study assesses the application of the model to simulate the wave caused by the circular (radius r0) terrain rising or falling (moving distance bm). The influence of wave-making parameters r0 and bm are discussed. This study determines that small-range (e.g., r0 = 2, normalized by the static water depth), rising, or sinking terrain will produce significant wave groups in the far field. For large-scale moving terrain (e.g., r0 = 10), uplift and deformation will potentially generate the leading solitary-like waves in the far field.Keywords: seismic wave, wave generation, far-field waves, seabed deformation
Procedia PDF Downloads 861732 Political Discourse and Linguistic Manipulation in Nigerian Politics
Authors: Kunle Oparinde, Ernestina Maleshoane Rapeane-Mathonsi, Gift Mheta
Abstract:
Using Critical Discourse Analysis (CDA) and Multimodal Discourse Analysis (MDA), the research seeks to deconstruct politically-motivated discourse as observed from Nigerian politics. This is intended to be achieved by analysing linguistic (mis)representation and manipulation in Nigerian political settings, drawing from instances of language use as observed from different political campaigns. Since language in itself is generally meaningless without context, it is therefore paramount to analyse the (mis)representation and manipulation in Nigerian political sceneries within their contextual basis. The study focuses on political language used by Nigerian politicians emanating from printed and social media forms such as posters, pamphlets, speeches, billboards, and internet sources purposely selected across Nigeria. The research further aims at investigating the discursive strategies used by politicians to gain more audience, and, as a result, shape opinions that result in votes. The study employs a qualitative approach. Two parties are intentionally selected because they have been essentially strong at the national level namely: All Progressive Congress (APC) and the People’s Democratic Party (PDP). The study finds out that politicians in Nigeria, as in many parts of the world, use language to manipulate the electorate. Comprehensive discussion of these instances of political manipulation remains the thrust of this paper.Keywords: communication, discourse, manipulation, misrepresentation
Procedia PDF Downloads 2511731 Turbulence Modeling and Wave-Current Interactions
Authors: A. C. Bennis, F. Dumas, F. Ardhuin, B. Blanke
Abstract:
The mechanics of rip currents are complex, involving interactions between waves, currents, water levels and the bathymetry, that present particular challenges for numerical models. Here, the effects of a grid-spacing dependent horizontal mixing on the wave-current interactions are studied. Near the shore, wave rays diverge from channels towards bar crests because of refraction by topography and currents, in a way that depends on the rip current intensity which is itself modulated by the horizontal mixing. At low resolution with the grid-spacing dependent horizontal mixing, the wave motion is the same for both coupling modes because the wave deviation by the currents is weak. In high-resolution case, however, classical results are found with the stabilizing effect of the flow by feedback of waves on currents. Lastly, wave-current interactions and the horizontal mixing strongly affect the intensity of the three-dimensional rip velocity.Keywords: numerical modeling, wave-current interactions, turbulence modeling, rip currents
Procedia PDF Downloads 4661730 A Vertical-Axis Unidirectional Rotor with Nested Blades for Wave Energy Conversion
Authors: Yingchen Yang
Abstract:
In the present work, development of a new vertical-axis unidirectional wave rotor is reported. The wave rotor is a key component of a wave energy converter (WEC), which harvests energy from ocean waves. Differing from the huge majority of WEC designs that perform reciprocating motions (heaving up and down, swaying back and forth, etc.), our wave rotor performs unidirectional rotation about a vertical axis when directly exposed in waves. The unidirectional feature of the rotor makes the rotor respond well in a wide range of the wave frequency. The vertical axis arrangement of the rotor makes the rotor insensitive to the wave propagation direction. The rotor employs blades with a cross-section in an airfoil shape and a span curled into a semi-oval shape. Two sets of blades, with one nested inside the other, constitute the rotor. In waves, water particles perform an omnidirectional motion that constantly changes in both spatial and temporal domains. The blade nesting permits a compact rotor configuration that ‘sees’ a relatively uniform local flow in the spatial domain. The rotor was experimentally tested in simulated waves in a wave flume under various conditions. The testing results show a promising unidirectional rotor that is capable of extracting energy from waves at a capture width ratio of 0.08 to 0.15, depending on detailed wave conditions.Keywords: unidirectional, vertical axis, wave energy converter, wave rotor
Procedia PDF Downloads 2371729 Determination of Optimum Fin Wave Angle and Its Effect on the Performance of an Intercooler
Authors: Mahdi Hamzehei, Seyyed Amin Hakim, Nahid Taherian
Abstract:
Fins play an important role in increasing the efficiency of compact shell and tube heat exchangers by increasing heat transfer. The objective of this paper is to determine the optimum fin wave angle, as one of the geometric parameters affecting the efficiency of the heat exchangers. To this end, finite volume method is used to model and simulate the flow in heat exchanger. In this study, computational fluid dynamics simulations of wave channel are done. The results show that the wave angle affects the temperature output of the heat exchanger.Keywords: fin wave angle, tube, intercooler, optimum, performance
Procedia PDF Downloads 3831728 Thermal Effect on Wave Interaction in Composite Structures
Authors: R. K. Apalowo, D. Chronopoulos, V. Thierry
Abstract:
There exist a wide range of failure modes in composite structures due to the increased usage of the structures especially in aerospace industry. Moreover, temperature dependent wave response of composite and layered structures have been continuously studied, though still limited, in the last decade mainly due to the broad operating temperature range of aerospace structures. A wave finite element (WFE) and finite element (FE) based computational method is presented by which the temperature dependent wave dispersion characteristics and interaction phenomenon in composite structures can be predicted. Initially, the temperature dependent mechanical properties of the panel in the range of -100 ◦C to 150 ◦C are measured experimentally using the Thermal Mechanical Analysis (TMA). Temperature dependent wave dispersion characteristics of each waveguide of the structural system, which is discretized as a system of a number of waveguides coupled by a coupling element, is calculated using the WFE approach. The wave scattering properties, as a function of temperature, is determined by coupling the WFE wave characteristics models of the waveguides with the full FE modelling of the coupling element on which defect is included. Numerical case studies are exhibited for two waveguides coupled through a coupling element.Keywords: finite element, temperature dependency, wave dispersion characteristics, wave finite element, wave scattering properties
Procedia PDF Downloads 3101727 1D PIC Simulation of Cold Plasma Electrostatic Waves beyond Wave-Breaking Limit
Authors: Prabal Singh Verma
Abstract:
Electrostatic Waves in plasma have emerged as a new source for the acceleration of charged particles. The accelerated particles have a wide range of applications, for example in cancer therapy to cutting and melting of hard materials. The maximum acceleration can only be achieved when the amplitude of the plasma wave stays below a critical limit known as wave-breaking amplitude. Beyond this limit amplitude of the wave diminishes dramatically as the coherent energy of the wave starts to convert into random kinetic energy. In this work, spatiotemporal evolution of non-relativistic electrostatic waves in a cold plasma has been studied in the wave-breaking regime using a 1D particle-in-cell simulation (PIC). It is found that plasma gets heated after the wave-breaking but a fraction of initial energy always remains with the remnant wave in the form of Bernstein-Greene-Kruskal (BGK) mode in warm plasma. Another interesting finding of this work is that the frequency of the resultant BGK wave is found be below electron plasma frequency which decreases with increasing initial amplitude and the acceleration mechanism after the wave-breaking is also found to be different from the previous work. In order to explain the results observed in the numerical experiments, a simplified theoretical model is constructed which exhibits a good agreement with the simulation. In conclusion, it is shown in this work that electrostatic waves get shower after the wave-breaking and a fraction of initial coherent energy always remains with remnant wave. These investigations have direct relevance in wakefield acceleration experiments.Keywords: nonlinear plasma waves, longitudinal, wave-breaking, wake-field acceleration
Procedia PDF Downloads 387