Search results for: van der waals forces
Commenced in January 2007
Frequency: Monthly
Edition: International
Paper Count: 1270

Search results for: van der waals forces

1210 Learning Motivation Factors for Pre-Cadets in Armed Forces Academies Preparatory School, Ministry of Defense

Authors: Prachya Kamonphet

Abstract:

The purposes of this research were to study the learning motivation factors for Pre-cadets in Armed Forces Academies Preparatory School, Ministry of Defense. The subjects were 320 Pre-cadets (from all 3-year classes of Pre-cadets, the academic year 2015). The research instruments were questionnaires. The collected data were analyzed by means of Descriptive Statistic and One-Way Analysis of Variance. The results of this study were as follows: The relation between the Pre-cadets’ average grade and the motivation in studying was significance.In the aspect of the environment related to Pre-cadets’ families and the motivation in studying.In the aspect of the environment related to Pre-cadets’ studying, it was found that teaching method, learning place, educational media, relationship between teachers and Pre-cadets, relationship between Pre-cadets and their friends, and relationship between Pre-cadets and the commanders were significant.

Keywords: learning motivation factors, learning motivation, armed forces academies preparatory school, learning

Procedia PDF Downloads 217
1209 Study of Structural Behavior and Proton Conductivity of Inorganic Gel Paste Electrolyte at Various Phosphorous to Silicon Ratio by Multiscale Modelling

Authors: P. Haldar, P. Ghosh, S. Ghoshdastidar, K. Kargupta

Abstract:

In polymer electrolyte membrane fuel cells (PEMFC), the membrane electrode assembly (MEA) is consisting of two platinum coated carbon electrodes, sandwiched with one proton conducting phosphoric acid doped polymeric membrane. Due to low mechanical stability, flooding and fuel cell crossover, application of phosphoric acid in polymeric membrane is very critical. Phosphorous and silica based 3D inorganic gel gains the attention in the field of supercapacitors, fuel cells and metal hydrate batteries due to its thermally stable highly proton conductive behavior. Also as a large amount of water molecule and phosphoric acid can easily get trapped in Si-O-Si network cavities, it causes a prevention in the leaching out. In this study, we have performed molecular dynamics (MD) simulation and first principle calculations to understand the structural, electronics and electrochemical and morphological behavior of this inorganic gel at various P to Si ratios. We have used dipole-dipole interactions, H bonding, and van der Waals forces to study the main interactions between the molecules. A 'structure property-performance' mapping is initiated to determine optimum P to Si ratio for best proton conductivity. We have performed the MD simulations at various temperature to understand the temperature dependency on proton conductivity. The observed results will propose a model which fits well with experimental data and other literature values. We have also studied the mechanism behind proton conductivity. And finally we have proposed a structure for the gel paste with optimum P to Si ratio.

Keywords: first principle calculation, molecular dynamics simulation, phosphorous and silica based 3D inorganic gel, polymer electrolyte membrane fuel cells, proton conductivity

Procedia PDF Downloads 98
1208 Modelling of Atomic Force Microscopic Nano Robot's Friction Force on Rough Surfaces

Authors: M. Kharazmi, M. Zakeri, M. Packirisamy, J. Faraji

Abstract:

Micro/Nanorobotics or manipulation of nanoparticles by Atomic Force Microscopic (AFM) is one of the most important solutions for controlling the movement of atoms, particles and micro/nano metrics components and assembling of them to design micro/nano-meter tools. Accurate modelling of manipulation requires identification of forces and mechanical knowledge in the Nanoscale which are different from macro world. Due to the importance of the adhesion forces and the interaction of surfaces at the nanoscale several friction models were presented. In this research, friction and normal forces that are applied on the AFM by using of the dynamic bending-torsion model of AFM are obtained based on Hurtado-Kim friction model (HK), Johnson-Kendall-Robert contact model (JKR) and Greenwood-Williamson roughness model (GW). Finally, the effect of standard deviation of asperities height on the normal load, friction force and friction coefficient are studied.

Keywords: atomic force microscopy, contact model, friction coefficient, Greenwood-Williamson model

Procedia PDF Downloads 173
1207 2D Ferromagnetism in Van der Waals Bonded Fe₃GeTe₂

Authors: Ankita Tiwari, Jyoti Saini, Subhasis Ghosh

Abstract:

For many years, researchers have been fascinated by the subject of how properties evolve as dimensionality is lowered. Early on, it was shown that the presence of a significant magnetic anisotropy might compensate for the lack of long-range (LR) magnetic order in a low-dimensional system (d < 3) with continuous symmetry, as proposed by Hohenberg-Mermin and Wagner (HMW). Strong magnetic anisotropy allows an LR magnetic order to stabilize in two dimensions (2D) even in the presence of stronger thermal fluctuations which is responsible for the absence of Heisenberg ferromagnetism in 2D. Van der Waals (vdW) ferromagnets, including CrI₃, CrTe₂, Cr₂X₂Te₆ (X = Si and Ge) and Fe₃GeTe₂, offer a nearly ideal platform for studying ferromagnetism in 2D. Fe₃GeTe₂ is the subject of extensive investigation due to its tunable magnetic properties, high Curie temperature (Tc ~ 220K), and perpendicular magnetic anisotropy. Many applications in the field of spintronics device development have been quite active due to these appealing features of Fe₃GeTe₂. Although it is known that LR-driven ferromagnetism is necessary to get around the HMW theorem in 2D experimental realization, Heisenberg 2D ferromagnetism remains elusive in condensed matter systems. Here, we show that Fe₃GeTe₂ hosts both localized and delocalized spins, resulting in itinerant and local-moment ferromagnetism. The presence of LR itinerant interaction facilitates to stabilize Heisenberg ferromagnet in 2D. With the help of Rhodes-Wohlfarth (RW) and generalized RW-based analysis, Fe₃GeTe₂ has been shown to be a 2D ferromagnet with itinerant magnetism that can be modulated by an external magnetic field. Hence, the presence of both local moment and itinerant magnetism has made this system interesting in terms of research in low dimensions. We have also rigorously performed critical analysis using an improvised method. We show that the variable critical exponents are typical signatures of 2D ferromagnetism in Fe₃GeTe₂. The spontaneous magnetization exponent β changes the universality class from mean-field to 2D Heisenberg with field. We have also confirmed the range of interaction via the renormalization group (RG) theory. According to RG theory, Fe₃GeTe₂ is a 2D ferromagnet with LR interactions.

Keywords: Van der Waal ferromagnet, 2D ferromagnetism, phase transition, itinerant ferromagnetism, long range order

Procedia PDF Downloads 38
1206 Modification of Hexagonal Boron Nitride Induced by Focused Laser Beam

Authors: I. Wlasny, Z. Klusek, A. Wysmolek

Abstract:

Hexagonal boron nitride is a representative of a widely popular class of two-dimensional Van Der Waals materials. It finds its uses, among others, in construction of complexly layered heterostructures. Hexagonal boron nitride attracts great interest because of its properties characteristic for wide-gap semiconductors as well as an ultra-flat surface.Van Der Waals heterostructures composed of two-dimensional layered materials, such as transition metal dichalcogenides or graphene give hope for miniaturization of various electronic and optoelectronic elements. In our presentation, we will show the results of our investigations of the not previously reported modification of the hexagonal boron nitride layers with focused laser beam. The electrostatic force microscopy (EFM) images reveal that the irradiation leads to changes of the local electric fields for a wide range of laser wavelengths (from 442 to 785 nm). These changes are also accompanied by alterations of crystallographic structure of the material, as reflected by Raman spectra. They exhibit high stability and remain visible after at least five months. This behavior can be explained in terms of photoionization of the defect centers in h-BN which influence non-uniform electrostatic field screening by the photo-excited charge carriers. Analyzed changes influence local defect structure, and thus the interatomic distances within the lattice. These effects can be amplified by the piezoelectric character of hexagonal boron nitride, similar to that found in nitrides (e.g., GaN, AlN). Our results shed new light on the optical properties of the hexagonal boron nitride, in particular, those associated with electron-phonon coupling. Our study also opens new possibilities for h-BN applications in layered heterostructures where electrostatic fields can be used in tailoring of the local properties of the structures for use in micro- and nanoelectronics or field-controlled memory storage. This work is supported by National Science Centre project granted on the basis of the decision number DEC-2015/16/S/ST3/00451.

Keywords: atomic force microscopy, hexagonal boron nitride, optical properties, raman spectroscopy

Procedia PDF Downloads 147
1205 Application of a Hybrid Modified Blade Element Momentum Theory/Computational Fluid Dynamics Approach for Wine Turbine Aerodynamic Performances Prediction

Authors: Samah Laalej, Abdelfattah Bouatem

Abstract:

In the field of wind turbine blades, it is complicated to evaluate the aerodynamic performances through experimental measurements as it requires a lot of computing time and resources. Therefore, in this paper, a hybrid BEM-CFD numerical technique is developed to predict power and aerodynamic forces acting on the blades. Computational fluid dynamics (CFD) simulation was conducted to calculate the drag and lift forces through Ansys software using the K-w model. Then an enhanced BEM code was created to predict the power outputs generated by the wind turbine using the aerodynamic properties extracted from the CFD approach. The numerical approach was compared and validated with experimental data. The power curves calculated from this hybrid method were in good agreement with experimental measurements for all velocity ranges.

Keywords: blade element momentum, aerodynamic forces, wind turbine blades, computational fluid dynamics approach

Procedia PDF Downloads 25
1204 Maintaining a Motivated Workforce in the Malaysian Armed Forces

Authors: Gerard Lawrence

Abstract:

This paper gives an in-depth discussion on Motivation in the Malaysian Armed Forces; highlighting it as a powerful and important tool upon which the well-being of an entire (or any) organization rests. It starts with the literal definition of the word and then the psychological aspects of it detailing the intricate mechanics and fundamentals in order to accurately and systematically harness it to create a motivated workforce. It then describes the types of motivation; positive and negative, its many facets and manifestation, clearly identifying each one point by point as well as drawing examples. The paper also deals with certain controversial practices like favoritism; nepotism and provides examples of military motivation both in historic and contemporary context. It strips the current system (and its flaws) to build, nurture and maintain motivation in the future. It shows how “past practice” may not necessarily be “best practice”, by providing the building blocks necessary to move forward and cautions on the inter-relation and differences between morale and motivation. As a conclusion the paper coins a theory of working in shifts for the military and urges careful research and planning as to IF this can raise if not maintain motivation in the new era.

Keywords: armed forces, Malaysia, motivation, military psychology

Procedia PDF Downloads 411
1203 Indonesia's War on Terror and the Consequences on Indonesian Political System

Authors: Salieg L. Munestri

Abstract:

War on Terror became a principal war after the 9/11 attacks on U.S. homeland. Instead of helping to build up worldwide efforts to condemn terror and suicide bombings, the U.S.-led war on terror has given opportunities for the vast spread of terror. In much of Muslim world recently, the Bush’s Doctrine pushing all nations to choose sides in a war that is not truly a war has resulted worse effects. In the world’s most populous Muslim nation, Indonesia, more terror occurred since then. Instead of reinforcing the well-trained anti-terror military forces, Indonesian government established US-funded Special Detachment 88 to guarantee the accomplishment of war on terror in Indonesia and significantly to bring impact on regional security atmosphere. Indonesia is a potential power in Asia but it lacked off sophisticated military equipments. Consequently, Indonesia agrees to become a U.S. mutual partner in combating terrorism managed by Defense Security Cooperation Agency. The formation of elite anti-terror forces and U.S. partnerships perform Indonesia’s commitment to take a position beside the U.S. in coping with terrorism issue. However, this undeniably brings consequences on Indonesian political athmosphere, which encourages the writer to dig deep the consequences on the domestic environment of Indonesian political system. The establishment of the elite forces has aroused fluctuations within government, chiefly Indonesian House, concerning the establishment urgency, the large amount of funding, and the unpleasant performances, particularly the treatment toward suspected terrorists. Hence, evaluation process upon the Detachment 88 is highly demanding.

Keywords: anti-terror forces, Indonesia, political system, war on terror

Procedia PDF Downloads 324
1202 Chip Morphology and Cutting Forces Investigation in Dry High Speed Orthogonal Turning of Titanium Alloy

Authors: M. Benghersallah, L. Boulanouar, G. List, G. Sutter

Abstract:

The present work is an experimental study on the dry high speed turning of Ti-6Al-4V titanium alloy. The objective of this study is to see for high cutting speeds, how wear occurs on the face of insert and how to evolve cutting forces and chip formation. Cutting speeds tested is 600, 800, 1000 and 1200 m / min in orthogonal turning with a carbide insert tool H13A uncoated on a cylindrical titanium alloy part. Investigation on the wear inserts with 3D scanning microscope revered the crater formation is instantaneous and a chip adhesion (welded chip) causes detachment of carbide particles. In these experiments, the chip shape was systematically investigated at each cutting conditions using optical microscopy. The chips produced were collected and polished to measure the thicknesses t2max and t2min, dch the distance between each segments and ɸseg the inclination angle As described in the introduction part, the shear angle f and the inclination angle of a segment ɸseg are differentiated. The angle ɸseg is actually measured on the collected chips while the shear angle f cannot be. The angle ɸ represents the initial shear similar to the one that describes the formation of a continuous chip in the primary shear zone. Cutting forces increase and stabilize before removing the tool. The chip reaches a very high temperature.

Keywords: dry high speed, orthogonal turning, chip formation, cutting speed, cutting forces

Procedia PDF Downloads 253
1201 Experimental Investigation for the Overtopping Wave Force of the Vertical Breakwater

Authors: Jin Song Gui, Han Li, Rui Jin Zhang, Heng Jiang Cai

Abstract:

There is a large deviation between the measured wave power at the vertical breast wall and the calculated one according to current specification in the case of overtopping. In order to investigate the reasons for the deviation, the wave forces of vertical breast wall under overtopping conditions have been measured through physical model experiment and compared with the calculated results. The effect of water depth, period and the wave height on the wave forces of the vertical breast wall have been also investigated. The distribution of wave pressure under different wave actions was tested based on the force sensor which is installed in the vertical breakwater. By comparing and analyzing the measured values and norms calculated values, the applicability of the existing norms recommended method were discussed and a reference for the design of vertical breakwater was provided. Experiment results show that with the decrease of the water depth, the gap is growing between the actual wave forces and the specification values, and there are no obvious regulations between these two values with the variation of period while wave force greatly reduces with the overtopping reducing. The amount of water depth and wave overtopping has a significant impact on the wave force of overtopping section while the period has no obvious influence on the wave force. Finally, some favorable recommendations for the overtopping wave force design of the vertical breakwater according to the model experiment results are provided.

Keywords: overtopping wave, physical model experiment, vertical breakwater, wave forces

Procedia PDF Downloads 278
1200 Evaluation of Flange Bending Capacity near Member End Using a Finite Element Analysis Approach

Authors: Alicia Kamischke, Souhail Elhouar, Yasser Khodair

Abstract:

The American Institute of Steel Construction (AISC) Specification (360-10) provides equations for calculating the capacity of a W-shaped steel member to resist concentrated forces applied to its flange. In the case of flange local bending, the capacity equations were primarily formulated for an interior point along the member, which is defined to be at a distance larger than ten flange thicknesses away from the member’s end. When a concentrated load is applied within ten flange thicknesses from the member’s end, AISC requires a fifty percent reduction to be applied to the flange bending capacity. This reduction, however, is not supported by any research. In this study, finite element modeling is used to investigate the actual reduction in capacity near the end of such a steel member. The results indicate that the AISC equation for flange local bending is quite conservative for forces applied at less than ten flange thicknesses from the member’s end and a new equation is suggested for the evaluation of available flange local bending capacity within that distance.

Keywords: flange local bending, concentrated forces, column, flange capacity

Procedia PDF Downloads 658
1199 Optimization of Cutting Forces in Drilling of Polimer Composites via Taguchi Methodology

Authors: Eser Yarar, Fahri Vatansever, A. Tamer Erturk, Sedat Karabay

Abstract:

In this study, drilling behavior of multi-layer orthotropic polyester composites reinforced with woven polyester fiber and PTFE particle was investigated. Conventional drilling methods have low cost and ease of use. Therefore, it is one of the most preferred machining methods. The increasing range of use of composite materials in many areas has led to the investigation of the machinability performance of these materials. The drilling capability of the synthetic polymer composite material was investigated by measuring the cutting forces using different tool diameters, feed rate and high cutting speed parameters. Cutting forces were measured using a dynamometer in the experiments. In order to evaluate the results of the experiment, the Taguchi experimental design method was used. According to the results, the optimum cutting parameters were obtained for 0.1 mm/rev, 1070 rpm and 2 mm diameter drill bit. Verification tests were performed for the optimum cutting parameters obtained according to the model. Verification experiments showed the success of the established model.

Keywords: cutting force, drilling, polimer composite, Taguchi

Procedia PDF Downloads 137
1198 Specification and Unification of All Fundamental Forces Exist in Universe in the Theoretical Perspective – The Universal Mechanics

Authors: Surendra Mund

Abstract:

At the beginning, the physical entity force was defined mathematically by Sir Isaac Newton in his Principia Mathematica as F ⃗=(dp ⃗)/dt in form of his second law of motion. Newton also defines his Universal law of Gravitational force exist in same outstanding book, but at the end of 20th century and beginning of 21st century, we have tried a lot to specify and unify four or five Fundamental forces or Interaction exist in universe, but we failed every time. Usually, Gravity creates problems in this unification every single time, but in my previous papers and presentations, I defined and derived Field and force equations for Gravitational like Interactions for each and every kind of central systems. This force is named as Variational Force by me, and this force is generated by variation in the scalar field density around the body. In this particular paper, at first, I am specifying which type of Interactions are Fundamental in Universal sense (or in all type of central systems or bodies predicted by my N-time Inflationary Model of Universe) and then unify them in Universal framework (defined and derived by me as Universal Mechanics in a separate paper) as well. This will also be valid in Universal dynamical sense which includes inflations and deflations of universe, central system relativity, Universal relativity, ϕ-ψ transformation and transformation of spin, physical perception principle, Generalized Fundamental Dynamical Law and many other important Generalized Principles of Generalized Quantum Mechanics (GQM) and Central System Theory (CST). So, In this article, at first, I am Generalizing some Fundamental Principles, and then Unifying Variational Forces (General form of Gravitation like Interactions) and Flow Generated Force (General form of EM like Interactions), and then Unify all Fundamental Forces by specifying Weak and Strong Interactions in form of more basic terms - Variational, Flow Generated and Transformational Interactions.

Keywords: Central System Force, Disturbance Force, Flow Generated Forces, Generalized Nuclear Force, Generalized Weak Interactions, Generalized EM-Like Interactions, Imbalance Force, Spin Generated Forces, Transformation Generated Force, Unified Force, Universal Mechanics, Uniform And Non-Uniform Variational Interactions, Variational Interactions

Procedia PDF Downloads 23
1197 First-Principles Modeling of Nanoparticle Magnetization, Chaining, and Motion

Authors: Pierce Radecki, Pulkit Malik, Bharath Ramaswamy, Ben Shapiro

Abstract:

The ability to effectively design and test magnetic nanoparticles for controlled movement has been an elusive goal in the design of these particles. Magnetic nanoparticles of various characteristics have been created for use towards therapeutic effects, however the challenge of designing for controlled movement remains unmet. A step towards design in this aspect is a first principles model that captures and predicts the behaviors of particles in a magnetic field. The model is governed by four forces acting on the particles, the magnetic gradient, the dipole-dipole forces, the steric forces, and the viscous drag force. The particles are multi-core or single core, and incorporate a preferred magnetization axis. Particles exhibit behaviors, such as chaining, in simulations that are similar to those witnessed through experimentation. Currently, experimental results are being compared to the modeling results for verification of the model, through the analysis of chaining behaviors. This modeling system will be used in designing magnetic nanoparticles for specific chaining and movement behaviors.

Keywords: controlled movement, modeling, magnetic nanoparticles, nanoparticle design

Procedia PDF Downloads 281
1196 Numerical Simulation of a Three-Dimensional Framework under the Action of Two-Dimensional Moving Loads

Authors: Jia-Jang Wu

Abstract:

The objective of this research is to develop a general technique so that one may predict the dynamic behaviour of a three-dimensional scale crane model subjected to time-dependent moving point forces by means of conventional finite element computer packages. To this end, the whole scale crane model is divided into two parts: the stationary framework and the moving substructure. In such a case, the dynamic responses of a scale crane model can be predicted from the forced vibration responses of the stationary framework due to actions of the four time-dependent moving point forces induced by the moving substructure. Since the magnitudes and positions of the moving point forces are dependent on the relative positions between the trolley, moving substructure and the stationary framework, it can be found from the numerical results that the time histories for the moving speeds of the moving substructure and the trolley are the key factors affecting the dynamic responses of the scale crane model.

Keywords: moving load, moving substructure, dynamic responses, forced vibration responses

Procedia PDF Downloads 325
1195 Reducing Component Stress during Encapsulation of Electronics: A Simulative Examination of Thermoplastic Foam Injection Molding

Authors: Constantin Ott, Dietmar Drummer

Abstract:

The direct encapsulation of electronic components is an effective way of protecting components against external influences. In addition to achieving a sufficient protective effect, there are two other big challenges for satisfying the increasing demand for encapsulated circuit boards. The encapsulation process should be both suitable for mass production and offer a low component load. Injection molding is a method with good suitability for large series production but also with typically high component stress. In this article, two aims were pursued: first, the development of a calculation model that allows an estimation of the occurring forces based on process variables and material parameters. Second, the evaluation of a new approach for stress reduction by means of thermoplastic foam injection molding. For this purpose, simulation-based process data was generated with the Moldflow simulation tool. Based on this, component stresses were calculated with the calculation model. At the same time, this paper provided a model for estimating the forces occurring during overmolding and derived a solution method for reducing these forces. The suitability of this approach was clearly demonstrated and a significant reduction in shear forces during overmolding was achieved. It was possible to demonstrate a process development that makes it possible to meet the two main requirements of direct encapsulation in addition to a high protective effect.

Keywords: encapsulation, stress reduction, foam-injection-molding, simulation

Procedia PDF Downloads 102
1194 Engineered Bio-Coal from Pressed Seed Cake for Removal of 2, 4, 6-Trichlorophenol with Parametric Optimization Using Box–Behnken Method

Authors: Harsha Nagar, Vineet Aniya, Alka Kumari, Satyavathi B.

Abstract:

In the present study, engineered bio-coal was produced from pressed seed cake, which otherwise is non-edible in origin. The production process involves a slow pyrolysis wherein, based on the optimization of process parameters; a substantial reduction in H/C and O/C of 77% was achieved with respect to the original ratio of 1.67 and 0.8, respectively. The bio-coal, so the product was found to have a higher heating value of 29899 kJ/kg with surface area 17 m²/g and pore volume of 0.002 cc/g. The functional characterization of bio-coal and its subsequent modification was carried out to enhance its active sites, which were further used as an adsorbent material for removal of 2,4,6-Trichlorophenol (2,4,6-TCP) herbicide from the aqueous stream. The point of zero charge for the bio-coal was found to be pH < 3 where its surface is positively charged and attracts anions resulting in the maximum 2, 4, 6-TCP adsorption at pH 2.0. The parametric optimization of the adsorption process was studied based on the Box-Behken design with the desirability approach. The results showed optimum values of adsorption efficiency of 74.04% and uptake capacity of 118.336 mg/g for an initial metal concentration of 250 mg/l and particle size of 0.12 mm at pH 2.0 and 1 g/L of bio-coal loading. Negative Gibbs free energy change values indicated the feasibility of 2,4,6-TCP adsorption on biochar. Decreasing the ΔG values with the rise in temperature indicated high favourability at low temperatures. The equilibrium modeling results showed that both isotherms (Langmuir and Freundlich) accurately predicted the equilibrium data, which may be attributed to the different affinity of the functional groups of bio-coal for 2,4,6-TCP removal. The possible mechanism for 2,4,6-TCP adsorption is found to be physisorption (pore diffusion, p*_p electron donor-acceptor interaction, H-bonding, and van der Waals dispersion forces) and chemisorption (phenolic and amine groups chemical bonding) based on the kinetics data modeling.

Keywords: engineered biocoal, 2, 4, 6-trichlorophenol, box behnken design, biosorption

Procedia PDF Downloads 92
1193 ΕSW01: A Methodology for Approaching the Design of Interior Spaces

Authors: Eirini Krasaki

Abstract:

This paper addresses the problem of designing spaces in a consistently changing environment. Space is considered as a totality of forces that coexist in the same place. Forces form the identity of space and characterize the entities that coexist within the same totality. Interior space is considered as a totality of forces which develop within an envelope. This research focuses on the formation of the tripole space-forces-totality and studies the relation of this tripole to the interior space. The point of departure for this investigation has been set the historic center of Athens, a city center where the majority of building mass is unused. The objective of the study is to connect the development of interior spaces to the alterations of the conceptions that form the built environment. The research focuses on Evripidou street, an axis around which expand both commercial and residential centers. Along Evripidou street, three case studies elaborate: a) In case study 01, Evripidou street is examined as a megastructure in which totalities of interior spaces develop. b) In case study 02, a particular group of entities (polykatoikia) that expand in Evripidou street is investigated. c) In case study 03, a particular group of entities (apartment) that derives from a specific envelope is investigated. Throughout the studies and comparisons of different scales, a design methodology that addresses the design of interior space in relation to the dynamics of the built environment is evolved.

Keywords: methodology, research by design, interior, envelope, dynamics

Procedia PDF Downloads 148
1192 Global Migration and Endangered Majorities in Europe

Authors: Liav Orgad

Abstract:

This article challenges one of the most fundamental propositions in the democratic theory that the majority culture is protected merely by the forces of democracy and thus needs no special legal protection. By describing changes in the patterns of migration to Europe, in the face of the European society, and in the world as a whole, the Article demonstrates that the majority culture is no longer automatically protected by the forces of democracy. It claims that the changing reality is not adequately addressed by political theory and human rights law and advances the promotion of a new concept—'cultural majority rights'.

Keywords: European migration, European demography, democratic theory, majority rights, integration

Procedia PDF Downloads 374
1191 Structural Parameter-Induced Focusing Pattern Transformation in CEA Microfluidic Device

Authors: Xin Shi, Wei Tan, Guorui Zhu

Abstract:

The contraction-expansion array (CEA) microfluidic device is widely used for particle focusing and particle separation. Without the introduction of external fields, it can manipulate particles using hydrodynamic forces, including inertial lift forces and Dean drag forces. The focusing pattern of the particles in a CEA channel can be affected by the structural parameter, block ratio, and flow streamlines. Here, two typical focusing patterns with five different structural parameters were investigated, and the force mechanism was analyzed. We present nine CEA channels with different aspect ratios based on the process of changing the particle equilibrium positions. The results show that 10-15 μm particles have the potential to generate a side focusing line as the structural parameter (¬R𝓌) increases. For a determined channel structure and target particles, when the Reynolds number (Rₑ) exceeds the critical value, the focusing pattern will transform from a single pattern to a double pattern. The parameter α/R𝓌 can be used to calculate the critical Reynolds number for the focusing pattern transformation. The results can provide guidance for microchannel design and biomedical analysis.

Keywords: microfluidic, inertial focusing, particle separation, Dean flow

Procedia PDF Downloads 51
1190 Simulative Study of the Influence of Degraded Twin-Tube Shock Absorbers on the Lateral Forces of Vehicle Axles

Authors: Tobias Schramm, Günther Prokop

Abstract:

Degraded vehicle shock absorbers represent a risk for road safety. The exact effect of degraded vehicle dampers on road safety is still the subject of research. This work is intended to contribute to estimating the effect of degraded twin-tube dampers of passenger cars on road safety. An axle model was built using a damper model to simulate different degradation levels. To parameterize the model, a realistic parameter space was estimated based on test rig measurements and database analyses, which is intended to represent the vehicle field in Germany. Within the parameter space, simulations of the axle model were carried out, which calculated the transmittable lateral forces of the various axle configurations as a function of vehicle speed, road surface, damper conditions and axle parameters. A degraded damper has the greatest effect on the transmittable lateral forces at high speeds and in poor road conditions. If a vehicle is traveling at a speed of 100 kph on a Class D road, a degraded damper reduces the transmissible lateral forces of an axle by 20 % on average. For individual parameter configurations, this value can rise to 50 %. The axle parameters that most influence the effect of a degraded damper are the vertical stiffness of the tire, the unsprung mass and the stabilizer stiffness of the axle.

Keywords: vehicle dynamics, vehicle simulation, vehicle component degradation, shock absorber model, shock absorber degradation

Procedia PDF Downloads 75
1189 Pressure Relief in Prosthetic Sockets through Hole Implementation Using Different Materials

Authors: Gabi N. Nehme

Abstract:

Below-knee amputees commonly experience asymmetrical gait patterns. It is generally believed that ischemia is related to the formation of pressure sores due to uneven distribution of forces. Micro-vascular responses can reveal local malnutrition. Changes in local skin blood supply under various external loading conditions have been studied for a number of years. Radionuclide clearance, photo-plethysmography, trans-cutaneous oxygen tension along with other studies showed that the blood supply would be influenced by the epidermal forces, and the rate and the amount of blood supply would decrease with increased epidermal loads being shear forces or normal forces. Several cases of socket designs were investigated using Finite Element Model (FEM) and Design of Experiment (DOE) to increase flexibility and minimize the pressure at the limb/socket interface using ultra high molecular weight polyethylene (UHMWPE) and polyamide 6 (PA6) or Duraform. The pressure reliefs at designated areas where reducing thickness is involved are seen to be critical in determination of amputees’ comfort and are very important to clinical applications. Implementing a hole between the Patellar Tendon (PT) and Distal Tibia (DT) would decrease stiffness and increase prosthesis range of motion where flexibility is needed. In addition, displacement and prosthetic energy storage increased without compromising mechanical efficiency and prosthetic design integrity.

Keywords: patellar tendon, distal tibia, prosthetic socket relief areas, hole implementation

Procedia PDF Downloads 387
1188 Driving and Hindering Forces for the Care of Older People: experiences of Brazilian Family Caregivers

Authors: Adriane Amend, Leidiene Ferreira Santos, Daniella Pires Nunes

Abstract:

The experience of assuming or caring for older persons dependents by relatives is a complex task that encompasses or affective involvement, the demand for technical activities and or psychological support. It would be necessary to understand the situations related to the caregiver, the person and the environment, which help the family difficulty, as a caregiver to lead this role. Objective: To identify the forces that drive and restrict the care process of family caregivers of the older adults. Method: Descriptive and exploratory research, with a qualitative approach, which has as a reference the Force Field Theory. Five family caregivers of older adult’s dependents residing in the city of Palmas, Tocantins, Brazil will participate. The data were collected from December 2021 to February 2022, through a semi-structured individual interview, and submitted to content analysis. Results: As forces that drive or process of caring for family caregivers were: the account of compassionate attitudes and patience of the caregiver (I); to the collaboration of the other person to the care and to the body structure of the same (Other); and the supports of other people not cared for and structural, such as adaptations in the room, read and bathroom, as in the presence of air conditioners (Environment). Among the restrictive forces of care we mention difficulties in delegating care to another person, or stress of care and other personal demands (I); imposition of the older person about care and e a transfer from bed to hip (Other); e lack of accessibility of the house and absence of air conditioning and hospital bed (Environment). Conclusion: The results show that there are driving forces with the caregiver's attitude and feelings, a bond as an idol and support for the caregiver and the environment. On the other hand, conflicting ties, absence of physical structure and daily and continuous care shifts, can significantly compromise well-being or the cycle of older adult, caregiver and care.

Keywords: caregivers, frail elderly, perception, geriatric nursing

Procedia PDF Downloads 62
1187 A Review of Masonry Buildings Restrengthening Methods

Authors: Negar Sartipzadeh

Abstract:

The historic buildings are generally the ones which have been built by materials like brick, mud, stone, and wood. Some phenomena such as severe earthquakes can be tremendously detrimental to the structures, imposing serious effects and losses on such structures. Hence, it matters a lot to ascertain safety and reliability of the structures under such circumstances. It has been asserted that the major reason for the collapse of Unreinforced Masonry (URM) in various earthquakes is the incapability of resisting the forces and vice versa because such URMs are meant for the gravity load and they fail to withstand the shear forces inside the plate and the bending forces outside the plate. For this reason, restrengthening such structures is a key factor in lowering the seismic loss in developing countries. Seismic reinforcement of the historic buildings with regard to their cultural value on one hand, and exhaustion and damage of many of the structural elements on the other hand, have brought in restricting factors which necessitate the seismic reinforcement methods meant for such buildings to be maximally safe, non-destructive, effective, and non-obvious. Henceforth, it is pinpointed that making use of diverse technologies such as active controlling, Energy dampers, and seismic separators besides the current popular methods would be justifiable for such buildings, notwithstanding their high imposed costs.

Keywords: masonry buildings, seismic reinforcement, Unreinforced Masonry (URM), earthquake

Procedia PDF Downloads 255
1186 Force Measurement for E-Cadherin-Mediated Intercellular Adhesion Probed by Protein Micropattern and Traction Force Microscopy

Authors: Chieh-Chung Tsou, Chun-Min Lo, Yeh-Shiu Chu

Abstract:

Cell’s mechanical forces provide important physical cues in regulation of proper cellular functions, such as cell differentiation, proliferation and migration. It is believed that adhesive forces generated by cell-cell interaction are able to transmit to the interior of cell through filamentous cortical cytoskeleton. Prominent among other membrane receptors, Cadherins are prototypical adhesive molecules able to generate remarkable forces to regulate intercellular adhesion. However, the mechanistic steps of mechano-transduction in Cadherin-mediated adhesion remain very controversial. We are interested in understanding how Cadherin protein complexes enable force generation and transmission at cell-cell contact in the initial stage of intercellular adhesion. For providing a better control of time, space, and substrate stiffness, in this study, a combination of protein micropattern, micropipette manipulation, and traction force microscopy is used. Pair micropattern with different forms confines cell spreading area and the gaps in pairs varied from 2 to 8 microns are applied for monitoring the forces that cell pairs generated, measured by traction force microscopy. Moreover, cell clones obtained from epithelial cells undergone genome editing are used to score the importance for known components of Cadherin complexes in force generation. We believe that our results from this combinatory mechanobiological method will provide deep insights on understanding the biophysical principle governing mechano- transduction of Cadherin-mediated intercellular adhesion.

Keywords: cadherin, intercellular adhesion, protein micropattern, traction force microscopy

Procedia PDF Downloads 230
1185 Mechanical Characterization and CNC Rotary Ultrasonic Grinding of Crystal Glass

Authors: Ricardo Torcato, Helder Morais

Abstract:

The manufacture of crystal glass parts is based on obtaining the rough geometry by blowing and/or injection, generally followed by a set of manual finishing operations using cutting and grinding tools. The forming techniques used do not allow the obtainment, with repeatability, of parts with complex shapes and the finishing operations use intensive specialized labor resulting in high cycle times and production costs. This work aims to explore the digital manufacture of crystal glass parts by investigating new subtractive techniques for the automated, flexible finishing of these parts. Finishing operations are essential to respond to customer demands in terms of crystal feel and shine. It is intended to investigate the applicability of different computerized finishing technologies, namely milling and grinding in a CNC machining center with or without ultrasonic assistance, to crystal processing. Research in the field of grinding hard and brittle materials, despite not being extensive, has increased in recent years, and scientific knowledge about the machinability of crystal glass is still very limited. However, it can be said that the unique properties of glass, such as high hardness and very low toughness, make any glass machining technology a very challenging process. This work will measure the performance improvement brought about by the use of ultrasound compared to conventional crystal grinding. This presentation is focused on the mechanical characterization and analysis of the cutting forces in CNC machining of superior crystal glass (Pb ≥ 30%). For the mechanical characterization, the Vickers hardness test provides an estimate of the material hardness (Hv) and the fracture toughness based on cracks that appear in the indentation. Mechanical impulse excitation test estimates the Young’s Modulus, shear modulus and Poisson ratio of the material. For the cutting forces, it a dynamometer was used to measure the forces in the face grinding process. The tests were made based on the Taguchi method to correlate the input parameters (feed rate, tool rotation speed and depth of cut) with the output parameters (surface roughness and cutting forces) to optimize the process (better roughness using the cutting forces that do not compromise the material structure and the tool life) using ANOVA. This study was conducted for conventional grinding and for the ultrasonic grinding process with the same cutting tools. It was possible to determine the optimum cutting parameters for minimum cutting forces and for minimum surface roughness in both grinding processes. Ultrasonic-assisted grinding provides a better surface roughness than conventional grinding.

Keywords: CNC machining, crystal glass, cutting forces, hardness

Procedia PDF Downloads 124
1184 Augmented Reality Aplications for Armed Forces

Authors: Murat Sözen

Abstract:

It is not at all difficult to estimate which level today’s technology reaches considering that humankinds space-faring in early 1950s. Technology is a means to help achieve goals and people can produce systems on their physical and mental abilities. Needed and used as tools in all areas of life and became a necessity and dependency, technology, widely used in the military field. To be a revolutionary change in the military matters, opportunities offered by technology should be put into practice. Tech makes weapons, sensors, platforms and soldiers carrying them more effective. To increase this efficiency in the battlefield defense industry is seeking every advantage of technology. In this study, the applicability of existing and on-going augmented reality applications for Armed Forces will be evaluated.

Keywords: augmented reality, battlefield, military, virtual reality

Procedia PDF Downloads 236
1183 Effects of Milling Process Parameters on Cutting Forces and Surface Roughness When Finishing Ti6al4v Produced by Electron Beam Melting

Authors: Abdulmajeed Dabwan, Saqib Anwar, Ali Al-Samhan

Abstract:

Electron Beam Melting (EBM) is a metal powder bed-based Additive Manufacturing (AM) technology, which uses computer-controlled electron beams to create fully dense three-dimensional near-net-shaped parts from metal powder. It gives the ability to produce any complex parts directly from a computer-aided design (CAD) model without tools and dies, and with a variety of materials. However, the quality of the surface finish in EBM process has limitations to meeting the performance requirements of additively manufactured components. The aim of this study is to investigate the cutting forces induced during milling Ti6Al4V produced by EBM as well as the surface quality of the milled surfaces. The effects of cutting speed and radial depth of cut on the cutting forces, surface roughness, and surface morphology were investigated. The results indicated that the cutting speed was found to be proportional to the resultant cutting force at any cutting conditions while the surface roughness improved significantly with the increase in cutting speed and radial depth of cut.

Keywords: electron beam melting, additive manufacturing, Ti6Al4V, surface morphology

Procedia PDF Downloads 89
1182 Numerical Study on the Hazards of Gravitational Forces on Cerebral Aneurysms

Authors: Hashem M. Alargha, Mohammad O. Hamdan, Waseem H. Aziz

Abstract:

Aerobatic and military pilots are subjected to high gravitational forces that could cause blackout, physical injuries or death. A CFD simulation using fluid-solid interactions scheme has been conducted to investigate the gravitational effects and hazards inside cerebral aneurysms. Medical data have been used to derive the size and geometry of a simple aneurysm on a T-shaped bifurcation. The results show that gravitational force has no effect on maximum Wall Shear Stress (WSS); hence, it will not cause aneurysm initiation/formation. However, gravitational force cause causes hypertension which could contribute to aneurysm rupture.

Keywords: aneurysm, cfd, wall shear stress, gravity, fluid dynamics, bifurcation artery

Procedia PDF Downloads 345
1181 Armed Forces Special Powers Act and Human Rights in Nagaland

Authors: Khrukulu Khusoh

Abstract:

The strategies and tactics used by governments throughout the world to counter terrorism and insurgency over the past few decades include the declaration of states of siege or martial law, enactment of anti-terrorist legislation and strengthening of judicial powers. Some of these measures taken have been more successful than the other, but some have proved counterproductive, alienating the public from the authorities and further polarizing an already fractured political environment. Such cases of alienation and polarization can be seen in the northeastern states of India. The Armed Forces (Special Powers) Act which was introduced to curb insurgency in the remote jungles of the far-flung areas has remained a telling tale of agony in the north east India. Grievous trauma to humans through encounter killings, custodial deaths, unwarranted torture, exploitation of women and children in several ways have been reported in Nagaland, Manipur and other northeastern states where the Indian army has been exercising powers under the Armed Forces (Special Powers) Act. While terrorism and the insurgency are destructive of human rights, counter-terrorism does not necessarily restore and safeguard human rights. This special law has not proven effective particularly in dealing with terrorism and insurgency. The insurgency has persisted in the state of Nagaland even after sixty years notwithstanding the presence of a good number of special laws. There is a need to fight elements that threaten the security of a nation, but the methods chosen should be measured, otherwise the fight is lost. There has been no review on the effectiveness or failure of the act to realize its intended purpose. Nor was there any attempt on the part of the state to critically look at the violation of rights of innocent citizens by the state agencies. The Indian state keeps enacting laws, but none of these could be effectively applied as there was the absence of clarity of purpose. Therefore, every new law which has been enacted time and again to deal with security threats failed to bring any solution for the last six decades. The Indian state resorts to measures which are actually not giving anything in terms of strategic benefits but are short-term victories that might result in long-term tragedies. Therefore, right thinking citizens and human rights activists across the country feel that introduction of Armed Forces (Special Powers) Act was as much violation of human rights and its continuation is undesirable. What worried everyone is the arbitrary use, or rather misuse of power by the Indian armed forces particularly against the weaker sections of the society, including women. After having being subjected to indiscriminate abuse of that law, people of the north-east India have been demanding its revocation for a long time. The present paper attempts to critically examine the violation of human rights under Armed Forces (Special Powers) Act. It also attempts to bring out the impact of Armed Forces (Special Powers) Act on the Naga people.

Keywords: armed forces, insurgency, special laws, violence

Procedia PDF Downloads 466